Dynamics of cold atomic gases
Vorlesung
Thomas Gasenzer
Wednesday, 09:15-10:45, INF 227 SR 3.401, Start: 18 April 2007
Content:
-
Introduction
(Atomic Bose-Einstein condensates and (degenerate) Fermi gases, experiments,
observables)
-
Introduction to mean field theory
(Gross-Pitaevskii dynamics, hydrodynamics, excitations near equilibrium)
-
Dynamics close to equilibrium beyond mean field
(Boltzmann's kinetic theory, kinetic theory of Bose-Einstein condensates, Beliaev theory, Landau damping)
-
Quantum field theory far from equilibrium
(Path integral approach, effective action, 2PI theory, perturbation theory and loop expansion, 1/N resummation)
-
Applications and phenomena
(Equilibration, classical vs. quantum dynamics, classical simulations, dynamics near phase transitions)
Prerequisites:
-
Quantum Mechanics (Theoretical Physics III), Statistical Mechanics (Theor. Phys. IV)
-
Quantum field theory, Path integrals in Quantum Physics would be helpful for the second part of the lecture.
Literature:
-
K. Huang, "Statistical Mechanics", Wiley (1987).
-
C.J. Pethick and H. Smith, "Bose-Einstein condensation in Dilute Gases, CUP, Cambridge (2002).
-
A. Leggett, "Bose-Einstein condensation in the alkali gases: Some fundamental concepts", Review of Modern Physics 73, 307 (2001)
(Full text as pdf available through UB proxy server).
-
L.P. Pitaevskii and S. Stringari, "Bose-Einstein condensation", Clarendon Press, Oxford (2003).
-
F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, "Theory of Bose-Einstein condensation in trapped gases", Review of Modern Physics 71, 463 (1999).
(Full text as pdf available through UB proxy server).
-
J. Berges, "Introduction to Nonequilibrium Quantum Field Theory", e-print hep-ph/0409233; AIP Conf. Proc. No. 793 (AIP, New York, 2005), p. 3.
-
H. Kleinert, "Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Financial Markets", World Scientific Publishing Co., Singapore (2004).
-
G. Roepstorff, "Pfadintegrale in der Quantenphysik", Vieweg, Braunschweig (1990).
|