A VLSI Implementation of an Analog Neural
Network suited for Genetic Algorithms

Johannes Schemmel', Karlheinz Meier!, and Felix Schiirmann!
Universitat Heidelberg, Kirchhoff Institut fiir Physik, Schréderstr. 90, 69120
Heidelberg, Germany,
schemmel@asic.uni-heidelberg.de,

WWW home page: http://www.kip.uni-heidelberg.de/vision.html

Abstract. The usefulness of an artificial analog neural network is closely
bound to its trainability. This paper introduces a new analog neural net-
work architecture using weights determined by a genetic algorithm. The
first VLSI implementation presented in this paper achieves 200 giga con-
nections per second with 4096 synapses on less than 1 mm? silicon area.
Since the training can be done at the full speed of the network, several
hundred individuals per second can be tested by the genetic algorithm.
This makes it feasible to tackle problems that require large multi-layered
networks.

1 Introduction

Artificial neural networks are generally accepted as a good solution for problems
like pattern matching etc. Despite being well suited for a parallel implementation
they are mostly run as numerical simulations on ordinary workstations. One
reason for this are the difficulties determining the weights for the synapses in a
network based on analog circuits. The most successful training algorithm is the
back-propagation algorithm. It is based on an iteration that calculates correction
values from the output error of the network. A prerequisite for this algorithm is
the knowledge of the first derivative of the neuron transfer function. While this is
easy to accomplish for digital implementations, i.e. ordinary microprocessors and
special hardware, it makes analog implementations difficult. The reason for that
is that due to device variations, the neurons’ transfer functions, and with them
their first derivatives, vary from neuron to neuron and from chip to chip. What
makes things worse is that they also change with temperature. While it is possible
to build analog circuitry that compensates all these effects, this likely results
in circuits much larger and slower than their uncompensated counterparts. To
be successful while under a highly competitive pressure from the digital world,
analog neural networks should not try to transfer digital concepts to the analog
world. Instead they should rely on device physics as much as possible to allow
an exploitation of the massive parallelism possible in modern VLSI technologies.
Neural networks are well suited for this kind of analog implementation since the
compensation of the unavoidable device fluctuations can be incorporated in the
weights.

A major problem that still has to be solved is the training. A large number
of the analog neural network concepts that can be found in the literature use
floating gate technologies like EEPROM of flash memories to store the analog
weights (see [1] for example). At a first glance this seems to be an optimal
solution: it consumes only a small area making therefore very compact synapses
possible (down to only one transistor [2]), the analog resolution can be more
than 8 bit and the data retention time exceeds 10 years (at 5 bit resolution) [3].
The drawback is the programming time and the limited lifetime of the floating
gate structure if it is frequently reprogrammed. Therefore such a device needs
predetermined weights, but to calculate the weights an exact knowledge of the
network transfer function is necessary. To break this vicious circle the weight
storage must have a short write time. This would allow a genetic algorithm to
come into play. By evaluation of a high number of test configurations the weights
could be determined using the real chip. This could also compensate a major
part of the device fluctuations, since the fitness data includes the errors caused
by these aberrations.

This paper describes an analog neural network architecture optimized for
genetic algorithms. The synapses are small, 10x10 ym?, and fast. The measured
network frequency exceeds 50 MHz, resulting in more than 200 giga connections
per second for the complete array of 4096 synapses. For building larger networks
it should be possible to combine multiple smaller networks, either on the same
die or in different chips. This is achieved by confining the analog operation to
the synapses and the neuron inputs. The network inputs and neuron outputs are
digitally coded. The synapse operation is thereby reduced from a multiplication
to an addition. This makes the small synapse size possible and allows the full
device mismatch compensation, because each synapse adds either zero or its
individual weight that can include any necessary corrections. Analog signals
between the different analog network layers are represented by arbitrary multi-
bit connections.

The network presented in this paper is optimized for real-time data streams
in the range of 1 to 100 MHz and widths of up to 64 bits. We plan to use it for
data transmission applications like high speed DSL!, image processing based on
digital edge data produced from camera images by an analog preprocessing chip
[4] and for the fitness evaluation of a field programmable transistor array [5] also
developed in our group.

2 Realization of the Neural Network

2.1 Principle of operation

Figure 1 shows a symbolic representation of a recurrent neural network. Each
input neuron (small circle) is linked to each output neuron (large circle) by
a synapse (arrow). The output neurons are fed back into the network by a
second set of input neurons. The input neurons serve only as amplifiers, while the

! digital subscriber line

input layer output layer input layer intermediate layer

!

inputs
1

outputs

outputs

v

output layer

Fig. 1. Left: A recurrent neural network. Right: The same network configured as a two
layer network.

processing is done at the output neurons. This architecture allows virtual multi-
layer networks by choosing the appropriate weights. On the right of Figure 1
an example is shown for two layers. Synapse weights set to zero are depicted as
dashed arrows. A recurrent network trained by a genetic algorithm has usually
no fixed number of layers. Of course, the algorithm can be restricted to a certain
number of layers, as in Figure 1, but usually it seems to be an advantage to let
the genetic algorithm choose the best number of layers. Also, there is no strict
boundary between the virtual layers. Each neuron receives input signals from all
layers. To avoid wasting synapses if not all the feedback pathways are used, the
presented network shares input neurons between external inputs and feedback
outputs.

Figure 2 shows the operation principle of a single neuron. The synaptic

synapses

) - output
AT Py T newon
eo0e0 . o000
64 inpu\tne\urons

synapse circuit | neuron circuit

postsynaptic signal

postsynaptic

signal + 1
= D Q I i

voltage % clk |
»—‘7

output buffer
! capacitor il

presynaptic storage

. i e | . precharge

signal weight capacitor ! | o g
precharge signal

Fig. 2. Operation principle of the neuron.

weights are stored as charge on a capacitor (storage capacitor). The neuron oper-
ation is separated in two phases, precharge and evaluate. In the precharge phase
all the switches in the synapses are set towards the buffer and the precharge
signal in the neuron is active. In each synapse the output capacitor is charged
via the weight buffer to the same voltage as the storage capacitor. The neuron
consists of a comparator and a storage latch. The precharge signal closes a switch
between both inputs of the comparator. This precharges the post-synaptic signal
to a reference voltage that constitutes the zero level of the network.

In the evaluate phase the sum of all the synapses is compared to this precharge
voltage. If the synapse signal exceeds it, the neuron fires. This neuron state is
stored in the flip-flop at the moment when the phase changes from evaluate to
precharge. In the evaluate phase the synapse switch connects the output ca-
pacitor with the post-synaptic signal if the pre-synaptic signal is active. The
pre-synaptic signals are generated by the input neurons depending on the net-
work input and feedback information.

This cycle can be repeated a fixed number of times to restrict the network
to a maximum layer number and limit the processing time for an input pattern.
The network can also run continuously while the input data changes from cycle
to cycle. This is useful for signal processing applications.

data inputs
| |
{ l l 32 input l ¢
é neurons é '
o o
D }
o =
5| 64x64 oV
%_ : synapse g :
§ g array @
T g8 g >—<»
=5 g
2 & D .-
S 5 3
50 ° : @
= 3
5 | - } 5
(I = O
£ ©
©
*— *— ©
? 32 input T ? A
neurons
analog \ \
weights input data inputs

Fig. 3. Block diagram of the neural network prototype.

Figure 3 shows a block diagram of the developed neural network prototype.
The central element is an array of 64x64 synapses. The post-synaptic lines of
the 64 output neurons run horizontally through the synapses, while the pre-
synaptic signals are fed into the array from the input neurons located below and
above. Each input neuron can be configured to accept either external data or
data from the network itself for input. This internal data comes alternately from
two sources. The odd input neurons receive a feedback signal from an output
neuron while the even ones get the inverted output from its odd neighbor. If the
even neuron is switched to its odd counterpart, they together form a differential
input since the binary signal is converted into a pair of alternately active inputs.
This is useful for two purposes: if binary coded data is used the number of
active input neurons stays always the same, independently of the input data.
The second reason is linked to the way the post-synaptic voltage is calculated:

64
Vpostsyn = Zijl IiQi (1)
Yty IiCy

Q; is the charge stored on the synapse output capacitor C;. I; is the pre-synaptic
signal. As a binary value it is either zero or one. The neuron fires if Vjostsyn >
Vprecharge- Not only the numerator, but also the denominator depends on all
the input signals. This has the drawback that if one input signal changes, the
other weights’ influence on Vjostsyn changes also. Even though it can be shown
that in the simplified model of Eq. 1 the network response stays the same,
the performance of the real network may suffer. The differential input mode
avoids this effect by activating always one input neuron per data input. The
capacitance switched onto the post-synaptic signal line becomes independent of
the data. Therefore the denominator of Eq. 1 stays the same for any changes
of a differential input. The disadvantage is the reduced number of independent
inputs since each differential input combines an odd with an even input neuron.

2.2 Implementation of the network circuits

A micro photograph of the fabricated chip can be seen in Figure 4. The tech-
nology used is a 0.35 pm CMOS process with one poly and three metal layers.
The die size is determined by the IO pads necessary to communicate with the
test system. The synapse array itself occupies less than 0.5 mm?. It operates
from a single 3.3 volt supply and consumes about 50 mW of electrical power.
Figure 5 shows the circuit diagram of the synapse circuit. Both capacitors are
implemented with MOS-transistors. The weight buffer is realized as a source fol-
lower built from the devices M1 and M2. The offset and the gain of this source
follower vary with the bias voltage as well as the temperature. Therefore an op-
erational amplifier outside of the synapse array corrects the weight input voltage
until the output voltage of the source follower equals the desired weight voltage
which is fed back via M7. The charge injection error caused by M6 depends on
the factory induced mismatch that can be compensated by the weight value. M3
is closed in the precharge phase of the network to charge the output capacitor

output neurons

array of
4096 synapses

weight storage

—
—
——
—_—
m———
——
—
————
e
—
—
.
-
—
—
—

Fig. 4. Micro photograph of the neural network chip.

Vad
! output capacitor
weight M6 | M1
input B T \ T
weight
buffer
feedback M7

storage

/ capacitor 4 ¢

. .) e 2 2

\N‘\xe xﬂ‘\@ O \(\a@ o€ ‘\,&Q\\ &
Q§6°)

Fig. 5. Circuit diagram of the synapse.

to the weight voltage. M5 speeds up this process by fully charging the capacitor
first. Since the output current of the source follower is much larger for a current
flowing out of M1 instead of into M2 it discharges the capacitor faster than it is
able to charge it. The total time to charge the output capacitor to the desired
voltage decreases therefore by this combination of discharging and charging. In
the evaluate phase M4 is enabled by the pre-synaptic signal of the input neuron
connected to the synapse. Charge sharing between all the enabled synapses of
every output neuron takes place on the post-synaptic lines. In Figure 6 a part
of the layout drawing of the synapse array is shown. Most of the area is used
up by the two capacitances. The values for the storage and output capacitances
are about 60 and 100 fF respectively. The charge on the storage capacitors must
be periodically refreshed due to the transistor leakage currents. In the training
phase this happens automatically when the weights are updated, otherwise the
refresh takes up about 2 % of the network capacity.

R R0 e N :Z 2y

%\\ i

o

G
= S
- &\\&

b

_ diffusion 72 poly EScontact {8 via [metall metal2 metal3

Fig. 6. Layout drawing of the synapse array showing one synapse.

Figure 7 shows the circuit diagram of the neuron circuit. It is based on a

transfer B
»

evaluate

12
postsynaptic M5 | Mlac :E M3 l M6 4

signal o L o -
_‘—0—‘ >O—e—» fire
M2 l]‘\ \[E M4 M8 11
evaluate »

L I
M
precharge read
precharge voltage

Fig. 7. Circuit diagram of the neuron.

sense amplifier built from the devices M1 to M4. In the precharge phase it is
disabled (evaluate and evaluate are set to the precharge voltage). The activated
precharge and transfer signals restore the post-synaptic input signal and the
internal nodes of the sense amplifier to the precharge voltage. At the begin-
ning of the evaluate phase the precharge signal is deactivated while transfer
stays on. The potential on the post-synaptic input changes now by the activated
synapses. Transistor M5 transfers it onto the gates of M3 and M4. The small
differential voltage between the gates of M1/M2 and M3/M4 is amplified by
disabling transfer and activating evaluate/evaluate. At the same moment the
synapses switch back to the precharge phase. The sense amplifier restores the
signal in about 1 ns to the full supply voltage. With the read signal the result is
stored in the output latch formed by the inverters I1 and I2. The output of I1 is
fed back to the input neurons. The output neuron forms a master/slave flip-flop
with the sense amplifier as the master and the output latch as the slave. This
results in a discrete-time operation of the network. Together with the feedback
the network acts as a kind of mixed-signal state machine. The neurons are the
state flip-flops while the synapse array represents the logic that determines the
next state. The simulated maximum clock frequency of the network is 100 MHz.

3 Implementation of the Genetic Training Algorithm

The time needed to load the 4096 weight values into the network is about 250 us.
A single test pattern comprised of 64 input bits can be applied in about 100 ns.
This makes it feasible to use iterative algorithms needing high numbers of passes.
The dependency between a weight value and a neuron output could be highly
nonlinear, especially if more than one network cycle is used to implement a
multi-layered recurrent network. Therefore a genetic algorithm seems to be well
suited to train the network. The network has also built-in hardware support for

perturbation based learning [6], an iterative algorithm that needs no knowledge
about the transfer function of the network.

The implemented genetic algorithm represents one weight value by one gene.
To avoid close hardware dependencies the weight value is stored in a normalized
way using floating point numbers between -1 for the maximum inhibitory and
+1 for the maximum excitatory synapse. These numbers are converted into
the voltage values needed by the analog neural network while translating the
genome into the weight matrix. The genes comprising one neuron are combined
to a chromosome. Up to 64 chromosomes form the genome of one individual.

The artificial evolution is always started by creating a random population.
After an individual has been loaded into the weight matrix the testpatterns are
applied. The fitness is calculated by comparing the output of the network with
the target values. For each correct bit the fitness is increased by one. This is
repeated for the whole population. After sorting the population by the fitness
two genetic operators are applied: crossover and mutation. The crossover strategy
is depicted in Figure 8. It shows an example for a population of 16 individuals.

generation n generation n+1
largest p B =
fitness
A 2 2 2
3 3 &
4 4 4
5 5 5
6 6 61
7 7 71
8 8 8
9 9 9
10 10 10
11 11 11
12 12 121
13 VO 1 112
replace '\ randomly
14 . 1 17
the Uy select
smallest 45 worst \ 1 crossover 16
fithess 16 25% 2 partners 21

Fig. 8. Crossover pattern used in the genetic algorithm.

The worst 25% of the population are replaced in equal halves by the fittest
individual (solid arrows) and the 12.5 % best ones (dashed arrows). 75% of the
individuals are kept unchanged. As shown in Figure 8 the crossover partners
are randomly chosen. The crossover itself is done in a way that for each pair
of identical chromosomes (i.e. chromosomes coding the same output neuron) a
crossover point is randomly selected. All the genes up to this point are exchanged
between both chromosomes. After the crossover is done the mutation operator
is applied on the new population. It alters every gene with equal probability. If

a gene is subject to mutation, its old value is replaced by a randomly selected
new one (again out of the range [—1, 1]).

4 Experimental Results

The network and the genetic training algorithm have been tested with the setup
shown in Figure 9. The population is maintained on the host computer. The

PCl interface board neural network
testboard

o @ Xilinx 40xx neural
Q
5 é <:> FPGA network
E' 2 chip

=
: S| T “
3 a
=

RAM DAC

Fig. 9. Testbench used for the evaluation of the neural network.

data for each individual is sent via the FPGA to the neural network using a
16 bit digital to analog converter to generate the analog weight values from
the gene data. The testpatterns and the target data are stored in the RAM
on the testboard throughout the evolutionary process. They are applied to the
individual after the neural network has stored its weights. The FPGA reads the
results and calculates the fitness. After the last testpattern the final fitness value
is read back by the host computer and the test of the next individual starts. To
speed up this process the weight data for the next individual can be uploaded
into the RAM while the testpatterns are applied to the current individual. Since
the test board is not yet capable of the full speed of the network the number of
individuals tested per second is limited to about 150 to 300, depending on the
number of testpatterns used.

To test the capability of the genetic algorithm a training pattern was chosen
that is especially hard to learn with traditional algorithms like back-propagation
[7]: the calculation of parity. While easy to implement with exclusive-or gates, it
can not be learned by a single layered neural network. Therefore it also shows the
ability of the presented neural network to act as a two-layered network. Figure 10
shows the testpattern definition for an eight bit parity calculation. Since the
input data is binary coded, the input neurons are configured for differential
input (see Section 2.1). The number of network cycles is set to two and four
output neurons are fed back into the network. This allows the genetic algorithm
to use an internal layer with four neurons. For each testpattern one target bit
is defined: the parity of the testpattern. Figures 11 and 12 show plots of the
fitness versus the generation number for different parity experiments. At 6 bit

repeat count 64 input neurons desired output pattern

\

“#8 bit parity test pattern 1 Y
10 00
10 0000000000000000001000
10 00000000000000001000
10 0000000000000000101000
(patterns 5 to 252)
10 000010101010101000
10 0000101010101010001000

10 00001010101010101000
10 0000101010101010101000

= O O F

PO OP

Fig. 10. Testpattern definition for the 8 bit parity.

the network does not learn all the patterns any more. The random nature of the
artificial evolution is clearly visible: the black curve approaches the same fitness
as the gray one about 5000 generations earlier.

3000
V“M -
sé 2500 j fitness limit: 3200 i
E mutation rate: 1%
§ population: 250]
: internal neurons: 4
2000 ‘ !
0 2000 4000 6000

generation number

Fig. 11. Example fitness curves from 6 bit parity experiments.

5 Conclusion and Outlook

This paper presents a new architecture for analog neural networks that is opti-
mized for iterative training algorithms, especially genetic algorithms. By combin-
ing digital information exchange with analog neuron operation it is well suited
for large neural network chips. Especially, the very small synapse area makes
network chips with more than a million synapses possible. The mapping of in-
put data to the network and the effective number and size of the network layers
is programmable. Therefore not only the weights, but also a significant part of
the architecture can be evolved. The accuracy of the network is not limited by

1500 S S)

%))
%) |
g |
'E 1300 ,r' fitness limit: 1600 -
g —————————————— : mutation rate: 2%
% 1100 population: 50 -
IS .
internal neurons: 3
900 : : : ' : ; :
0 100 200 300

generation number

Fig. 12. Example fitness curves from 4 bit parity experiments.

the precision of a single analog synapse since arbitrary synapses can be com-
bined. By implementing this task in the genetic algorithm, the network could
automatically adapt its prediction performance to a specific data set.

The presented prototype successfully learned the parity calculation of multi-
bit patterns. This shows that genetic algorithms are capable of training two-
layered analog neural networks. At the time of this writing the test setup was
limited in its analog precision. This makes it difficult to train binary patterns of 6
or more bits without errors. Also, the genetic algorithm used is a first approach
to show the functionality of the system. These limitations will be hopefully
overcome in the near future.

References

1. Shibata, T., Kosaka, H., Ishii, H. , Ohmi, T.: A Neuron-MOS Neural Network Using
Self-Learning-Compatible Synapses Circuits. IEEE Journal of Solid-State Circuits,
Vol. 30, No. 8, (August 1995) 913-922

2. Diorio, C., Hasler, P., Minch, B. , Mead, C.: A Single-Transistor Silicon Synapse.
IEEE Transactions on Electron Devices, Vol. 43, No. 11, (November 1996) 1972—
1980

3. Kramer, A.: Array-Based Analog Computation. IEEE Micro, (October 1996) 2029

4. Schemmel, J., Loose, M., Meier, K.: A 66 x 66 pixels analog edge detection ar-
ray with digital readout, Proceedings of the 25th European Solid-State Circuits
Conference, Edition Frontiniéres, ISBN 2-86332-246-X, (1999) 298-301

5. Langeheine, J., Folling, S., Meier, K., Schemmel, J.: Towards a Silicon Primordial
Soup: A Fast Approach to Hardware Evolution with a VLSI Transistor Array. ICES
2000, Proceedings, Springer, ISBN 3-540-67338-5 (2000) 123-132

6. Montalvo, J., Gyurcsik R., Paulos J.,: An Analog VLSI Neural Network with On-
Chip Perturbation Learning. IEEE Journal of Solid-State Circuits, Vol. 32, No. 4,
(April 1997) 535-543

7. Hertz, J. Krogh, A., Palmer, R.: Introduction to the Theory of Neural Computation.
Santa Fe Institute, ISBN 0-201-50395-6 (1991) 131

