KIP-Veröffentlichungen

Jahr 2019
Autor(en) Ling Xin, Mo Lu, Steffen Both, Markus Pfeiffer, Maximilian J. Urban, Chao Zhou, Hao Yan, Thomas Weiss, Na Liu, Klas Lindfors
Titel Watching a Single Fluorophore Molecule Walk into a Plasmonic Hotspot
KIP-Nummer HD-KIP 19-103
KIP-Gruppe(n) F28
Dokumentart Paper
Keywords (angezeigt) DNA Origami Plasmonics Nanoantennas Hotspots Fluorescence Single molecule spectroscopy
Quelle ACS Photonics 6 (2019) 4, 985-993
doi 10.1021/acsphotonics.8b01737
Abstract (en)

Plasmonic nanoantennas allow for enhancing the spontaneous emission, altering the emission polarization, and shaping the radiation pattern of quantum emitters. A critical challenge for the experimental realizations is positioning a single emitter into the hotspot of a plasmonic antenna with nanoscale accuracy. We demonstrate a dynamic light–matter interaction nanosystem enabled by the DNA origami technique. A single fluorophore molecule can autonomously and unidirectionally walk into the hotspot of a plasmonic nanoantenna along a designated origami track. Successive fluorescence intensity increase and lifetime reduction are in situ monitored using single-molecule fluorescence spectroscopy, while the fluorophore walker gradually approaches and eventually enters the plasmonic hotspot. Our scheme offers a dynamic platform, which can be used to develop functional materials, investigate intriguing light–matter interaction phenomena, and serve as prototype system for examining theoretical models.

bibtex
@article{NaLiu2019,
  author   = {Ling Xin, Mo Lu, Steffen Both, Markus Pfeiffer, Maximilian J. Urban, Chao Zhou, Hao Yan, Thomas Weiss, Na Liu, Klas Lindfors},
  title    = {Watching a Single Fluorophore Molecule Walk into a Plasmonic Hotspot},
  journal  = {ACS Photonics},
  year     = {2019},
  volume   = {6},
  number   = {4},
  pages    = {985-993},
  month    = {March},
  doi      = {10.1021/acsphotonics.8b01737},
  url      = {https://doi.org/10.1021/acsphotonics.8b01737}
}
KIP - Bibliothek
Im Neuenheimer Feld 227
Raum 3.402
69120 Heidelberg