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Hardware-Software Schnittstelle und Datenfluß des ALICE HLT

Der Datenfluß des High-Level Trigger (HLT) ist ein kritischer Faktor für den Erfolg
des A Large Ion Collision Experiment (ALICE) am CERN. Für diese Diplomarbeit
wurden ein Linux Kernel Treiber sowie ein Memory Controller für die DDR SDRAM
Chips auf der Read-Out Receiver Card, der Hardware-Beschleuniger Karte für den HLT,
entwickelt. Die Diplomarbeit gibt einen Überblick über den Datenfluß und tieferen
Einblick in die Arbeit an den beiden Komponenten. Ein weiteres Design für eine dritte
Komponente, den Datenreformatierer, wird vorgestellt.

Die Komponenten wurden zwar für den HLT entwickelt, sind jedoch generisch und
in weiten Teilen konfigurierbar. Insofern sind sie auch für andere Projekte verwendbar
und werden zum Teil auch anderweitig bereits eingesetzt. Sie werden hier in der logi-
schen Reihenfolge, die durch den Datenfluß vorgegeben ist, vorgestellt und nicht in der
chronologischen Reihenfolge, in der sie entwickelt wurden.

Hardware-Software Interface and Data Flow of the ALICE HLT

The data flow of the High-Level Trigger (HLT) is critical to the success of A Large
Ion Collision Experiment (ALICE) at the CERN. During the work for this thesis, a
Linux kernel driver, and a memory controller for the DDR SDRAM chips on the Read-
Out Receiver Card, the preprocessing hardware for the HLT, have been developed.
The thesis gives an overview of the data flow, and an insight to the work on those
two components in detail. The design for a third component, the data reformatter, is
presented.

While the components were developed with the HLT in mind, they are generic and
highly configurable, and can be used, or are already in use, by other projects. They
will be presented in this thesis in logical order given by the data flow, rather than in
the chronological order in which they have been developed or designed.
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I’m astounded by people who want to ‘know’ the universe
when it’s hard enough to find your way around Chinatown.

Woody Allen

1 Introduction

Though not easily comprehensible to many, the innermost workings of the world, and
this means matter itself and the interactions it is subject to, are a constant source
of fascination and ever deeper questions for the physicist. Today, we have developed,
confirmed and refined, mostly through experiments in the constantly evolving field of
high energy physics, a high level of understanding of matter, formulated in the standard
model of particle physics.

While it is often difficult to reconcile the vast amount of resources spent on funda-
mental research, and the lack of immediate, conceivable use, the long term effects on
applied science and industry, but also on philosophy and with it society as a whole,
cannot be put aside. That said, fundamental research has spawned many by-products,
most notably in the field of modern medical diagnostics and treatment, but also in far
less serious fields, like the entertainment industry.

1.1 Thesis Overview

The focus of this thesis is on the data flow of the High-Level Trigger (HLT) of A Large
Ion Collision Experiment (ALICE). ALICE is one of five experiments of the Large
Hadron Collider (LHC) built at the research facility of the European Organisation for
Nuclear Research (CERN) near Geneva, Switzerland.

The thesis starts with a brief introduction to the basics of high energy physics. In
chapter 2, an overview of the LHC and ALICE is given, along with more detailed
information about the detectors and the HLT in particular. The rest of the thesis deals
with the HLT, only. Chapter 3 gives an insight to the HLT Read-Out Receiver Card (H-
RORC) and specifically to the DDR SDRAM controller developed for this thesis.
The memory controller is a core component, vital to the basic functionality of the
preprocessing hardware. In chapter 4, a detailed description of the interface between
the hardware and software of the HLT is given. The PCI and Shared-memory
Interface (PSI), also developed for this thesis, allows the software to communicate
with the hardware and control it, and thus is also one of the essential components. The
last chapter sums up the results and gives some prospects for further development and
improvement. A component not yet developed, the data reformatter, is presented in
principle, and critical aspects are discussed.

The appendix contains documentation for the DDR SDRAM Controller and the PCI
and Shared-memory Interface Library.
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1 Introduction

Generation Leptons q/e m Quarks q/e m

first νe (e Neutrino) 0 ≈ 0 d (Down) −1/3 ≈ 5 MeV
e (Electron) −1 511 keV u (Up) 2/3 ≈ 2 MeV

second νµ (µ Neutrino) 0 ≈ 0 s (Strange) −1/3 ≈ 95 MeV
µ (Muon) −1 106 MeV c (Charm) 2/3 ≈ 1.2 GeV

third ντ (τ Neutrino) 0 ≈ 0 b (Bottom) −1/3 ≈ 4.2 GeV
τ (Tau) −1 1.78 GeV t (Top) 2/3 ≈ 174 GeV

Table 1.1: The twelve fundamental particles [23, p. 33]. So far, physicists believe that
these are the basic constituents of all matter known. Every particle has an
anti-particle with corresponding physical properties which have not been
included in the table. The electrical charge is given in quantities of the
charge of a single electron, and the mass of the particle is given in its
energy equivalent.

1.2 Physics Overview

The standard model states that matter is constituted from two types of fundamental
fermionic particles, leptons and quarks. Interaction between those particles involves
three1 fundamental forces, electromagnetic, strong and weak interaction, and can be
described through corresponding gauge bosons. The standard model incorporates both
the theory of electro-weak interaction and the theory of quantum chromodynamics.
While the leptons are subject only to electro-weak interaction, quarks also interact
through the strong force.

All of the twelve fundamental fermions and their masses are listed in table 1.1. For
each of these particles, there exists an anti-particle. These have not been included in
the table as they have corresponding properties.

Table 1.2 shows the fundamental forces together with their typical range, relative
strength and the corresponding gauge bosons. While the electromagnetic and weak
forces and gravity decrease with growing distance, the strong force actually increases
with growing distance. This phenomenon is known as confinement and the result is
that quarks cannot be observed as solitary particles, like leptons.

If we leave out gravity, all forces couple to a charge. The weak force couples to
the unipolar weak charge, while the electric charge associated with the electromagnetic
force is bipolar. Coupling of particles subject to strong interactions can be explained
by introducing a colour charge, hence the name chromodynamics. The colour charge
can be one of red, blue, green or the respective anti-colours. Confinement can now be
formulated as free particles having to be colour-neutral. This results in two types of
composite particles, called hadrons. While mesons consist of quark-antiquark pairs with

1The fourth fundamental force, gravitation, is not part of the standard model and has yet to be for-
mulated into a quantised theory. Thus, the standard model is not a complete theory of fundamental
interactions.
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1.2 Physics Overview

Force Range [m] Strength Gauge Boson m

Strong 10−15 > 1 g (Gluon) 0
Electromagnetic ∞ 10−2 γ (Photon) < 6 · 10−17 eV
Weak 10−17 10−14 W± 80 GeV

Z0 91 GeV
Gravitation ∞ 10−41 unknown –

Table 1.2: The four fundamental forces [23, p. 31] and [15, ch. 16]. All interactions
between particles can be described with the forces above. These forces
give form and stability to matter at very different scales. While the strong
and weak interaction can be observed only on a very small scale within
the nucleus, the electromagnetic force and gravitation have only minor
effects on this level. Electromagnetism, however, holds together atoms in
molecules and molecules in solid states. Gravitation works on an even
larger scale and keeps together the solar system, for example.

opposite colour charge, baryons are quark-triplets with each quark having a different
colour. In both cases the composite colour is regarded as white, or neutral.

While the standard model seems to be sufficient to explain the phenomena seen in
particle physics so far2, it leaves a lot of questions open. Like, why there are three gen-
erations of fundamental particles, and where their properties actually come from. One
of the most interesting questions is where the seemingly arbitrary mass of fundamental
particles originates. The Higgs mechanism tries to answer this question by introducing
the Higgs field. Interaction with this field results in particles acquiring mass. To con-
firm the Higgs mechanism, a Higgs boson has to be observed in an experiment. While
physicists believe to know approximately the energy that is necessary to observe the
Higgs boson, no accelerator could reach this energy, as of today. The search for this
particle is one of the reasons for building the LHC at the CERN.

There are, however, other interesting things to be observed at the high energy density
LHC will reach, especially when it is operating in heavy ion collision mode. With
ALICE, for example, physicists hope to gain insight on the physics of the universe at
a very early stage, and thus learn more about how the universe was born, actually.
Quantum chromodynamics predicts that confinement will be cancelled out at either
high density of hadron matter or high temperatures, leaving matter in a phase called
quark-gluon plasma. While densities high enough might still be reached in neutron
stars our days, the quark-gluon plasma at high temperatures is important mostly in
the Big Bang scenario.

Quark-gluon plasma has been studied in other experiments, e.g. at the Super Pro-
ton Synchrotron (SPS) at CERN or the Relativistic Heavy Ion Collider (RHIC) at
Brookhaven National Laboratory. However, since ultra-relativistic heavy ion collisions

2Apart from the non-zero mass of neutrinos, which is a bit problematic.
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1 Introduction

produce far more particles than other experiments in high energy physics, the demands
at detector resolution are very high and far more data has to be processed for a single
event. Even today, the raw data can neither be processed in real-time, nor can it all
be saved for off-line processing at reasonable cost. A dedicated preprocessing system,
the ALICE HLT, has to decide in real-time which pieces of data should be relayed for
either further processing or storage.

Since the trigger has quite an impact on the quality of results, it is subject to intense
studies. The ALICE HLT scans and filters the data coming from the detectors for
relevant information. This is done both in hardware and software, specifically designed
for this task.

4



I love deadlines.
I like the whooshing sound

they make as they fly by.
Douglas Adams

2 The Experiment
The history of accelerators, and thus the history of high energy physics, begins some-
where in the twenties of the last century [6]. Particle accelerators, as the name implies,
accelerate particles to nearly the speed of light. In high energy physics experiments,
either a particle beam is aimed at a target, or two particle beams from opposite direc-
tions are focused in one point. Either way, particles collide with very high energy. They
are scattered and can form new particles. Some of the newly created particles decay
almost instantaneous, and the decay products, new particles again, can be observed
with detectors1. There are detectors which measure the momentum, the energy or the
track of a particle. For different types of particles, different types of detectors have
been developed.

The need for ever higher energies has pushed the cost of accelerators and experiments
to the point, where only international collaborations can afford to build them. In 1952,
a then still provisional council, the Conseil Européen pour la Recherche Nucléaire2

(CERN), was established by eleven European governments [7]. Today, the CERN has
20 member states, and operates six accelerators and one decelerator. About 3000
employees work at the CERN, and 6500 guest scientists from over 80 countries in the
world visit the CERN for their research. The University of Heidelberg, Germany, is
one of about 500 universities in the world, involved in the research and building of new
experiments at the CERN [8].

2.1 The Large Hadron Collider
At the time of writing of this thesis, a new accelerator is built at the CERN site near
Geneva, Switzerland. The Large Hadron Collider (LHC) will go on-line in 2007 and
will be able to accelerate protons up to 7 TeV, and heavy ions up to 575 TeV. It is built
in the tunnel which already hosted its predecessor, the Large Electron Positron collider
(LEP), and will deliver the ultra-relativistic particles to five experiments. Figure 2.1
shows an overview of the LHC and its experiments.

The tunnel is about 4.3 km in diameter and 100 m below the ground level. A cascade
of smaller accelerators will deliver pre-accelerated protons or heavy ions to the main
storage ring of LHC, which will then accelerate these to the final collision energy.

1In elastic scattering, no new particles are formed and only the scattered particles are observed with
detectors. Only inelastic scattering may result in new particles being created, if the centre of mass
energy is high enough.

2In 1954, when the CERN was officially established, the name changed to Organisation Européenne
pour la Recherche Nucléaire. The acronym was left untouched despite the change, however.

5



2 The Experiment
Das Experiment

Abbildung 2.1: Schematische Darstellung des LHC-Beschleunigersystems mit den Experimenten
und Vorbeschleunigern. Quelle: CERN

RHIC am Brookhaven National Laboratory um das 30-fache übertroffen. Der LHC wird
durch die hohe Energie und Luminosität physikalische Experimente möglich machen, die
noch tiefer als bisherige Experimente in die Struktur der Materie vordringen. Tabelle 2.1
fasst einige Kenngrößen des LHC zusammen.

Am LHC sind fünf Experimente geplant, von denen vier für den Proton-Proton-Betrieb aus-
gelegt sind. Das Experiment ATLAS (A Toroidal LHC ApparatuS) ist als Mehrzweckex-
periment geplant. Ein Hauptziel ist die Untersuchung des Ursprungs der Masse im Bereich
elektroschwacher Wechselwirkungen. Dafür soll das Higgs-Boson experimentell nachgewie-
sen bzw. eine obere Grenze für seine Masse bestimmt werden. Ein weiteres wichtiges Ziel ist
die Erforschung der Physik jenseits des Standardmodells. Der CMS (Compact Muon So-
lenoid) ist ebenfalls als Mehrzweckdetektor ausgelegt. Mit einem sehr starken Magnetfeld
von 4Tesla ist er auf die Analyse von Myonen spezialisiert. Das TOTEM-Experiment wird
unter anderem den totalen Wirkungsquerschnitt für Proton-Proton-Kollisionen bestimmen.
Es ist baulich mit dem CMS verbunden. Im Experiment LHCb sollen die Eigenschaften
von B-Mesonen3 untersucht werden. Insbesondere wird die CP-Verletzung beim Zerfall
dieser B-Mesonen studiert.

Das Experiment ALICE (A Large Ion Collider Experiment) ist als einziges der fünf Expe-
rimente am LHC speziell für den Schwerionenbetriebsmodus vorgesehen. Es wird erwartet,

3Ein B-Meson ist ein gebundener Zustand eines b-Quarks mit einem leichteren Quark, z. B. (db).

18

Figure 2.1: Overview of the LHC and its experiments [8]. The picture shows the main
accelerator ring, the smaller pre-accelerator SPS, and the location of the
four major experiments and their control centres above ground.

Two particle beams, each travelling in the opposite direction, will be kept on their
circular track3 by over 1000 super-conducting magnets, each 13 m long, generating a
magnetic field of up to 8 T. The magnets will be cooled down to a temperature of
about 1.8 K, below the temperature of outer space. The LHC will be by far the largest
super-conducting installation in the world for the time being.

Four of the experiments will analyse proton-proton collisions. With ATLAS and
CMS, physicists hope, among other things, to answer the question whether the Higgs
boson exists, or not. This particle is critical to the explanation of why particles in
general have a mass. But ATLAS will also explore physics beyond the standard model.
It is yet unclear, whether quarks are built of even smaller particles, for example. An
extension to the standard model model states that every particle has a supersymmetric
counterpart. If this is true, ATLAS might be able to observe such supersymmetric
particles. CMS will mainly study muons, but is also designed as a multi-purpose
experiment. Attached to CMS is TOTEM, where physicists will try to measure the
total cross section of proton-proton collisions. Finally, LHCb is built to examine
mesons which contain the second most heavy quark, the bottom quark, and violation
of CP-symmetry when these mesons decay.

3To be exact, the track is not circular, but rather consists of short linear sections intermitted by the
magnets, which deviate the particle beam by a certain angle, each.
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2.2 A Large Ion Collision Experiment
Das Experiment

1. ITS (Inner Tracking System)
2. FMD (Forward Multiplicity Detector)
3. TPC (Time Projection Chamber)
4. TRD (Transition Radiation Detector)
5. TOF (Time-of-Flight Detector)
6. HMPID (High-Momentum Particle Identification Detector)
7. PHOS CPV (Photon Spectrometer Charged Particle Veto De-

tector)
8. L3 Magnet

9. Absorber
10. Tracking Chambers
11. Muon Filter
12. Trigger Chambers
13. Dipole Magnet
14. PMD (Photon Multiplicity Detector)
15. Compensator Magnet
16. CASTOR (Centauro And STrange Object Research)

Abbildung 2.2: Die Detektoren des ALICE-Experiments. Der Übergangsstrahlungsdetektor (TRD,
4) ist die türkisfarben dargestellte Komponente zwischen der TPC (3) und dem TOF (5). Quelle:
CERN

riments werden zusammen 25 m lang und 15m hoch sein und eine Masse von 10 000 t
besitzen. Im Folgenden werden die Detektoren des Zentralbereichs kurz beschrieben.

Das innere Spurverfolgungssystem (Inner Tracking System, ITS) besteht aus sechs zy-
lindrischen Lagen aus Siliziumwafern, die die Strahlachse im Zentralbereich – und damit
den Kollisionspunkt – direkt umgeben (innerer Radius etwa 3 cm, äußerer Radius etwa
50 cm). Es besitzt eine besonders hohe Auflösung von bis zu 12 µm zur Bestimmung von
Teilchenpositionen bzw. Wechselwirkungspunkten.

Die Teilchenverfolgung wird außerhalb des ITS in einem größeren Detektor namens Zeit-
Projektionskammer (Time Projection Chamber, TPC) fortgesetzt. Er ist 5,1 m lang und
deckt in radialer Richtung (x-Richtung) den Bereich von x = 0,57 m bis x = 2,78 m ab.
Die TPC ist mit einem Gas gefüllt, an das ein elektrisches Feld angelegt wird. Wenn ge-

20

1 Inner Tracking System 9 Absorber
2 Forward Multiplicity Det. 10 Tracking Chambers
3 Time Projection Chamber 11 Muon Filter
4 Transition Radiation Det. 12 Trigger Chambers
5 Time Of Flight det. 13 Dipole Magnet
6 High-Mom. Part. Ident. 14 Photo Multiplicity Det.
7 Photon Spectrometer 15 Compensator Magnet
8 L3 Magnet 16 Centauro & Strange Obj. Res.

Figure 2.2: Overview of ALICE with its sub-detectors [8].

2.2 A Large Ion Collision Experiment
The fifth experiment, ALICE, is the only experiment which will analyse heavy ion
collisions. It will study a phase of matter, called quark-gluon plasma, where confine-
ment is cancelled out and quarks can be viewed as quasi-free particles. While other
experiments claim to have observed QGP already, none of them had the energy den-
sity nor luminosity4 at hand that LHC will provide. That said, ALICE of course will
not be idle when the LHC is running in proton-proton mode, but rather this will be
used to calibrate the subsystems and gather reference data. To study the dependency
of the observations on energy density, LHC will vary beam particles from proton-ion
collisions, lighter ion collisions to heavy ion collisions. The main mode for ALICE will
be Pb-nucleus collisions.

2.2.1 The Detectors

In figure 2.2 the layout of ALICE with its detectors is shown. The assembly of ALICE
is about 25 m long, 15 m high, and weighs something around 10 000 t.

The point of collision is surrounded by the Inner Tracking System (ITS, 1), which
allows tracking of particles with a very high resolution of up to 12 µm. It consists of six

4Particle density in the accelerator beam. The length of the volume unit is expressed in time units,
rather than length units.
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layers of silicon detectors, cylindrically arranged around the beam at around 3–50 cm
distance. When a particle leaves the ITS, it enters the Time Projection Chamber
(TPC, 3), a chamber filled with Ne and CO2 in an electric field. When particles collide
with gas atoms, the latter are ionised and drift in the electric field. Free electrons
produced in the ionisation process drift much faster, however. They can be observed
through electrodes in the chamber and allow further reconstruction of the particle track.
At a distance of around 2.5 m from the beam, the TPC is followed by the Transition
Radiation Detector (TRD, 4), which serves mainly as trigger detector for the TPC.
Six layers of drift chambers filled with Xe and CO2, interleaved with a layer of radiator
material each, detect transition radiation, which is emitted when ultra-relativistic elec-
trons pass through the barrier layer. When the particle has travelled about 3.7 m away
from the beam, the Time Of Flight detector (TOF, 5) measures the travelling time
with a resolution of up to 150 ps. This allows calculation of the mass of the particle.
For particles with very high energy, the High-Momentum Particle Identification
(HMPID, 6) determines the mass through detection of Cerenkov radiation, emitted
when the particle passes through a dielectric medium. The temperature of the collision
is measured in the Photon Spectrometer (PHOS, 7), which is built of lead-tungsten
crystals, and observes photons emitted in the collision.

Charged particles are deviated in the homogeneous field of the L3 Magnet (8).
Through measurement of the deviation of the particle track, its momentum can be
calculated.

In addition to the detectors cylindrically arranged around the centre of collision,
there are a few smaller detectors for triggering purposes and event characterisation
located at forward angles, as well as an array of scintillators atop the L3 Magnet which
serves as a trigger for cosmic rays [1, p. ix–xiii].

2.2.2 The Trigger System

One of the main challenges when analysing heavy ion collisions is that, while the detec-
tors work on the same principles, and the collision rate is rather moderate compared to
other high energy physics experiments, due to the multiplicity of events from a single
collision, the demand for detector resolution is much higher. This in turn leads to
much higher data volume to be processed. In fact, the raw data volume will by far
exceed the limit of what can be processed in real-time or be stored for later processing
at reasonable cost, today.

Three to four5 stages of low level triggers control the data acquisition of events.
The trigger system has been carefully designed to both handle the normal mode of
operation of ALICE, heavy ion collision, as well as the normal mode of operation of
the rest of the LHC experiments, which is proton-proton collisions. The data is fed
into the High-Level Trigger (HLT) system, which takes a threefold approach to reduce
the data volume by more than one order of magnitude. Events which are of no interest

5If we take into account the pre-trigger.
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are filtered out to reduce the total number of events. To reduce the size of an event,
sub-events are selected within every event, and advanced loss-less data compression
is applied. This of course means that trigger decisions require both local and global
pattern recognition and event reconstruction.

The focus of this thesis will be the HLT, which consists of a cluster of off-the-
shelf personal computers, and custom hard- and software developed at the Kirchhoff-
Institute for Physics of the University of Heidelberg and other research groups around
the world. While using low-cost hardware seems not to go well at first with the demand
for high availability and robustness on detector hardware, a lot of work has been put
to provide those demands while keeping the main advantages of this approach. For
example, in case of defect, hardware can be easily replaced without the need for special
distributors. The Data Transport Framework [18] developed by Timm Steinbeck and
On-line Monitoring [14] in development by Camilo Lara provide the means to assure
high availability without loss of data even in case of failure of single cluster nodes, and
allow for fast intervening.

2.2.3 Data Flow

Readout of detector data is triggered by the Level 2 Trigger, and the data is sent
to the Data Acquisition (DAQ). Event Fragments are assembled to sub-events in the
Local Data Concentrators (LDC) and sent over the Event Building Network for further
processing by the Global Data Collectors (GDC). Finally, event data is written to long-
term storage. The LDCs will also send the raw data to the HLT. The HLT, in turn,
processes and sends data back to the LDCs. Figure 2.3 shows the HLT embedded in
the ALICE data flow.

To transfer data, Detector Data Link (DDL) modules are used. A Source Interface
Unit (SIU) sends data over an optical fibre to a Destination Interface Unit (DIU). A
single HLT Read-Out Receiver Card (H-RORC) can host both SIUs and DIUs, and
provides an interface to computers via the PCI local bus. Chapters 3 and 4 deal with
the H-RORC in detail, which also serves as a co-processor for the HLT tasks, and the
interface for software to access the H-RORC.

The logical functions performed by the HLT can be seen in figure 2.4. On-line event
reconstruction is required for the HLT trigger decision and advanced data compression.
This is done in several stages, making use of locality and parallelism in the data. The
Front End Processors (FEP) receive event data from up to four DDLs and run the
Cluster Finder. On-line Tracking is done by the Sector Processors and, finally the
Event Processors will do Global Track Merging and Fitting.

9
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176 8 Dataflow

Figure 8.26: DAQ–HLT Data Flow overview.

processing, the trigger decisions, and the compressed data to the DAQ system, using again standard
DDLs. Here the interface is the SIU input.

Using this scheme, the HLT system looks like any other sub-detector for the DAQ. The GDCs will
receive the sub-events from the sub-detectors’ LDCs and any additional data generated by the HLT
computers from the LDCs dedicated to the HLT. The DATE software is ready to accept as many data
channels from the LDCs dedicated to the HLT as required, since it handles these channels as additional
LDC data paths.

The HLT LDCs will also receive messages specifying whether to discard or accept a given event.
Furthermore, for accepted events, the HLT decision can specify the new pattern of sources for a given
event, resulting in a partial readout of the raw data. A decision broker process, running in the HLT LDCs,
will transfer the HLT information and decision to a decision agent process, running in the detector LDCs,
as shown in Fig. 8.27.

Figure 8.27: Data flow in the LDC in the DAQ plus HLT modes.

The adopted architecture for the DAQ–HLT interface presents a number of additional advantages:

Figure 2.3: The HLT embedded in the ALICE data flow [1, p. 176]. The Data Acqui-
sition send data from the detector read-out electronics to the High Level
Trigger (HLT), which processes and sends data back to the DAQ. Both
receiving and sending data is handled by HLT Read-Out Receiver Cards
(H-RORC), equipped with Detector Data Link (DDL) modules. The Des-
tination Interface Unit serves as data sink, and the Source Interface Unit
as data source.

10



2.2 A Large Ion Collision Experiment

254 12 HLT online

A key component of the proposed system is its ability to process the raw data in real time. It is
designed to utilise information from the TPC and fast detectors, e.g. the TRD. The HLT system will be
flexible enough to be expanded to include other tracking devices.
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Figure 12.2: An overview of the logical functions performed by the ALICE High-Level Trigger. The rates stated
are for Pb–Pb running. Note that the stated event sizes are not exclusive but are additive depending on trigger
types.

The overall HLT functionality is summarised in Fig. 12.2. All detectors ship their raw data upon receipt
of a L2 accept message, which is distributed by the central trigger processor. The HLT will not receive
data from any events that are rejected at or below the L2 level. The raw data is replicated by the D-
RORC, creating two identical raw data streams, one being stored in the DAQ LDC and the other being
sent to the HLT. The raw data is received into HLT front-end processors, where it is stored until it is
discarded or read out for fine-grain selection and compression, depending on the HLT trigger decision.
Typically, the first processing is performed trivially parallel by implementing a highly local cluster-
finder algorithm on the digitised raw clusters. The derived space points are then processed further in an
online tracker. The online tracks are then converted into physics quantities, which are coalesced from
all sub-detectors for the global HLT decision. Aside from global HLT processing, dedicated algorithms
for dimuon event selection (trigger) and TRD event selection (trigger) are foreseen. Once at least part
of the event is selected by the global HLT, the relevant data will be either marked for read out (coarse
granularity Region of Interest, RoI) or directly shipped to the DAQ for archival (fine granularity RoI).

Figure 2.4: Overview of the logical functions of the HLT [1, p. 254]. Cluster finding
and on-line tracking is done on a local scale in part using the HLT Read-
Out Receiver Card (H-RORC) co-processor boards. Local tracking data
is then successively combined to global tracking data used for the trigger
decisions and data compression algorithms.

11



12



Any sufficiently advanced technology
is indistinguishable from magic.

Arthur C. Clarke

3 The Read-Out Receiver Card

In section 2.2.3, the HLT Read-Out Receiver Cards (H-RORC) were already introduced
briefly as interfaces between the Detector Data Link (DDL) and the computers pro-
cessing detector data. The H-RORC hosts up to two DDLs, each receiving data from
a single data source inside the detector or transmitting data back to Data Acquisition
(DAQ). For the Time Projection Chamber (TPC), the data source connected to a Des-
tination Interface Unit (DIU) hosted on an H-RORC is one of six patches of one of 18
sectors at each side of the TPC. Each patch consists of a number of read-out chips,
called pads, varying with the patch geometry. For each pad with hits in a single event,
up to 1024 read-out values are packed together with a specific time granularity. These
data packets for a single patch make up one event fragment.

While one of the duties of the H-RORC is to receive data from the detectors and
provide it to the Front End Processors (FEP) for cluster finding and on-line tracking,
this is not its key feature. Its main purpose is to serve as a co-processor to preprocess
the event fragments, and do cluster finding and, possibly, partial tracking in hardware.
Of course, since the H-RORC at most receives event fragments from two patches, this
task has to be done on a local scale and the tracking data must be combined on a
global scale by the software running on the cluster nodes. Fortunately, due to the
natural locality of the data, this can easily be done.

The predecessor of the H-RORC, the CIA RORC, was initially designed by Deyan
Atanasov for his PhD thesis [4], based on an Altera Field Programmable Gate Array
(FPGA). The current incarnation is a complete redesign by Torsten Alt and Holger
Höbbel [3], based on a Xilinx Virtex™-4 FPGA device. Figure 3.1 shows the H-RORC
equipped with two DIUs and optical fibres plugged in.

Figure 3.2 shows a block diagram of the H-RORC. The board features two half length
Common Mezzanine Connectors for the DDL interfaces and a 64 bit PCI connector,
both attached to the user I/Os of the FPGA. Several serial links allow communication
with a wide range of external devices, including two fast Low Voltage Differential
Signalling (LVDS) ports, allowing to build a communication chain between the H-
RORCs. The firmware for the FPGA can be either stored in the platform PROM or
Flash based memory. The Flash can be used to store up to four different firmware
versions and a Complex Programmable Logic Device (CPLD) handles loading them
into the FPGA on demand. This process, called On-line Configuration, has been
implemented by Jörg Peschek for his diploma thesis [17]. Four DDR SDRAMs are
attached to the FPGA and can be used independently of each other. The development
of the necessary controller logic was part of the work done for this thesis.
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Figure 3.1: The H-RORC with DIUs and optical fibres.
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Figure 3.2: Block Diagram of the H-RORC [2]. The main component of the H-RORC
is the Xilinx Virtex™-4 FPGA device, which communicates with the host
computer through a PCI interface. Several on-board components support
the FPGA and provide means for communication with other devices and
daisy-chaining of H-RORCs.

14



3.1 Field Programmable Gate Arrays

3.1 Field Programmable Gate Arrays

The heart, or the brain, if you prefer, of the H-RORC is a Xilinx Virtex™-4 LX40 Field
Programmable Gate Array.

FPGA devices are used in the industry for prototyping chip design, but gain on
importance as reprogrammable co-processors, to speed up calculations that can be
massively parallelised. While most FPGA devices cannot be driven in the high fre-
quency range current processors use, they can be reprogrammed on-line, and be used
for special tasks to support the main processor. This has led to several approaches to a
self-reconfiguring processor that can optimise itself, and thus overcome the limitations
of common processors which are tailored toward specific usage. In the H-RORC, an
FPGA device is used as stand-alone processor, not for prototyping purposes, but rather
because the natural parallelism in the data to be preprocessed allows to benefit from
the FPGAs advantages.

The roots of FPGA devices lie within CPLD technology. Basically these are semicon-
ductor devices with programmable logic, input and output circuitry. While program-
ming is not possible on single gate granularity, but rather logic blocks pack together
programmable look-up tables, flip-flops, multiplexers and the likes as building blocks,
the details are mostly hidden from the programmer, as the synthesis software will au-
tomatically spread the design over the logic blocks. When designing at the limits of
the device specification, however, the programmer has to concern himself with exactly
these details and adopt a rather low-level approach to hardware programming.

The Configurable Logic Blocks (CLB) of a Xilinx Virtex™-4 FPGA are attached to
a switch matrix and contain four slices, each slice providing two four-to-one Look-Up
Tables (LUT), two storage elements which can be configured either as latches or flip-
flops, two multiplexers and basic arithmetic blocks. The switch matrices interconnect
the CLBs. In addition to the CLBs, there are several ready-to-use supplementary block
resources incorporated to the FPGA, like Digital Clock Managers (DCM), Block RAMs
(BRAM), Double Data Rate Input/Output Registers (IDDR, ODDR) and Input Delays
(IDELAY), that can be instantiated in a custom design. For detailed information on
the Xilinx Virtex™-4 FPGA device, see [20].

3.2 Hardware Description Language

There are several ways to program a hardware device like an FPGA. Most vendors
provide software that features a graphical user interface for easy assembling of logic in a
point-and-click metaphor, more like designing schematics. The designer can place logic
gates and complex logic blocks, interconnect these, and create hierarchies of more and
more complex logic functions. While this approach is convenient for smaller designs, it
proves to be tedious on a larger scale. The most notable disadvantage, however, is that
such a design is almost impossible to port when switching to a different FPGA device.

The solution is to use Hardware Description Languages (HDL). Most of these lan-
guages have their roots in simulation of digital circuitry rather than synthesis of real
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hardware, but as of lately have been extended in that direction. So, basically, the
hardware programmer uses only a subset of such a language, which can be actually
synthesised. Again, most of the higher level constructs which may be synthesiseable,
should be avoided when designing near the limits of a hardware device or when trying
to remain portable among different synthesis packages.

While most HDLs bear a certain similarity to computer programming languages,
such similarities are quite problematic. The programming paradigms for hardware
design are very different from those common in software development, and the time
and effort for the development cycle is often underestimated. Let alone debugging
hardware is somewhat more difficult than debugging software, comparable at most to
the complexity of debugging operating system level software.

For the H-RORC firmware, VHDL is used. The V in VHDL is an abbreviation for
Very High Speed Integrated Circuit (VHSIC). VHDL allows hierarchical design by struc-
turing separable logic functions into entities. Entities and parameters can be grouped
together in packages. The definition of an entity allows intermixed concurrent state-
ments and sequential statements, as well as instantiation of sub-entities. Statements
operate on signals or groups of signals. Concurrent statements are evaluated continu-
ously and in parallel, but dependent on the levels of logic, different concurrent paths
deliver their results from a change in one of the signals involved at different times.
Sequential statements can be sensitive to the state of certain signals and define a se-
quence of logic evaluations with a certain result path. A block of sequential statements
is evaluated every time one of the signals it is sensitive to changes its state.

Both concurrent and sequential statements can be used to describe asynchronous
logic, which is subject to critical timing requirements. In most digital designs, however,
asynchronous or combinatorial logic is at some point synchronised to a clock signal, to
assure stable signals at defined, equally spaced points in time. Flip-flops are used
to store the result of some combinatorial path at the rising edge of the clock signal.
Synchronous logic components can only be described in sequential statements.

An entity has an interface, which defines the input and output signals for commu-
nication with other parts of a design, and one or more architectural implementations,
which define its behaviour. Before using an entity somewhere in a design, the interface
has to be declared in the corresponding scope. This is done in a component declaration.

For a deeper understanding of the hardware components developed or designed for
this thesis, a level of knowledge of VHDL, and hardware design in general, is necessary
which cannot be given here. There is a plethora of literature on VHDL available both
in print and on-line, so matters will be left with the brief overview given. This may
suffice for the reader to understand what this is all about.

3.3 The DDR SDRAM Controller

Connected to the FPGA on the H-RORC are four 32 MB DDR SDRAM chips, inde-
pendent from each other. While a design using one or more of those devices could
possibly drive all necessary control signals, there is quite some overhead in managing
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Figure 3.3: A single DRAM cell. The word line controls access to the capacitor which
stores the bit value. The bit value can be written or read by means of
charging or discharging the capacitor using the bit line.

SDRAM type memory, which justifies the use of a dedicated controller component.
There are several DDR SDRAM controller designs available which claim to be ready-

to-use. The catch is, however, either these are tailored towards a specific FPGA family,
which happens not to be the Xilinx Virtex™-4, or they are not so ready-to-use as you
might wish for. Since four independent controller instances are needed, the design
needs to be very lightweight, so that the overall footprint for accessing the memory
chips is minimal. After evaluation of the remaining choices it became clear, that for
stripping down and customising of an existing design, it must be fully understood, and
the time and effort to do so is comparable to the development of such a controller from
scratch.

3.3.1 Memory Technology

DDR SDRAM is short for Double Data Rate Synchronous Dynamic Random Access
Memory. DRAM technology stores single bits in capacitors, a charged capacitor repre-
senting a logic one (see figure 3.3). The immediate consequence from using capacitors
as storage elements is that reading the contents of the memory is destructive. To see
whether a given bit is set or not, the capacitor has to be discharged and the current is
measured. This implies a write-after-read strategy.

The memory is organised in rows and columns of bits, grouped together in words1.
When reading from or writing to the DRAM chip, first the row containing the word, or
words, addressed has to be activated. The contents of the row are read into an internal
row buffer. Read and write operations are then performed on columns within the row
buffer, not the memory. After operations on the row buffer are done, the row must be
precharged, that is, the row buffer is written back to the memory. This means, while
accessing row contents in the buffer, the corresponding contents do not exist in memory,
only in the buffer. Rows are further grouped together in banks. Every memory bank
can have at most one active row at a time.

1A word is the smallest element addressable and corresponds to the width of the data port of the
chip.
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The second consequence from using capacitors is that the memory suffers from self-
discharge effects due to leak currents and fluctuations. So the charge in the capacitors
has to be refreshed at certain intervals. This can be either done for the entire memory,
or one row at a time.

Due to the analog nature of DRAM, the interface is asynchronous and subject to
strict timing requirements. SDRAM adds a synchronous interface to DRAM, to sim-
plify handling of memory access from digital designs, which are almost unanimously
synchronous. Still, the DRAM timing requirements are somewhat transparent as wait-
states in the synchronous interface definition.

DDR SDRAM inherits most of the properties from SDRAM. The double data rate
feature only applies to transmission of data words, not control signals. While in stan-
dard single data rate designs, signals are recorded to the rising edge of the clock signal
only, double data rate designs use both the rising and the falling edge of the clock
signal2. This yields in double the rate of data transmitted, hence the name. However,
it is important to note that, since control signals are single rate and the timing require-
ments are mostly the same, overall performance is not really doubled. In fact, when
using the Xilinx Virtex™-4 DDR input/output registers, there’s an overhead of at least
one additional clock cycle compared to Single Data Rate (SDR). Since the design itself
may use SDR only, a single-rate-double-width translation is done.

For a good introduction to memory technologies, see [13, ch. 7] and [5, ch. 8]. A
detailed description of the DDR SDRAM chips mounted on the H-RORC board is
given in [10]. There you can also find a more detailed block diagram and simplified
state machine for the control sequences. Only those parts relevant to the controller
design will be given later on.

3.3.2 Implementation

The demands at the memory controller for the DDR SDRAMs of the H-RORC are
to provide linear addressing, opaque handling of refresh, and light-weight high-perfor-
mance design. The DDR SDRAM controller developed for this thesis fulfils all three
requirements and is a generic, highly configurable design, which can be used with other
designs based on FPGAs of the Xilinx Virtex™-4 device family. It consists of three sub-
components. The state machine generates control signals for the DDR SDRAM chip
and the other sub-components of the controller. The address path provides mapping
of a linear address to the address scheme of the chip, which is divided into bank, row
and column address. Activation and precharging of rows is handled automatically. The
third sub-component, the data path, does the single-rate-double-width translation and
generates the write strobe signal, which is used by the DDR SDRAM to record the
data signals. Figure 3.5 shows a block diagram of the controller.

The memory controller uses only a burst length value of two, thus requiring one
command for each double-word read or written. While this may seem to contradict the

2To be exact, for DDR SDRAM, rather a dedicated strobe signal is used than the clock signal itself.
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Figure 3.4: Simplified DRAM bank block diagram. The row address decoder will
activate a number of DRAM cells by assigning their word lines. All cells
within a row are then read by discharging the corresponding capacitors.
A single bit is actually represented by two DRAM cells, of which only one
will be charged, depending on the bit value. Since the capacitors are very
small, a sense amplifier will measure the current during discharging. All
bit values will be read into the row buffer and the column address decoder
is used to access single words within the buffer. After the operation
is done, the bit values have to be written back to the DRAM cells by
charging the corresponding capacitors.
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Figure 3.5: Memory controller block diagram. The state machine reacts to user con-
trol inputs and generates user handshake and DRAM control outputs, and
control signals for the other sub-components. The address path handles
activation and precharging of rows and generates DRAM address outputs.
The data path captures both data from the user design and the DRAM
through a double DDR input/output register.
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need for high data throughput, it makes address translation a whole lot easier, and the
controller takes advantage of the back-to-back burst feature3 available with SDRAM.
Effectively, this decision has no impact on the memory performance after all.

In appendix A, a detailed description how to use the DDR SDRAM controller is
given.

The State Machine is the central and most complex sub-component of the controller.
It implements frame based memory access using three user control input signals and
three user handshake output signals. Opaque handling of the SDRAM management
overhead results in 20 states for the main state machine and another 17 states for
the initialisation sequence. Figure 3.6 shows the state machine for the controller, the
initialisation sequence state machine is shown in figure 3.7.

The initialisation sequence is critical to successful operation of DDR SDRAM type
memory. The sequence resets the DDR SDRAM internal state machine and Delay
Locked Loop (DLL), and sets operational parameters like burst length and CAS latency.
It is not necessarily identical for different chip families, but there is a rather slow
sequence which works with almost all chips. Since initialisation is done only once at
start up, there is no need in optimising for a single chip and loosing compatibility with
others.

The main state machine is active after the initialisation sequence is done and enters
the IDLE state. When the refresh timeout counter reaches zero, the refresh sequence
is triggered. This happens every 7.8 µs. The counter wraps around and is not reset
after the refresh is done, to warrant for the periodic refresh cycle not to exceed the
maximum allowed average timing. When the user design asserts the FRM signal, the
state machine enters a data transfer frame with the ENTER_FRAME state. The state
machine communicates directly with the address path and handles row activation and
deactivation as necessary in the NEXT_ROW and following states. Depending on the
DIR signal state, either read or write transaction is done using back-to-back burst in
DO_READ and DO_WRITE respectively. The controller will signal a data request to the
user design through the REQ signal and the user design can pause requesting using the
BRK signal. At the end of a row, the address path will assert the EOR signal and the
next row will be activated. Handling of refresh is done if necessary, and only in the
paused states READ_WAIT and WRITE_WAIT. The transfer frame can be exited only in
the paused states, and the user design should never deassert the FRM signal without
asserting BRK first.

The Address Path consists of a two-stage4 counter and a register file, to store the
active row for each memory bank. The stage one counter value is compared to the

3Using back-to-back bursts, it is possible to access the contents of a row without wait states between
single transactions.

4This fashion of pipelining a design is often used for high-speed logic. When combinatorial logic gets
more complex, many levels of logic are needed and the path delay my become too large.

21



3 The Read-Out Receiver Card

DO_INIT

IDLE

 INIT_DONE

ENTER_FRAME

 FRM

DELAY_PRECHARGE_ALL

 tREF

NEXT_ROW

DELAY_PRECHARGE

 VLD

DELAY_ACTIVATE

 /VLD

DELAY_RW

 ACTV

 tREF

DO_PRECHARGE

 tRAS, tWR

DO_ACTIVATE

 tRC, tRP

SELECT_RW

 tRCD

WRITE_WAIT

 BRK, DIR

READ_WAIT

 BRK, /DIR

DO_WRITE

DIR

DO_READ

/DIR

 /BRK

EXIT_FRAME

 /FRM  tREF /BRK /FRM  tREF

 EOR

 BRK

 EOR

 BRK

DO_PRECHARGE_ALL

 tRAS, tWR

DELAY_REFRESH

DO_REFRESH

 tRC, tRP

REFRESH_RECOVER

 tRFC, /GNT

 tRFC, GNT

Figure 3.6: Memory controller state machine. The state machine powers up in the
DO_INIT state. After initialisation, it enters the IDLE state, waiting for
FRM or scheduling the periodic refresh. The refresh sequence can be seen in
the lower part, beginning with DELAY_PRECHARGE_ALL. The data trans-
fer frame is handled in the part to the left, between ENTER_FRAME and
EXIT_FRAME.
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Figure 3.7: SDRAM initialisation sequence. This sequence initialises the SDRAM
DLL and sets operational parameters. It is critical to the successful op-
eration of the SDRAM device.
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Figure 3.8: Address path block diagram. A two stage counter is used in combination
with the active row register file to trigger activation and precharging of
rows. The register file stores the active row for each memory bank and
compares it to the stage one counter value. From this, control signals for
the state machine are generated. VLD is high if there is an active row for
the current bank. ACTV is high if the current row is already active and
EOR is high when the counter value reaches the end of a row.

register file values and control output signals are generated accordingly to allow the
state machine to decide when to precharge or activate rows or end a burst transfer. VLD
signals a valid register file entry, i.e. the bank has an active row. ACTV is asserted when
the stage one counter value is equal to the active row register for the bank addressed.
Finally, EOR is asserted when the counter reaches the end of a row. The register file
is controlled through three signals. With SET, the stage one counter value is stored in
the active row register for the corresponding bank. CLR causes the active row register
to be invalidated. When the CLRA flag is set, CLR invalidates the active row registers
for all memory banks. Figure 3.8 shows a block diagram of the address path.

The SEL port is used to select how the address lines of the SDRAM are driven.
There are four possible modes: row address, column address, mode register and ex-
tended mode register. The AUX flag is dependent on the selected mode. When mode
register is selected, AUX corresponds to the DLL reset bit, for extended mode register,
it corresponds to the DDL disable bit and in column address mode it can be used to
flag auto precharge after memory access. In row address mode it is ignored. Mode
selection is done by the state machine according to the command submitted.
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FPGA clock to output tOCKQ 0.49 ns
FPGA output to pad tIOOP 1.98 ns
circuit path tCP < 0.25 ns
SDRAM clock to output tAC ±0.7 ns
FPGA pad to input tIOPI 1.51 ns
round-trip time tRT 4.5± 0.7 ns

Table 3.1: Data path delays. The values for the FPGA are taken from [19], and the
values for the DDR SDRAM from [10].

The Data Path connects the external bidirectional double-rate-single-width DQ data
bus to the internal unidirectional single-rate-double-width data input and output ports.
Depending on the state of the DIR signal, either the input or the output path is active,
and the DQ and DQS ports are tri-stated or driven accordingly.

When DIR is low, the input path is active and data is input from the DQ data bus.
The VLD signal simply follows the EN signal with a delay of several clock cycles. The
EN to VLD delay can be configured to accommodate different CAS latency values and
additional delays due to circuit latency.

It is important to understand the different delays relevant to the data path. When
the state machine issues a read command, it is shifted 180° to centre the signals to the
rising edge of the clock signal, then delayed another clock cycle in the output registers.
It then travels through the output buffers and down the circuit path to the DDR
SDRAM chip, where the state machine of the chip registers the command and answers
the request with a certain delay called CAS latency plus an additional clock-to-output
delay, similar to the delay caused by the output buffers of the FPGA. It’s back the
circuit path to the FPGA, through the input buffers to a DDR input register. See table
3.1, which lists the delays as seen on the H-RORC. The most important point is, that
the data signal most probably will not be aligned to the internal clock of the FPGA
design when it finally reaches the DDR input register.

Enter the input delay cells of the Xilinx Virtex™-4 FPGA, which offer an adjustable
additional delay for an input signal, and can be used to align the signal to the internal
clock of the design. The granularity, called tap, of the input delay cell is 74 ps5, and
up to 64 taps can be added to a signal, allowing up to 4.7 ns delay. The input delay
cells are basically 64 buffers with a 64-to-1 multiplexer and a bit of additional counter
logic. The memory controller design uses a fixed value which has been calculated from
the delays above. Of course, this value can be easily adjusted for other hardware.

With a command-to-output delay of 1.5 clock cycles, a CAS latency of 2.5 clock
cycles, and an additional delay of 4.5 ± 0.7 ns, the first word of the data should be
safely centred around the rising edge of the internal clock used in the memory controller
design, which runs at 167 MHz, or a 6 ns period. So there should be no additional taps

5Tap 0 is 39 ps.
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necessary. In reality, however, the delay proved to be smaller than expected, so a value
of 15 was used for the tap count.

When DIR is high, the output path is active and the DQ data bus and DQS signals are
driven according to the EN signal.

3.3.3 Simulation

Since the DDR SDRAM controller is a rather complex component, using simulation
to verify functional operation and fulfilling of timing requirements is indispensable.
For simulation, Mentor Graphics ModelSim ® SE 6.2 was used. Figure 3.9 shows the
results of simulating start up and write access to the memory. While the initial 200 µs
are skipped, you can clearly see the initialisation cycle, transfer handshake and two
consecutive blocks of back-to-back burst transactions.

Figure 3.10 shows the start of the first write burst. While this is not easy to un-
derstand at first, the REQ signal is asserted when the write command is issued, valid
data has to be supplied one clock cycle later, so the first double-word written to the
memory is 0xAFFED00F. Also remember, that the output control signals are shifted
180° to align them centred to the rising edge of the clock signal. The same is true for
the DQ data output relative to the DQS strobe signal.

While all sub-components and write access were simulated and verified thoroughly
before incorporating the design to the FPGA, read access is not as easy to simulate,
as it requires a working memory model. Such models exist, but simulating with these
is not without problems. Since the exact timing is not necessarily known, as already
described previously, some testing has to be done in the FPGA, in vivo. So verification
of read transactions was postponed to that stage.

3.3.4 Integration and On-Chip Tests

Integration of the DDR SDRAM controller on the H-RORC is done with Xilinx ISE
Project Navigator using a User Constraints File to connect top-level output ports to
FPGA pins and set timing and area constraints. After synthesis, placing and routing
the design, a first comparison with the DDR SDRAM controller provided by Xilinx can
be given. Both designs can be used with clock frequencies up to 200 MHz and more.
The controller developed for this thesis uses 201 slices on the FPGA, while the Xilinx
controller uses 944 slices [22]. To be fair, the Xilinx controller allows automatic self-
configuration for the read timing—a feature which is not needed for the H-RORC and
other designs where timing can be calculated or measured and doesn’t change during
operation.

To verify the memory controller design, but also to test the DDR SDRAM chips
and circuit paths on the H-RORC board, several testbench designs were used. Data
mismatch in the testbench designs triggers a sticky error flag which is output to a LED
on the H-RORC board.
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Figure 3.9: Overview of a simulated write access to the memory. The first part shows
the initialisation sequence with corresponding values in the command lines
NCS, NRAS, NCAS and NWE. In the second part, two consecutive back-to-back
burst transfers can be seen. The pause in between is due to row activation
at the end of a row.
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Figure 3.10: Start of the first block of a back-to-back burst transaction. The cursor is
positioned at the rising edge of the clock cycle after REQ goes high. Valid
data has to be provided one clock cycle later. All signals are shifted by
180° to centre them around the rising edge of the clock.
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(a) Clock signal (b) DQS signal

Figure 3.11: Level stability and jitter of the controller signals. Averaging the Clock
and DQS signals over several seconds makes jitter and level stability vis-
ible. The signal quality of the controller is more than adequate.

The Address Line Verification Testbench writes a unique value to each memory
location. This is done simply by writing the address counter value. Since the data
port is wider than the address port, an additional counter value is written to the most
significant bits of the word, which is incremented each complete run of the testbench.
After the complete address space is written, the contents of the memory are read back
and compared to the counter values. Then the run counter is incremented and the
testbench starts over again.

The Data Line Verification Testbench writes different test patterns to the memory,
to test for crosstalk effects on the DQ data bus lines. As with the address line verification,
the whole address space is written before reading the values back.

The Memory Stability Verification Testbench is derived from the address line verifi-
cation testbench, but introduces a successively increasing delay between writing to the
memory and reading back. This tests the memory for symptoms of amnesia, resulting
from refresh problems or defects in the chips.

Memory stability has been successfully verified to a delay of a few days between write
and read access.

The Signal Quality can be measured using a high-end digital oscilloscope. Figure
3.11 shows the signal level stability and jitter for the clock and the DQS signal during
write access. For these measurements, signals have been recorded for several seconds
with a Tektronix TDS 7254.

The level stability is about 100 mV and the clock jitter is less than 125 ps. The signal
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width is 3.0140 ± 0.0005 ns high to 2.9790 ± 0.0005 ns low. This is all well within the
chip specification given in [10]. In the right picture, the DQS signal is shown. The
strobe preamble can be seen in the left part of the picture, the postamble in the right
part. These result from the controller taking and releasing the bidirectional DQS signal.
Since the DDR SDRAM uses the SSTL_2 signal specification, signals which are not
driven take the reference voltage between a logic low and high. The preamble has a
duration of 5.5± 0.1 ns and the postamble 4.6± 0.1 ns. However, the postamble has to
be measured without the rise time of the signal, since no reference level is given for the
timing specification in the documentation. The controller stops driving the bus after
less than 3.5 ns, thus fulfilling the specifications.

The Memory Performance can be determined using any of the testbench designs
mentioned above simply by monitoring the DIR signal, which represents the access
mode. With every period of DIR, 32 MB of data is written and read back for a single
DDR SDRAM chip on the H-RORC board. The data rate for linear access using
full-row burst access using either the address line or data line verification testbench is
608 ± 1 MB/s, which is 95.6 % of the raw memory data rate, or 99.9 % of the highest
possible memory data rate. The raw memory data rate is given only by the clock
frequency and is the data rate that can be achieved in a single burst, without any
overhead. The highest possible memory data rate takes into account row activation
and precharge which cost a total of nine clock cycles and is due each block access, and
periodic refresh which costs twelve clock cycles and is due every 1300 clock cycles at
167 MHz.

Figure 3.12 shows the relative performance of the controller versus the highest pos-
sible performance for random access, dependent on the block size. Note that even with
the largest block size possible, the performance still is worse than for linear access. This
is because of the overhead for the controller state machine each time a new frame is
requested. The plot for the memory controller takes into account the number of clock
cycles from the state machine.

The Temperature Pattern for the FPGA under full load has been one of the major
concerns since the early development stages. As is illustrated by the photo in figure
3.1 at the start of this chapter, the design of the H-RORC is very compact. There is
little space left for air flow along the surface of the heat sink mounted on the FPGA
when the board is fully equipped with two DDL interfaces. With too little air flow, not
only the FPGA but also the DDR SDRAM chips will run very hot and could possibly
be damaged. To ensure healthy operation of the board, it was tested using a design
operating at maximum load of all four DDR SDRAM chips in one of the cluster nodes to
be, lid closed. Figure 3.13 shows temperature build-up and cooling down after shutting
the host computer down. The graph demonstrates the impact the DDL interfaces have
on the temperature level. While the temperature in the configuration with two DDL
interfaces settles around 47 °C, a naked board will operate at around 38 °C.
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Figure 3.12: Relative performance of the memory controller. The red curve shows
the maximum relative memory performance theoretically possible for
purely random access to the memory depending on the size of contiguous
blocks. The green curve shows the real performance of the controller as
calculated from the state machine.

31



3 The Read-Out Receiver Card

 20

 25

 30

 35

 40

 45

 50

 0  1000  2000  3000  4000  5000  6000

T
em

pe
ra

tu
re

 [d
eg

. C
]

Time [s]

FPGA with DIUs
FPGA w/o DIUs
RAM with DIUs

Figure 3.13: Temperature pattern of the H-RORC. The temperature is measured us-
ing PTC resistors located between the fins of the heat sink mounted on
the FPGA. As can be seen, the temperature level on a board equipped
with two DDL interfaces is significantly higher than on a naked board.
Note that the base levels suggest a systematic error of about 1 °C for
the graphs. The steeper slope of the temperature graph for the DDR
SDRAM chips results from the lack of a heat sink on those devices.
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Home computers are being called upon
to perform many new functions,

including the consumption of homework
formerly eaten by the dog.

Doug Larson

4 The Hardware-Software Interface

Whether the HLT Read-Out Receiver Card (H-RORC) works in pass-through mode
or preprocesses event fragments to find clusters or applies Hough transformation, at
some point the data has to be transferred to a computer system for further processing
and finally combining event fragments to events. To allow maximum performance,
data is injected via Direct Memory Access (DMA) into the main memory of the host
computer. The memory must be reserved for this purpose, of course, and the computer
must be able to communicate with the H-RORC. On the hardware level, the Peripheral
Component Interconnect (PCI) bus is used. On the system level, the PCI and Shared-
memory Interface (PSI) allows reserving of memory for DMA and communication with
the H-RORC. Figure 4.1 shows an overview of the hardware-software interface.

Figure 4.1: Overview of the hardware-software interface. The PSI driver allows user
mode applications to access the PCI bus using functions provided by the
Linux kernel. It works as an abstraction level between different kernel
versions and the hardware dependent part of user applications.
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4.1 The Peripheral Component Interconnect Bus

The PCI bus was developed in the early nineties of the last century and replaced
the Industry Standard Architecture (ISA) and VESA Local Bus (VLB). For over ten
years, it has been the standard bus system for personal computers, allowing the CPU
to communicate with peripheral devices, from on-board components integrated in the
mainboard chipset to extension cards located in slots on the mainboard. It is now
superseded and slowly being replaced by PCI Express.

PCI uses a parallel bus architecture with either 32 or 64 bit width at 33 or 67 MHz.
Address and data share the same physical lines and are interleaved. Every PCI device
can use up to four interrupt lines which are mapped to corresponding interrupt service
requests by the PCI bridge and system software. The H-RORC uses the 3.3 V, 64 bit
PCI at 67 MHz, thus allowing a raw transfer data rate of 533 MB/s. Several buses can
be interconnected and hierarchically structured with bridge devices. Up to 256 buses
are allowed with a maximum of 32 devices for each bus. A single device can be divided
into 8 different sub-devices called functions. For each function a device supports, a
separate 256 byte size configuration space must be provided. The configuration space
mediates vital information about the device function, like the general functionality
provided, identification and status information. It is also used to configure the Base
Address Regions (BAR) and interrupt service requests for a device function. Each
device function can have up to six BARs, which can either provide memory or I/O
functionality. A device might for example provide internal configuration and status
registers in an I/O region or frame buffer functionality through a memory region.
The system software determines how many BARs any device function requires and
the requested size. It will then map these regions and store the addresses in the
corresponding configuration space registers.

The most important point to understand here is that the configuration space and
especially the BARs play a central role in communicating with a device. A device
driver typically looks for a certain combination of vendor and device identification and
starts communicating with the device by reading from and writing to BARs, either by
using direct or memory mapped input/output.

For full details on the PCI specification see [16] or later versions thereof.

4.2 The PCI and Shared-memory Interface

The PCI and Shared-memory Interface was initially developed by Timm M. Steinbeck
during the work for his PhD thesis [18]. It is a Linux kernel driver and accompany-
ing library, allowing user space applications direct access to the PCI bus and com-
puter memory. The concept allows device driver functionality to be implemented—and
debugged—in user mode.

The second generation of the PSI tools started as a crude port of the kernel driver
to the 2.6 series of the Linux kernel and ended up as a complete rewrite of the driver.
The internal structure of the driver was changed to do resource management and allow
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additional features and transition of concepts which have changed with the kernel
architecture.

This section will give an overview of the Linux kernel driver. For a description of
the library, see chapter B in the appendix.

4.2.1 The Linux Kernel Architecture

The Linux kernel is the core, and the namesake, of the Linux operating system family. It
is a monolithic kernel, with device drivers and kernel extensions running in kernel mode.
It provides support for preemptive multitasking, both in user mode and kernel mode,
virtual memory, shared libraries, demand loading, shared copy-on-write executables,
memory management, multithreading, symmetric multiprocessing, and comes with a
powerful set of network protocol stacks. Despite the monolithic approach, support
for loadable modules allows very flexible extension of hardware support and kernel
functionality at runtime.

A loadable module for the Linux kernel has to implement at least two functions, an
__init function which is called upon loading the module, and an __exit function which
is called when the module is removed. For a device driver, the __init function will
typically register a device with the kernel, so that the device interface can be accessed
through a device node later. The device interface consists of a number of additional
functions which are called when the device node is opened or closed, accessed or when
control functions are requested. The device node requires the major and minor device
number for the device interface. The major number roughly distinguishes between
different classes of devices, and the minor number is used to address a single device
instance. The major number can be allocated dynamically when registering a device
with the kernel or it can be statically given either implicitly by registering a device of
a certain class or explicitly by convention.

Another way of allowing user mode applications to communicate with the driver is
to export virtual files in one of the /proc or /sys subdirectories. The former is being
obsoleted by the latter which is available since version 2.6 of the kernel. This feature
is not used by the PSI driver however.

For a detailed introduction to writing device drivers for the Linux kernel see [9], and
[12] for information on porting from 2.4 to 2.6 versions of the kernel. Another very
valuable resource on the Internet is the Linux kernel cross-reference [11].

4.2.2 The Linux Kernel Driver

In a traditional sense, a device driver is a kind of black box, providing a well-defined
programming interface to a specific hardware device or class of devices. On the other
hand, a kernel extension provides additional functionality that is not tied to such
specific hardware. While drivers typically export device interfaces that can be accessed
through device nodes in the /dev tree by user mode programs, kernel extensions add
new API routines to the kernel and provide system calls.
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The PSI driver is a crossover between the two concepts. It is not tied to specific
hardware other than the PCI bus itself, and extends the kernel to allow user mode
drivers for PCI devices. Still it exports its API as a device interface that can be
accessed through /dev/psi. For kernel version 2.4 with support for the dynamic device
filesystem, devfs, the major number will be allocated dynamically and the device node
will be created automatically when the module is loaded. Otherwise, the static major
number 100 is used and the device node has to be created manually. For kernel version
2.6, a miscellaneous device is registered and the device node is created automatically
by the kernel hotplugging mechanism when the module is loaded1.

The concept of user mode drivers is not new to Linux. It has been used by the X
server for a very long time. As of the current version of the kernel, however, there
is still no consistent support for user mode drivers for PCI devices. The benefits
of such a concept are evident in an environment where a lot of custom hardware is
developed by different teams. By introducing an additional layer of abstraction between
the constantly evolving and changing kernel API and user mode programs, only the
abstraction layer has to be actively maintained, allowing the teams to update their
software to new kernel versions without much hassle. The applications targeting custom
hardware can tightly integrate a driver for the custom hardware by means of a library
or directly. Debugging a user mode driver is a lot easier than debugging kernel mode
code.

The PSI driver supports only the input/output control, or ioctl, device interface
for /dev/psi. Ioctls are considered deprecated, still the intention was to remain as
backward compatible as possible, and the ioctl device interface already proved to be a
fairly straight-forward approach to the problem in the first generation of the driver.

The second generation driver developed for this thesis has many advantages over
the first generation. The different parts of the driver have been completely separated.
Module management, device management, device interface and driver backend are
implemented as separate files with well-defined, tight interfaces. This allows to change
each part of the driver without breaking code in other parts. For example, without too
much effort additional interfaces may be supported in future versions of the driver. The
driver keeps track of each and every request. This has completely eradicated strange
behaviour often observed with the first generation driver. Block requests are handled
more efficiently. This results in a speed-up for most projects which have been using
the first generation driver. Many features have been added, including support for 64
bit architectures, support for machines using input/output virtualisation, hardware
interrupts and basic support for reconfiguring PCI devices after a firmware update
without reboot. The driver source files are located in the src/module subdirectory.

Figure 4.2 shows an overview of the PSI tools architecture. The arrows show logical
connections. For example, the PSI library accesses the driver only by means of the

1Only the latest versions of the PSI driver use the misc device interface, since the manual triggering
of the hotplugging mechanism stopped working as of kernel version 2.6.17 without any conceivable
reason, i.e. misc_register() handles it the same way it was implemented before [sic].
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Figure 4.2: Overview of the PSI tools architecture. The module and device manage-
ment introduce the PSI driver to the Linux kernel, creating the device
node /dev/psi. The PSI library communicates with the driver frontend
through the device node. The driver backend handles the requests from
the frontend via the kernel API.

device node. It calls system level functions passing a handle to the device node. In turn,
the kernel calls the device interface functions. Much the same is true for the creation
of the device node. This is either triggered by the device management of the driver or
by explicitly calling mknod. The device node is created by the kernel. However, the
logical connections serve to show the working principles, showing a complete call graph
would only be confusing without making matters any clearer.

The Driver Backend works with a concept called regions. A region can be a con-
tiguous chunk of the main memory of the computer, the configuration space or a BAR
of a PCI device. Memory regions are identified by a unique name or the correspond-
ing physical address, configuration space or base address regions are identified using
PCI bus addresses. Once a region has been created, it has to be sized. This is done
automatically for regions that have a fixed size, like the configuration space and base
address regions. Memory regions, however, have to be explicitly sized before they can
be used. Sizing a named memory region is synonymous with allocating a contiguous
memory block. To allow allocation of very large contiguous blocks, the PSI driver can
use the bigphysarea2 kernel patch. Physical memory regions have to be sized, too,
even though this is more of a symbolic act, since access to physical addresses is not
subject to any memory management whatsoever. Use of physical memory regions is
strongly discouraged and is only kept for backward compatibility. Note that a region

2The bigphysarea patch allows to pre-allocate a large memory contingent that can be used later by
kernel drivers as DMA buffer without the need for scatter-gather lists. Since the bigphysarea patch
has no active maintainer, updates pop up randomly over the Internet.
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can be sized only once. If different processes share data by accessing the same region
for example, only the first process actually creates the region. If the region has to be
sized explicitly, it has to be done at this instance.

The backend is implemented in the files region.h and region.c. There are several
possibilities to access a region once it has been created and successfully sized. The
backend supports single byte, word or double word access or block access with cor-
responding granularity. Alternatively, memory regions and memory BARs of a PCI
device can be mapped and accessed just like a regularly allocated memory buffer.

The region handling includes two-fold house-keeping. A global list holds all regions
created and keeps track of DMA mappings or assignment of interrupt handlers. Each
entry to the region list in turn has a list of each and every process that uses the region.
Access to a region is granted only to processes which have obtained a valid handle. For
each process, mappings are maintained separately. While this imposes some overhead
to region access, this goes unnoticed when using block or memory mapped access, and
it allows the backend to release regions which have not been closed, for example because
the process using a region hangs or has died unexpectedly. More important even, this
may be used in a policy to minimise the security risk imposed by the driver itself, since
it allows access to almost any resource of the computer.

The Driver Frontend implements only the ioctls that form the device interface, as of
now. These are implemented in the files include/psi_ioctl.h, ioctl.h and ioctl.c.
Parameters passed to the backend are thoroughly checked for consistency. In addition
to the region handling, some functionality has been implemented as dedicated ioctls.
This contradicts the claim of complete separation of the parts of the driver and will be
left for future maintenance.

These additions include utility ioctls to save and restore the configuration space of
a device to or from a user space memory buffer, remove and re-insert devices from or
to the kernel device list, respectively, and active waiting with sub-microsecond granu-
larity, depending on the hardware platform. While removal and re-insertion of devices
provide support for basic hotplugging, they only work if the PCI device uses the same
physical layout for the BARs. Changes to the BARs involves reconfiguration of the
PCI bridge(s) of the computer, which is non-trivial and may not work on all, or even
any, configurations without hotplugging support by the computer firmware.

Module and Device Management is implemented in the files module.h, module.c,
device.h and device.c. Module insertion and removal is handled here, together with
registering and unregistering the device interface and creation and removal of /dev/psi.
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The most exciting phrase to hear in science
the one that heralds new discoveries

is not “Eureka!” but “That’s funny . . . ”

Isaac Asimov

5 Summary and Future Prospects

In the previous two chapters, two essential components for the data flow in the High
Level Trigger (HLT) of A Large Ion Collision Experiment (ALICE) developed for this
thesis were presented. Both components have been implemented and tested and are
already in use by the time of this writing. The DDR SDRAM controller, for
example is not only used by the HLT group at the Kirchhoff-Institute for Physics
(KIP), but also at the Istituto Nazionale di Fisica Nucleare (INFN) in Cagliari, Italy.
The second generation of the PCI and Shared-memory Interface (PSI) has been
quickly adopted by practically every group developing custom hardware at the KIP,
but is also used by other groups at the Universities of Karlsruhe and Frankfurt.

5.1 The Data Reformatter

While the memory controller presented in chapter 3 so far is mainly used to verify the
DDR SDRAM chips on the HLT Read-Out Receiver Card (H-RORC) board, this is of
course not its sole, nor main purpose. The memory has been included in the board
design to allow preprocessing tasks which require temporary storage beyond the limited
capabilities of the Field Programmable Gate Array (FPGA) used.

Since the H-RORC deals with event fragments, it is essential for any preprocessing
that the single data points have defined locations in time and space. The Read-out
Control Unit (RCU) collects the data from the detector Front-End Electronics (FEE)
and delivers it through the Detector Data Links (DDL) in a rather inconvenient way
for further processing. Also, the data is formatted in a way which makes it necessary to
hold a complete event in memory. Thus, the necessity arises to sort and reformat the
data in the H-RORC, otherwise there will be no preprocessing in hardware, wasting the
potential of such an approach—and wasting the time and effort put into the develop-
ment of the H-RORC in the first place. At the beginning of chapter 3, event fragments
were already described shortly. To recap the layout, figure 5.1 gives an overview of how
the TPC is divided into sectors, patches and pads. Note that the pads are organised in
rows, with less space between two pads of the same row than between two rows. This
means that any algorithm searching for groups of peaks in the data will most likely
want to work on a pads within a row rather than different rows.

An event fragment combines the data packets from the pads of one patch. If zero
suppression is used, only those pads will be included which have signal data values
above the electronics baseline. Sorting the data has to be done on the pad data packet
level. The pad data packets are embedded in an event data frame. The event data
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Figure 5.1: TPC layout. Both ends of the Time Projection Chamber (TPC) contain
read-out electronics organised into sectors, patches and pads as illustrated
above. The H-RORC receives the data from one patch per DIU.

frame consists of the Common Data Format header, which is eight 32 bit words in size,
a variable number of pad data packets and the RCU Data Block, which is up to three
32 bit words in size.

It is important to pay attention to the different word sizes used in the data. While
the event data frame uses 32 bit words, the pad data packets use 40 bit words which
will be padded to be aligned to a 32 bit boundary, so they fit into the event data
frame. Inside the pad data, 10 bit words are used and padded to be aligned to a 40 bit
boundary.

The RCU Data Block contains the total number of 40 bit words used in the pad
data packets. The last1 40 bit word of a pad data packet contains the number of 10 bit
words used in the pad data and the hardware address of the pad. The latter is needed
to look-up the location of the pad, the former to calculate the position of the previous
pad data packet in the event data frame. Figure 5.2 shows the layout of a sample event
data frame and pad data packet.

This layout has serious impact on the way event fragments have to be processed.
Since the event data frame has to be read from back to front, the whole event must
be stored in memory. The size of an event data frame varies, but in most cases it
will be too large to fit within internal memory of the FPGA. While working on one
event fragment, further event fragments may be pending. To assure event fragment

1Not including words appended for padding.
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Figure 5.2: Format of TPC event data frame. The figure above shows how an event
data frame contains header information, pad data packets and footer in-
formation. A sample pad data packet is shown to illustrate the data
layout within a packet.
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processing without loss of a single event, a flexible double-buffering scheme has to be
implemented which allows a varying number of events to be written in one buffer,
while the other buffer is still being processed. It may seem tempting to use a simpler
approach and store only a single event data frame per buffer. However, if a rather large
event fragment is being sorted while a rather short event fragment is coming in, this
will lead to the next event fragment pending to be discarded. Since the H-RORC hosts
two DIUs, all four DDR SDRAM chips will be used permanently.

For convenience, the back linked structure of the data can be turned upside-down al-
most literally very easily. With very little effort, the address path of the DDR SDRAM
controller can be changed to allow burst access to the memory in both directions. Sim-
ply by adding a control signal that enables decrementing the address counter instead
of incrementing, and adjusts the comparator generating the EOR signal, the event data
frame can be written to the RAM in forward mode and read in reverse mode. This will
make the structure of the data look like being forward linked.

5.1.1 Discussion of Feasibility

In the case given, sorting is a three phase process. In phase one, the data to be sorted
is written to a buffer. Phase two is scanning the buffer, mapping the hardware address
of each pad data packet to an address slot and recording its memory addresses to that
slot. Finally, the recorded addresses are used to read the pad data packets and deliver
the data to the next preprocessing stage. The sorting process is pipelined using double-
buffering as described earlier, so phase one always is done in parallel with phase two
and three.

It is immediately clear, that phase two and three have to be accomplished, in average,
at least with the same rate as receiving the data in phase one. If one buffer receives
data faster than the other buffer is sorted, sooner or later a buffer overflow will result
in events not being sorted or, even worse, being discarded. It is also clear, that the
memory data rate defines the upper limit for sorting. This is, however, a very critical
point in the discussion of feasibility for sorting the data in hardware. Since there is a
certain overhead for accessing data stored in memory, the data rate strongly depends
on the access pattern. Linear access making full use of bursts results in a memory
efficiency of about 95 %2. Random access performance is a lot worse. In fact, for single
word access it is less than 7.1 %3.

Phase one and two can be implemented using linear access to the SDRAM4. Phase
three requires random access to the SDRAM, thus memory performance is dependent
on the size of the pad data packets.

From the discussion above it should be understood that the average memory data
rate for phase two and three together has to be at least twice the incoming data rate in

2This is due to row precharging and activation and refresh cycles.
3State switching for a single word frame requires 14 clock cycles, not including the overhead due to

refresh cycles.
4The address path has to be extended to allow access in both directions, however, as described earlier.
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Figure 5.3: Overview of the data reformatter. The data reformatter can be imple-
mented in four sub-components and will instantiate two DDR SDRAM
controllers. The path selection handles double-buffering of incoming event
data and distribution to the two phase sorter. The latter uses hardware
address mapping and the pad data packet list to reorganize packets in
the event data frame. An input and output FIFO will be used to handle
crossing of clock domains and buffer event data. The FIFOs will be con-
nected to DIU style interfaces, so the component can be inserted before
any component attached to a DIU.

phase one. In the current implementation of the H-RORC firmware, the incoming data
rate ρi is 40 MHz, and the raw memory data rate ρm is 166 MHz. So the actual lower
limit for the memory performance η = ρi/ρm is 24 %. The overall memory rate has to
be shared by phase two and three. Since phase two can be implemented using linear
access, the local memory performance will be around 95 %, which leaves around 32 %
for phase three. This corresponds to an average pad data packet size of at least 6.1 32
bit words. These values should be regarded only as rough estimates. Still, real-world
data has to be analysed and compared to these limits.

5.1.2 Suggested Implementation

In this section so far, the design for the data reformatter has already been outlined.
To sum up the suggested features, figure 5.3 shows an overview of the component.

The path select sub-component handles the double-buffering. It communicates with
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the two-phase data sorter sub-component to determine when to switch buffers. The
two-phase data sorter in turn communicates with the hardware address mapping and
pad data packet list sub-components, both of which are mostly large look-up tables.
The hardware address map is statically initialised for the patch the H-RORC is working
on, and the pad data packet list is filled dynamically in the first sorting phase.

The data reformatter knows two bypass modes, a global bypass and an error bypass.
When global bypass is active, the data reformatter is idle and event data frames are
simply passed through two FIFO stages. The error bypass mode is entered, when the
first sorting phase encounters inconsistencies it cannot resolve while scanning the data.
Such inconsistencies may arise from the data format specification for the pad data
packets, since there may be cases when a filler word cannot be distinguished from a
valid trailer word containing the hardware address and number of 10 bit words used,
and the first 40 bit word containing data looks like a trailer word.

This might happen, if the hardware address is 0xAAA and the number of 10 bit words
used in the pad data packet is 682 (0x2AA). In that case, one filler word is appended
after the trailer word, and the data inside the pad data packet will be padded with
two 10 bit words. So, only the value of data bits 12 to 15 of the 40 bit word preceding
the trailer word in question decides whether these last 40 bits of data look like a valid
trailer word. Even then, a consistency check can be applied, since the number of 10
bit words determines the number of filler words appended after the trailer word, which
would have to be two.

While this can happen theoretically, it has to be observed whether it is of any sta-
tistical relevance. If it turns out that this problem must somehow be circumvented,
strategies to do so have to be evaluated. A first approach to such a strategy might be
to pre-select one of the two possibilities arising from the problem and continue based
on the assumption that the pre-selection is correct. If the next pad data packed ap-
pears to be correct, the process will simply continue. However, if the next pad data
packet cannot be decoded correctly, a fall-back to the second possibility is done. Note
that this still may result in data being interpreted as pad data packet erroneously, the
likelihood of such an event will be much smaller, however.
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This chapter of the appendix is taken from the documentation written for the DDR
SDRAM controller introduced in chapter 3.

A.1 The Core

The core of the DDR SDRAM controller is implemented mainly in three files which are
located in the vhdl/core directory. The user application will most likely instantiate
the toplevel component defined in sdr_controller.vhdl. This file instantiates the
components from the two other files, which contain most of the functional code.

The core needs two clock inputs, the main clock CLK driving most of the logic and
CLK_270, a clock that is shifted by 270° with respect to the main clock, which is used to
centre data in the data path. All signals the user application will use are synchronous
to the main clock. This is also true for the reset signal RST.

The following control signals are defined as interface to the core: the frame base
address AIN, the transfer direction DIR, the frame request signal FRM, the valid frame
signal GNT, the data request signal REQ, the frame pause signal BRK and, for read
transfers, the data valid signal VLD.

Data is fed to the core through DIN and read from DOUT. The rest of the signals
declared in the entity are the output signals for the DDR SDRAM.

A.1.1 Data Frames

The data transfer model is frame based. Once the user application asserts FRM, it
signals the request to transfer a single data frame. With the assertion of FRM, the
transfer direction DIR and the frame base address AIN have to be valid.

The user application must hold the frame base address AIN until the interface signals
a valid frame by asserting GNT. The transfer direction DIR must not change during a
frame. Note that although not shown in the following examples, it is perfectly valid to
start a frame paused by asserting BRK along with FRM.

To terminate a frame, the user application has to pause the transfer by asserting BRK,
and deassert FRM. The controller will stop requesting data from the user application, for
the DDR SDRAM, and deassert GNT some time later to signal successful termination
of the frame. The user application must not request a second frame while GNT is still
asserted.

A.1.2 Writing Data

To write data to the DDR SDRAM, take DIR high, drive a valid frame base address
to AIN and assert FRM. As long as the user application is not requesting for a pause by
asserting BRK, the core can request data at any time by asserting REQ. Valid data input
to DIN must follow REQ the next clock cycle.
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entity SDR_CONTROLLER is
port (

CLK, CLK_270, RST: in std_logic;
-- user interface
AIN: in std_logic_vector( ADDRESS_WIDTH-1 downto 0 );
DIN: in std_logic_vector( DATA_WIDTH-1 downto 0 );
DOUT: out std_logic_vector( DATA_WIDTH-1 downto 0 );
DIR, FRM, BRK: in std_logic;
GNT, REQ, VLD: out std_logic;
-- DDR SDRAM interface
CK, NCK, CKE, NCS, NRAS, NCAS, NWE: out std_logic;
A: out std_logic_vector( ADDRESS_PORT_WIDTH-1 downto 0 );
BA: out std_logic_vector( BANK_PORT_WIDTH-1 downto 0 );
DQ: inout std_logic_vector( DATA_PORT_WIDTH-1 downto 0 );
DQS: inout std_logic_vector( STROBE_PORT_WIDTH-1 downto 0 );
DM: out std_logic_vector( MASK_PORT_WIDTH-1 downto 0 )

);
end SDR_CONTROLLER;

Figure A.1: DDR SDRAM controller core interface
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If the user application cannot provide data, it must request for a pause by asserting
BRK. The core will react by deasserting REQ the next clock cycle. Once the user ap-
plication is ready to provide data again, it has to deassert BRK and the controller will
begin to request data one, or more, clock cycles later.

A.1.3 Reading Data

While writing data is straight forward, reading data is slightly more complicated.
To read data from the DDR SDRAM, pull DIR low, drive a valid frame base address

to AIN and assert FRM. The core will signal a data request to the DDR SDRAM by
asserting REQ and the arrival of valid data by asserting VLD. When the user application
requests for a pause by asserting BRK, the controller will stop requesting data from the
DDR SDRAM the next clock cycle. The user application will still have to handle the
arrival of pending data, however.

So the user application has to keep track of the capacity to store or process data by
counting requests to the DDR SDRAM, rather than actually received data. Of course,
if data is only important up to some unknown point, the rest of the data can be safely
ignored. Note that for read frames there may be pending data even after the frame has
been terminated.

A.2 Configuring the Core
Configuration of the core is done in sdr_configuration.vhdl in the vhdl/config
directory. Anything that cannot be configured here, involves changes in the VHDL
code of the core. Please note that even some changes in this file involve changes to the
VHDL code. For example, the core only supports a burst length of two, so always set
the corresponding mode register bits accordingly. Also note that values defined relative
to other values should never be changed. The parameters most likely to be changed
when using the core with any other design than the H-RORC are listed below.

DATA_PORT_WIDTH the width of the DQ data port of the memory chip. The width of
the controller data port will be twice this value and is defined as DATA_WIDTH.

ADDRESS_PORT_WIDTH the width of the A address port of the memory chip. The width of
the controller address port is not derived from this value, but rather the following
three and is defined as ADDRESS_WIDTH.

COLUMN_ADDRESS_WIDTH the number of bits of the address port of the memory chip
used for the column address.

ROW_ADDRESS_WIDTH the number of bits of the address port of the memory chip used
for the row address.

BANK_PORT_WIDTH the width of the BA bank address port of the memory chip.

STROBE_PORT_WIDTH the width of the DQS strobe port of the memory chip.
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Figure A.2: Writing data using the core interface
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Figure A.3: Reading data using the core interface
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MASK_PORT_WIDTH the width of the DQM data mask port of the memory chip.

T_* timing parameters according to the data sheet of the memory chip used, given in
number of clock cycles. When in doubt, see [10]. T_DLL is the time for DLL reset,
T_REF is the periodic refresh interval and T_INIT is the time to wait before starting
with the initialisation sequence. The corresponding *_WIDTH values define the
width of the respective counters.

CAS_LATENCY mode register bits for the CAS latency.

*_CNT with these values the read timing can be adjusted.
The value for IDELAY_TAP_CNT defines the number of taps for signal delay. One
tap is 74 ps for the Xilinx Virtex™-4. The other values are given in number of
clock cycles. Half clock cycle CAS latency has to be taken into account with
IDDR_LWRE_FLAG or adjusted with IDELAY_TAP_COUNT accordingly.

IDDR_LWRE_FLAG defines whether the low word is received to the rising edge (true) of
the clock or the falling edge (false).

*_START, *_END these values can be adjusted to support a different mapping of logical
linear address to column, row and bank address.

A.3 Single Clock FIFO Interface

Most of the overhead associated with handling DDR SDRAM is absorbed by the core
presented. The only vestige that cannot be hidden is that the user application can’t
just stream data to the RAM, but rather has to tell the core to get ready for data
transfer. The core will then signal the user application when data should be provided
or picked up. The user application, in turn, has to tell the core whether it is ready to
provide or pick up data one clock cycle ahead.

While this can be alleviated by providing alternate interfaces that can be attached to
the core, it cannot be completely eliminated. One such interface which is included with
the controller is the single clock FIFO interface, which buffers the data. The single
clock FIFO interface is implemented in the file sdrif_sc_fifo.vhdl in the vhdl/if
subdirectory. It provides simple FIFO operation on the DDR SDRAM with a few
additional control signals.

Read and write operations originate from the same clock domain, while the DDR
SDRAM controller operates in its own clock domain. The term single clock applies
only to the signals for the user application.

The interface defines the following control signals: the frame base address AIN, the
frame length LEN, the transfer direction signal DIR, the frame request signal FRM and
the valid frame signal GNT.
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entity SDRIF_SC_FIFO is
port (

-- user interface
RW_CLK, RW_RST: in std_logic;
AIN, LEN: in std_logic_vector( ADDRESS_WIDTH-1 downto 0 );
DIR, FRM: in std_logic;
GNT: out std_logic;
-- FIFO write interface
DIN: in std_logic_vector( DATA_WIDTH-1 downto 0 );
WR_EN: in std_logic;
FULL, ALMOST_FULL: out std_logic;
-- FIFO read interface
DOUT: out std_logic_vector( DATA_WIDTH-1 downto 0 );
RD_EN: in std_logic;
EMPTY, ALMOST_EMPTY: out std_logic;
-- DDR SDRAM interface
SDR_CLK, SDR_CLK_270, SDR_RST: in std_logic;
CK, NCK, CKE, NCS, NRAS, NCAS, NWE: out std_logic;
A: out std_logic_vector( ADDRESS_PORT_WIDTH-1 downto 0 );
BA: out std_logic_vector( BANK_PORT_WIDTH-1 downto 0 );
DQ: inout std_logic_vector( DATA_PORT_WIDTH-1 downto 0 );
DQS: inout std_logic_vector( STROBE_PORT_WIDTH-1 downto 0 );
DM: out std_logic_vector( MASK_PORT_WIDTH-1 downto 0 )

);
end SDRIF_SC_FIFO;

Figure A.4: Single clock FIFO interface
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A.3.1 Data Frames

As with the core, the data transfer model is frame based. Once the user application
asserts FRM it signals the request to transfer a single data frame. With the assertion of
FRM, the transfer direction DIR, the frame base address AIN and, for read transfers, the
frame length LEN have to be valid.

Again, the user application must keep the address signals AIN and LEN valid until
the interface signals a valid frame by asserting GNT. The transfer direction DIR must
not change during a frame.

How to terminate a frame is described for write and read transfers separately as it
is handled slightly different in each case. However, after terminating a frame the user
application of course has to wait until the interface signals the end of the frame by
deasserting GNT, before requesting the next frame.

A.3.2 Writing Data

To write data to the DDR SDRAM, take DIR high, drive a valid frame base address to
AIN and assert FRM. The user application can write data to the DDR SDRAM through
the FIFO write interface without waiting for GNT to be asserted.

Here, WR_EN, FULL and, optionally, ALMOST_FULL control writing data to the FIFO.
While FULL is deasserted, data can be written by asserting WR_EN. ALMOST_FULL is
asserted one clock cycle ahead with respect to FULL. This makes control from a state
machine easier.

To terminate the write frame, the user application simply deasserts FRM after writing
the last word to be transferred to the FIFO and waits for GNT to be deasserted. Note
that, although the user application does not have to wait for GNT to be asserted to write
data to the FIFO, AIN must be held until that point, and that you must not deassert
FRM earlier, either. Also note that, of course, the figure showing write access is only
an outline of things that can happen. Usually, the FIFO won’t run full when only two
data words have been written.

A.3.3 Reading Data

To read data from the DDR SDRAM, pull DIR low, drive a valid frame base address
to AIN and the desired frame length to LEN and assert FRM. The user application will
receive data through the FIFO read interface.

As soon as EMPTY is deasserted, the user application can start reading data by as-
serting RD_EN. The data at DOUT will be valid the next clock cycle. Similar to the FIFO
write interface, there exists a signal, that is asserted one clock cycle early with respect
to EMPTY, namely ALMOST_EMPTY.

The read frame is terminated by the user application by deasserting FRM after read-
ing the last word from the FIFO. The frame must not be terminated early, the user
application has to read exactly the number of words requested.

51



A The DDR SDRAM Controller

0 1 2 3 4 5 6 7 8 9 10 11

CLK
control signals

AIN valid addr

DIR

FRM

GNT
FIFO signals

DIN d0 d1 d2 d3

WR_EN

FULL

ALMOST_FULL

Figure A.5: Writing data using the SC_FIFO interface
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Figure A.6: Reading data using the SC_FIFO interface
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This chapter of the appendix is taken from the documentation written for the PSI tools
introduced in chapter 4.

B.1 Prerequisites
Since the core component of PSI is designed as a kernel module, you might want to
make sure you have a kernel with support for loadable modules, unless you want to
hack the driver and patch your kernel. If you end up compiling a custom kernel, you
might also want to enable support to forcibly remove a kernel module, just in case
something goes wrong.

The PSI driver supports the bigphysarea patch, which is available separately. If
you need large memory areas for DMA or want to share data between applications,
you might want to compile your kernel with this patch applied. Please refer to the
documentation that comes with the patch for information on how to install and use it.

B.2 Building and Installing
Once you have obtained a copy of the PSI sources, you just have to cd into the PSI
top-level directory, which I will refer to as the working directory, and call make to
build everything. The build process creates several additional subdirectories to hold
the driver, libraries and tools, so after a successful build, the working directory should
look something like this:

> ls
bin doc include lib Makefile Prefix.make README Rules.make src

If you want to install the PSI driver, library and tools, you can call make install.
This will place the driver into the modules subdirectory of the current kernel and reg-
ister it with modules.dep, so you can modprobe it. The tools, header files and libraries
will be placed in /usr/local/bin, /usr/local/include and /usr/local/lib, respec-
tively. Note that you will need administrator privileges if you want to install to the
default location.

If you want to install the PSI library and tools somewhere else than the default
location, you can set PREFIX for make install. For example, if you want to install to
/opt/local/psi, just call make PREFIX=/opt/local/psi install. Note, however,
that the driver will still be installed inside the modules subdirectory of the current
kernel.

Of course, you don’t have to install everything. You can just use the library and tools
inside the working directory. You will have to tell your compiler where to find header
files and libraries for PSI, though. Note that all platform dependent files are placed in
platform subdirectories. If, for example, you are working on a i686 Linux system with
kernel 2.6.12-plain, make will create the platform subdirectories bin/Linux-i686 and
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lib/Linux-i686 for the tools and libraries, and modules/Linux-i686/2.6.12-plain
for the driver. (You can use uname to get the identifiers for your system.) You can
still install the driver into the modules subdirectory of the current kernel by calling
make install-module.

B.3 Region Handling

The PSI library works mostly on regions. Regions are simply handles to blocks of
memory. But while the term memory usually refers to the RAM installed in your
computer, regions can also point to a block of memory or I/O ports of a PCI device.
This means, there are different types of regions.

Most functions of the PSI library return a result of type PSI_Status. Be sure to
check for errors and act appropriately after each and every call because things may
eventually fail.

B.3.1 Opening a Region

First, you have to open a region. To open a region, you need a region path which
identifies the region. Depending on what type of region you want to open, the region
path varies. A region is opened with a call to PSI_openRegion() which is passed a
pointer to a region handle and the device path as parameters. Region handles are of
type tRegion.

Named memory regions are identified by their name. You can choose the name
to be whatever comes to your mind, as long as the region path doesn’t exceed 100
characters, the terminating zero included. The region path is /dev/psi/mem/<name>.
If you want to specifically get memory from the bigphysarea, the region path should
be /dev/psi/bigphys/<name>.

Physical memory regions are identified by their physical address. You have to take
care yourself, that the physical address exists and cannot be used by the kernel or
user space processes other than through PSI. Usually you will reserve a block of the
memory installed in your computer by passing the kernel a mem argument. See the
kernel documentation for details. The region path is /dev/psi/physmem/<address>.

Config space regions point to the configuration space of a specific PCI device. They
can be identified by either the PCI address (bus, slot and function number) or by the
device id (vendor, device and index, where index is used to identify a specific device if
more than one devices use the same vendor and device id).
Use either /dev/psi/bus/<bus>/slot/<slot>/function/<function>/config or
/dev/psi/vendor/<vendor>/device/<device>/<index>/config as region path, de-
pending on whether you use the PCI address or the device id to identify the device.
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Base address register regions point to either memory or I/O ports on a PCI device.
Like config space regions, they can be identified by either the PCI address or the device
id. Additionally you have to provide the number of the base address register which
points to the memory or I/O ports on the device.
Use either /dev/psi/bus/<bus>/slot/<slot>/function/<function>/base<bar> or
/dev/psi/vendor/<vendor>/device/<device>/<index>/base<bar> as region path,
depending on whether you use the PCI address or the device id to identify the device.

B.3.2 Sizing a Region

After successfully opening a region, you have a valid region handle. While config space
and base address register regions have fixed sizes, named and physical memory regions
don’t. You have to size a memory region before you can actually use it. Once the size
of a region has been set, it is fixed and can’t be changed throughout the lifetime of the
region. So another point of view would be, that regions for PCI devices are sized during
opening, while memory regions have to be sized manually. You size a memory region
by calling PSI_sizeRegion() which is passed the region handle and a pointer to an
unsigned long which holds the requested size before the call and the granted size after
the call. Note that the granted size may differ from the requested size since memory is
allocated with a granularity of the page size defined by the system.

Note that regions can be opened by different processes. Of course only the first
process that opens a region has to size it. So if a call to PSI_sizeRegion() fails with
PSI_SIZE_SET, it has already been sized by another process and you don’t have to
size it. Beware that you are sharing the region with another process, though, and
you might have to take measures to synchronised shared access to the region. See the
documentation that comes with your development tools for details on inter application
communication.

B.3.3 Closing a Region

When you are finished using a region, you should always close it. The region will
be disposed of after all processes that have used it called PSI_closeRegion(). This
function is passed a region handle as parameter.

B.3.4 Preventing Disposal of Regions: Locking

Sometimes you might want to make sure that a region is not disposed of even after the
last process that has used it closed it. To lock a region, you call PSI_lockRegion().
To unlock it, call PSI_unlockRegion(). You can also check the number of locks
set on a region with PSI_checkRegionLock(). All of these functions are passed a
region handle as parameter. While the first and second function return a result,
PSI_checkRegionLock() returns the number of locks set on the region or a negative
value if the region handle is invalid.
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B.4 Region Access

Now that we have discussed the basics of handling regions, you may want to do some-
thing useful with it. For most region types, you basically have two choices to access
the contents of the region.

B.4.1 Read and Write

All types of regions support read and write access through PSI_read() and PSI_write(),
respectively. Both functions are passed a region handle, the byte offset to the start of
the memory the region is pointing to, the size of a single data element in bytes, the size
of the block in bytes and finally a pointer to the block of data as parameters. The size
of a single data element can be _byte_, _word_ or _dword_, the block size and offset
must be aligned accordingly.

B.4.2 Mapping Regions

Named, physical memory and memory base address register regions support mapping
of the region into user space. After successfully mapping the region, you can access
the memory the region is pointing to through a pointer. Beware that there are side
effects on how you access the memory, though. If you access memory base address
register regions byte-wise, the PCI bus will translate this to a 8-bit memory cycle and
so on. This means you have to carefully choose how to type the pointer you are using.
It is highly recommended not to use standard C types as these are not guaranteed to
have any fixed size. Rather you should include sys/types.h in your program and use
int8_t, u_int8_t and the likes.

You can map a region by calling PSI_mapRegion(). This function is passed a region
handle and a pointer to a pointer variable which will hold the virtual address of the
mapping after the call. To unmap the region again, call PSI_unmapRegion(), which is
passed the region handle and the pointer value returned by the call to map the region.

You can also map only a part of the region by calling PSI_mapWindow(). You pass
this function a region handle, the byte offset to the start of the memory the region is
pointing to, the size of the window you want to map and, again, a pointer to a pointer
variable. To unmap the window, you call PSI_unmapWindow(), which is passed the
region handle, the pointer value and the size of the window.

Config space and I/O base address register regions do not support mapping.

B.5 Advanced Hardware Access

While the previous section introduced the basic means by which hardware can be
accessed, this section delves into some of the more advanced topics, such as interrupts,
direct memory access and timing issues.
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B.5.1 Interrupts

When communicating with a device the need for synchronisation soon becomes evident.
You can of course implement a register in your device design that your program checks
regularly, but the use of active waiting means unnecessary load on both the processor
and the PCI bus. This can be solved by implementing interrupts in your device design.

With the advent of PSI2, the driver supports basic use of interrupts from user space.
There are, however, some things you have to consider when implementing interrupts in
your device design and writing the program that will make use of the interrupts fired
by your device.

First of all, it is convenient to implement a register in your device design that will
control how the device drives the PCI interrupt pins. There should at least be one flag
to completely prevent interrupts and one flag to reset the interrupt once fired. Your
device should by default not fire any interrupts unless the flag to allow interrupts is
explicitly set, since unhandled interrupts may confuse the system.

That said, the procedure for using interrupts for synchronisation is as follows: open
a config region, tell your device it is allowed to fire interrupts, wait for an interrupt
to occur, reset the interrupt and tell your device not to fire any more interrupts, then
flush all pending interrupts. If you need to wait for interrupts in a loop, start over with
telling your device it is allowed to fire interrupts again, wait for the interrupt to occur,
and so on.

As you can see from the above discussion it is indeed convenient to implement both
flags within a single register, as you won’t need to write more than one word through
the PCI bus.

To wait for an interrupt, simply call PSI_waitInterrupt(). This function must be
passed a handle to a config space region for the device that fires the interrupt your
program wants to listen to. Your program will be put to sleep until the interrupt
occurs. When your program receives a signal or the config space region is forcibly
closed, waiting will be aborted and an error will be returned as result. So again, be
sure to check the result before assuming you got an interrupt.

To flush all pending interrupts, you call PSI_flushInterrupts() and pass it the
handle to the same config space region you use for waiting. This is necessary because
the interrupt handling is divided into two parts, one part in the kernel driver and one
part in your user program. While the kernel driver tells the kernel to wake up the
waiting process and exits, some time will pass until your program actually wakes up
and is rescheduled—and resets the interrupt. Since the interrupt handler of the kernel
driver exited but the interrupt pin is still driven by your device, the kernel thinks it sees
another interrupt. So there will be spurious pending interrupts before your program
regains control.
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B.5.2 Direct Memory Access

If you need fast data transfer between the memory in your computer and your device
without imposing a heavy load on the processor, you may choose to implement direct
memory access, or short DMA in your device design.

While PSI supported DMA in the first generation, things have become somewhat
more complex over time. While on most x86 machines there was no difference between
the physical address of a block of memory in your computer and the address of the
same block as seen from the PCI bus, modern systems sport a dedicated memory
management unit for bus access and you can’t just simply tell your device the physical
address of some memory block you have allocated. You have to get a valid bus address
that is assigned for a link between a specific device and a specific block of memory.

To further complicate the matter, the block of memory, or DMA buffer, can only
be used by either the device or your program, not by both at a time. So basically to
transfer data from your device to memory in your computer, you open both a memory
region that will be used as a DMA buffer and a config space or base address register
region for the device, map the DMA buffer to the device, tell your device to start the
transfer, wait for the transfer to finish, unmap the buffer from the device and remap
it into user space. The transfer in the other direction works accordingly, first mapping
the buffer into user space, preparing the data to be transferred, unmap the buffer from
user space and map it to the device, tell your device to start the transfer, wait for the
transfer to finish and unmap the buffer from the device.

It is important that the mapping of the DMA buffer to the device is held only as long
as needed, as DMA mappings may be limited on some systems. So while there exists a
solution to leave a buffer mapped but suspend DMA to allow access by your program,
you should consider twice before implementing a series of transfers that way. If you
suspend DMA, you have to explicitly resume before the device accesses the buffer,
again.

To map a buffer to a device, call PSI_mapDMA() and pass it the handles to the memory
and the device regions, the direction of the transfer and a pointer to an unsigned long
which will hold the bus address you can pass along to your device if the call succeeds.
The direction can be _bidirectional_, _fromDevice_ or _toDevice_. While it may
be tempting to always use _bidirectional_, this is not recommended as there may
be more overhead on some systems. You can unmap the buffer from the device by
calling PSI_unmapDMA(), passing it the handle to the memory region that is used as
DMA buffer.

Suspending DMA for a buffer that is mapped to a device to allow access by your
program is done by calling PSI_suspendDMA(). To resume DMA again, you have to
call PSI_resumeDMA(). Both functions expect a handle to the memory region that is
used as DMA buffer.
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B.5.3 Timing Issues

When dealing with hardware access you will often encounter timing specifications that
have to be met. While waiting for a few microseconds without imposing serious load
on the processor can be achieved through usleep(), this function can’t guarantee you
sub-millisecond granularity or even microsecond granularity as the name suggests. The
granularity of any function that sleeps is given by the system tick, which is in the
range of a few milliseconds. Note that in older kernels there was the possibility to get
realtime privileges and thus a much finer granularity through sched_setscheduler()
and nanosleep(), but this functionality seems to be dysfunctional as of kernel 2.6.

This leaves you with little other choice than busy waiting if you need a better res-
olution than a few milliseconds. Since this will probably be done by many a program
that uses the PSI library, you can simply call PSI_delay() and pass it the number of
nanoseconds to wait. There is some overhead, so don’t expect it to give you nanosec-
ond granularity, but it will most likely deliver sub-microsecond granularity on modern
systems.

Beware, however, that there’s still the possibility that the scheduler chooses to sus-
pend your program at any time and select another process for execution, so every now
and then your program will fail if you need to guarantee timing to be within a certain
margin, so be prepared for this.

B.6 Miscellanea

There are some functions exported by the PSI library which did not fit in the above
categories. Some of these are supported by the PSI tools and can be issued from the
command line.

You can get a textual representation of mostly any error that can occur during the use
of the PSI library by calling PSI_strerror() and passing it the result of the operation
which failed.

By calling PSI_getRegionStatus(), you can get information about a region. Pass
it a region handle and a pointer to a tRegionStatus structure. Note that only those
fields have a defined value which are valid for the type of region you passed a handle
on. For example, the bus and devfn fields will be undefined for memory regions and a
config space region has neither a name nor address.

You can save and restore the config space of a PCI device by calling PSI_saveState()
and PSI_restoreState(), respectively. Both functions expect, of course, a handle to
a config space region and a pointer to a buffer of at least 256 bytes to hold the config
space data. If you pass PSI_restoreState() zero as pointer to the buffer, the base
address registers and IRQ line register will be refreshed from the internal data the
kernel stores about a device and the device is re-enabled.

This is what comes closest to hot-plugging a PCI device. As long as the interface of
your device to the PCI bus doesn’t change, you can re-program your device design on a
running system and re-enable the device without rebooting. Note that this is not real
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hot-plugging, as this is only an addition to the PCI specification and requires support
from the system BIOS. There is no easy way to re-enable your device if you dropped,
changed or added any base address registers and there will probably never be.

The PSI driver does a lot of house-keeping and cleans up after processes that leave
anything open. However, if a region is locked, for example, PSI can’t guess when to
release it, so the region is kept. Even worse, if a process hangs and can’t be killed, PSI
can’t clean up. You can call PSI_cleanup() to force clean up. The function expects a
process id to clean up after, but it will close all regions that are currently open if you
pass zero as the process id.

The second generation of PSI still supports the call PSI_getPhysAddress(), which
was used to provide DMA support. The use of this function is strongly discouraged.
Please use the new DMA layer discussed previously.

B.7 Reference
To use the PSI library, make sure the driver is installed properly, include psi.h and
psi_error.h in your program and link with -lpsi.

B.7.1 Region Handling

/* open a region */
PSI_Status PSI_openRegion( tRegion * pRegion, const char * regionPath );

/* size a memory region */
PSI_Status PSI_sizeRegion( tRegion region, unsigned long * pSize );

/* close a region */
PSI_Status PSI_closeRegion( tRegion region );

/* region locking */
PSI_Status PSI_lockRegion( tRegion region );
PSI_Status PSI_unlockRegion( tRegion region );
int PSI_checkRegionLock( tRegion region );

B.7.2 Region Access

/* data sizes */
#define _byte_ 1
#define _word_ 2
#define _dword_ 4

/* reading/writing from/to a region */
PSI_Status PSI_read( tRegion, unsigned long offset, int dataSize,

unsigned long bufferSize, void * buffer );
PSI_Status PSI_write( tRegion, unsigned long offset, int dataSize,

unsigned long bufferSize, void * buffer );
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/* mapping regions to user space */
PSI_Status PSI_mapRegion( tRegion region, void ** pPtr );
PSI_Status PSI_unmapRegion( tRegion region, void * ptr );
PSI_Status PSI_mapWindow( tRegion region, unsigned long offset,

unsigned long size, void ** pPtr );
PSI_Status PSI_unmapWindow( tRegion region , void * ptr,

unsigned long size );

B.7.3 Advanced Hardware Access

/* dma mappings */
PSI_Status PSI_mapDMA( tRegion buffer, tRegion device, int direction

unsigned long * pAddress );
PSI_Status PSI_unmapDMA( tRegion buffer );
PSI_Status PSI_suspendDMA( tRegion buffer );
PSI_Status PSI_resumeDMA( tRegion buffer );

/* interrupts */
PSI_Status PSI_waitInterrupt( tRegion device );
PSI_Status PSI_flushInterrupts( tRegion device );

/* delay execution for given number of nanoseconds */
PSI_Status PSI_delay( unsigned long nsecs );

B.7.4 Miscellanea

/* textual representation of PSI_Status results */
char *PSI_strerror( PSI_Status );

/* get status information about the region */
PSI_Status PSI_getRegionStatus( tRegion region,

tRegionStatus * pStatus );

/* save/restore state of PCI device */
PSI_Status PSI_saveState( tRegion region, void * buffer );
PSI_Status PSI_restoreState( tRegion region, void * buffer );

/* cleanup after process */
PSI_Status PSI_cleanup( pid_t pid );
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