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Abstract

This bachelor thesis describes the setup of a lithium lasersystem for an experiment
with fermionic lithium and bosonic sodium and the cooling of lithium atoms with a
Zeeman slower as well as the trapping with a magneto-optical trap.
The theory part in the beginning summarizes the basic features of the atomic structure
of alkali atoms.
Subsequently, the experimental implementation of a frequency stabilized diode laser
for lithium, which has a stability of approximately 1 MHz, is shown.
The basics of laser cooling using a Zeeman slower are explained and for our case
with lithium specified. Besides, a commonly used method to probe atom clouds, the
absorption imaging method, is explained.
Finally, our experimental results are shown, in which we optimise the size of our
trapped atom cloud with the parameters the slower provides us with. In addition,
our total atom number is determined by capturing the fluorescence on a photodiode
and via absorption imaging, whereas the latter one is presented in detail in this
thesis.

Kurzfassung

Diese Bachelor-Arbeit beschreibt den Aufbau eines Lithium Lasersystems für ein
Experiment mit fermionischen Lithium und bosonischem Natrium und das Kühlen
von Lithium Atomen mit einem Zeeman-Abbremser sowie das Fangen der gekühlten
Atome in einer magneto-optischen Falle.
Im anfänglichen Theorieteil werden kurz die theoretischen Grundlagen der Atom-
struktur von Alkali-Atomen aufgeführt.
Anschließend wird die experimentelle Umsetzung unseres frequenzstabilisierten Dio-
denlasers für Lithium, mit dem eine Stabilität von ungefähr 1 MHz möglich ist,
dargelegt.
Die Grundlagen der Laserkühlung mit einem Zeeman-Abbremser werden erklärt und
für unseren Fall mit Lithium spezifiziert. Des Weiteren wird eine weit verbreitete
Methode zur quantitativen Messung von Atomwolken, die Absorptionsabbildung-
Methode vorgestellt.
Als letztes werden unsere experimentellen Ergebnisse gezeigt, bei der wir die Größe
der gefangenen Atomwolke mit Hilfe der Einstellungen unseres Zeeman-Abbremsers
optimieren. Die Atomzahl der Wolke wird dann sowohl durch das Auffangen der
Fluoreszenz auf einer Photodiode als auch durch die Absorptionsabbildungsmethode
ermittelt, wobei letztere in dieser Arbeit detailliert beschrieben wird.
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1. Introduction

The postulation of quantum mechanics by N. Bohr and W. Heisenberg at the
beginning of the twentieth century changed the understanding of the atomic structure
dramatically. Until then, the classical atom model of Bohr, developed in 1913,
depicted the atom consisting of a nucleus with orbiting electrons at quantized radii.
Though this model could explain emission and absortion spectra, being a classical
description it could not explain the stability of the electrons on their orbits. When
applying quantum mechanics to the hydrogen atom, one got both results, including
the quantisation of the angular momenta which had been only postulated by Bohr
in his model. But in 1922, O. Stern and W. Gerlach had already measured the
deflection of silver atoms in an inhomogeneous magnetic field [1] and found out that
it could not be explained by the angular momentum of the electrons alone. The
explanation was given by S. A. Goudsmit and G. E. Uhlenbeck, introducing the
so-called electron spin, an intrinsic angular momentum attributed to the electrons.
The first mathematical description was given by W. Pauli in 1927 and one year later
P. Dirac could show that the electron spin resulted inevitably when introducing
relativistic quantum mechanics [2, 3]. In atomic spectra, this electron spin expresses
itself as an additional energy splitting of the spectral lines and is known as the Fine
structure.

The invention of the first laser by T. Maiman [4] in the sixties in combination with
new spectroscopy methods, like doppler-free spectroscopy, made it possible to resolve
atomic spectra even with higher precision and an additional splitting of the spectral
lines could be observed. This feature was explained in essence by also attributing a
spin to the nucleus and is known as the Hyperfine structure.
Thus with this knowledge of the atomic structure and the access to narrowband

laser sources, one is able to manipulate the electronic states of an atomic ensemble
or single atoms in a controlled way and can thus prepare for example atomic gases
in specific states.
One research field emerging from these new possibilities are experiments with

ultracold atomic gases. When reducing the temperature of an ultracold atomic
gas, the statistical nature of the particles comes into play: All particles are divided
into two elementary classes, the bosons with integer spin and the fermions with
half-integer spin. Bosons obey the Bose-Einstein statistics and tend to appear in
bunches whereas fermions obey the Fermi-Dirac statistic and can never occupy the
same quantum state, which is known as the Pauli exclusion principle. At high
temperatures, a gas consisting either of bosons or fermions can be described by
the classical Maxwell-Boltzmann distribution in both cases, but beneath a critical
temperature TC , which highly depends on the system, their different statistics come
into play. Already in 1924-25, S. N. Bose [5] and A. Einstein [6] predicted that
bosons undergo a phase transition below TC and that a macroscopic amount of the
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1. Introduction

bosons then occupies the lowest quantum state. This phase transition is known as
Bose-Einstein condensation (BEC) and is for example a requirement for superfluidity
in 4Helium at temperatures below a few Kelvin. Fermions however show a complete
different behaviour. For temperatures beneath the so-called Fermi temperature TF ,
they become degenerate, occupying the lowest quantum states with one fermion
each up to the quantum state with Fermi energy EF 1. A prominent example for
this behaviour are the conduction electrons in solids which are already degenerate at
room temperature.
But to achieve these low temperatures in atomic gases, one first had to develop

appropriate experimental tools to cool and trap atoms. Milestones on this way have
been the invention of laser cooling, which lead to the development of Zeeman slowers
[7] and the subsequent trapping of atoms in optical molasses [8], magneto-optical
traps [9] and further in magnetic traps. The last step towards BEC has finally
been the development of evaporative cooling, which uses the fact that a system’s
temperature is connected to its mean kinetic energy. Hence by removing atoms with
energies above the mean kinetic energy from a sample, the mean kinetic energy and
therefore the temperature decreases after thermalisation.

In 1995, these inventions finally led to the generation of the first BECs in ultracold
atomic gases by E. A. Cornell and C. E. Wieman at Boulder [10] and independently
by W. Ketterle at MIT [11]. The importance of this achievement for quantum physics
is reflected by the fact that all of them were rewarded the Nobel prize already in
2001.

With such condensates, one was for the first time able to directly observe quantum
mechanical behaviour, like matterwave interference [12] or tunneling processes [13]
on a mesoscopic scale.

A further reason for the success of experiments with ultracold atoms is the existence
of the so-called Feshbach resonances which were first observed experimentally in the
group of W. Ketterle [14]. The power of these Feshbach resonances lies in the fact
that one is able to tune the interaction strength of the atoms over a wide range, even
from attractive to repulsive, by applying an external magnetic field. This makes it
possible to investigate a system’s properties for different interaction regimes and
thus ultracold quantum gases provide the opportunity to check theoretical models
in a very clean and controllable environment with many experimentally tunable
parameters like temperature, interaction strength or atom number.

The use of these Feshbach resonances can for example be seen for ultracold Fermi
gases. After the first creation of a degenerate Fermi gas by Deborah Jin at JILA in
1999 [15]2, one has been able to map out experimentally the crossover from the regime
with attractive interactions, the BCS3 side, to the regime with repulsive interactions,
the BEC side using a Feshbach resonance [17]. By ramping the system onto the BEC
side of the Feshbach resonance, one was also able to create weakly bound molecules
composed of two fermions [18] and to achieve BEC of these molecules [19, 20, 21].

1for T > 0 the distribution is smoothened around EF
2for Fermi gases some difficulties occur compared to the case of bosons since evaporative cooling
is less effective due to the Pauli exclusion principle

3in this regime superfluidity can be described by the theory of J. Bardeen, L. N. Cooper and J. R.
Schrieffer [16]
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1. Introduction

Another good example for the power of Feshbach resonances is the mimicing of
other quantum systems, which are not easily accessible to investigation. In our
experiment, we plan to investigate the behaviour of polarons, a quasi-particle known
from solid state physics: when an electron moves through a crystal, it interacts with
the surrounding ions of the crystal lattice due to Coulomb interactions. Thus when
the electron passes, the lattice is distorted and hence lattice excitations, described
by phonons, are induced. When diagonalizing the Hamiltonian of this system, the
polaron, consisting of the electron and the induced phonons, is introduced. Attributed
to this polaron is an effective mass which is larger than the sole electron mass, since
the interaction with the lattice is attractive. But the investigation of polarons in solid
state systems is not simple since the lattice spacings are on the order of Å and thus
high resolution is needed. In addition, the interaction strength of the electron with
the lattice phonons and thus the coupling of the phonon is given by the materials
involved and can not be tuned. This tunability however is the large advantage of
ultracold atoms, since here one can check theoretical models over a wide regime of
coupling strengths, using Feshbach resonances.

In our case we will use a sodium BEC as a background sea in which we immerse a
minority of fermionic lithium atoms. When interacting with the BEC, the fermions
will alter the excitation spectrum, the so-called Bogoliubov modes [22], of the BEC,
which can be mapped onto the phonons in the solid state case. The fermions
correspond to the electrons and thus we can map our system onto the polaron
Hamiltonian. Thus by using Feshbach resonances and alter the interaction strengths
between the fermions and the bosons of the BEC, we will be able to investigate
polarons for different coupling regimes including strong couplings which can not be
observed in solid state physics. Our main goal is to determine the effective mass of
these polarons and thus verify theoretical simulations which were done for example
using a Feynman path-integral method by [23] and using mean-field theory in the
PhD thesis of Jens Appmeier [24].

Outline of the thesis

This thesis reports on our first cooling step for lithium - the trapping of lithium
atoms in a magneto-optical trap. Chapter 2 introduces the basic properties of the
electronic states of alkali atoms and their behaviour in external magnetic fields. The
manipulation of these electronic states is used for the frequency stabilisation of our
master laser, which is explained in detail in chapter 3. This frequency standard is
used to create a laser system for cooling and trapping lithium atoms. The basics
of laser cooling are presented in chapter 4, with a focus on our spin-flip slower. In
addition, the absorption imaging technique, which we use to probe trapped atom
clouds, is explained in detail. At last, in chapter 5, our experimental results are
presented. The first part describes the influence of the slower and oven parameters on
the properties of our MOT and the second part contains atom number calibrations
of our MOT using the absorption imaging technique intoduced in chapter 4.
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2. Atomic Properties of Alkali atoms

This chapter introduces briefly the main features of alkali atoms and motivates why
they are commonly used in atomic physics. As a reminder, the common notation to
indicate the electronic state of an alkali atom is given. In addition, the Hyperfine
structure is introduced since it splits up the Fine structure further and thus affects
the energy spacing between different electronic states. The energy shift of alkali
atoms in an external magnetic field is also shortly discussed. Finally, themF -selection
rule for optical dipole transitions is given and its consequences shortly discussed.

2.1. Alkali atoms

The basic feature of alkali atoms is that they have only one unpaired electron and
thus a total electron spin S = 1/2 in their outer shell. In the atom’s ground state this
electron is in the S-shell, which corresponds to an orbital angular momentum L = 0.
Thus the total electron angular momentum1 adds up to J = 1/2. The ground state
of an alkali atom can hence be written as n2S1/2 in the common notation2 where n
denotes the main quantum number of the atom. The ground state of lithium can
for example be written as 22S1/2. In the first excited state, an alkali atom has its
unpaired electron in the P-shell (L = 1). Thus the orbital angular momentum can
couple to the electron spin either parallel (J = 3/2) or anti-parallel (J = 1/2) [25].
This leads to a splitting of the excited state into n2P3/2 and n2P1/2. In the case of
lithium, the splitting is on the order of 10 GHz (see Figure 2.1). For all alkalis, the
energy splitting between the ground state and these excited states lies in a range
where lasers are available, for example 670.977 nm in lithium between 22S1/2 and
22P3/2. In atomic physics, the transitions n2S1/2 → n2P3/2 are of particular interest
due to reasons which will be explained in chapter 2.4. These transitions are called
the D2-lines whereas the transitions n2S1/2 → n2P1/2 are called the D1-lines.

2.2. Hyperfine Interaction

Until now the atom’s nucleus has been assumed to be point-like, of infinite mass and
without any angular momentum of its own. When one skips these assumptions, two
effects are observable. One effect is that the Fine structure levels are shifted due to
the finite volume of the nucleus and its interaction with the surrounding electrons.
These shifts are known as Isotope shifts, since different isotopes of the same atom

1J results from the spin-orbit coupling of the atom, which leads to an energy splitting ∆E ∝ ~L · ~S
of the electronic states, the so-called Fine structure

2n2S+1[L]J , where [L] = 0, 1, 2 corresponds to the S-, P-, D-shell
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2. Atomic Properties of Alkali atoms

have different masses and a slightly different charge distribution in the nucleus [26].
This difference can be verified experimentally, for example with 85Rb and 87Rb [27].
The second effect is the so-called Hyperfine splitting. This splitting occurs since
the nucleus also has a spin ~I and connected to it a magnetic moment ~µI , which is
much smaller than the Bohr magneton µB. The nuclear spin ~I couples to the total
angular momentum ~J and induces thus the energy shift ∆E ∝ ~J · ~I. In analogy to
the spin-orbit coupling one introduces the total angular momentum ~F = ~I + ~J . It
can therefore take values of

F = |j − I| , |j − I|+ 1, ..., j + I

In our experiment we use the fermionic isotope 6Li , to which we will refer from
now on only as lithium, with nuclear spin I = 1. Thus the ground state splits up
into F = 1/2 and F = 3/2. The corresponding energy splitting is 228.2 MHz and
hence much smaller than the splitting induced by the Fine structure (see Figure 2.1
(left)). This is due to the small magnetic moment of the nucleus µI compared to µB.
In addition one observes that for P3/2 the Hyperfine splitting between the F = 5/2

and the F = 1/2 state is 2π × 4.4 MHz which is smaller than the natural linewidth
Γ = 2π × 5.8724 MHz of Lithium (see Appendix A). Therefore when exciting a free
atom3 from one of the Hyperfine ground states to 2P3/2, in most cases there is more
than one possible excitation obeying the selection rules (see section 2.4). Hence,
without an external magnetic field, the P3/2 state can be considered as one energy
level.

2.3. Zeeman Effect

When applying an external magnetic field ~B4 one introduces the so-called quantization
axis ~ez. The projections of the angular momenta ~S, ~L, ~J, ~I, ~F onto this axis are
quantized with values iz = mi · ~ and magnetic quantum numbers mi = −i,−i +
1, ..., i5. The coupling of the angular momenta to an external magnetic field differs
for different magnetic quantum numbers and leads to an energy splitting of these
substates. This dependence was first observed experimentally by P. Zeeman [28].
The couplings can be described as a perturbation

ĤZeeman = −µB ·B · (gSŜz + gLL̂z + gI Îz)

of the atomic Hamiltonian Ĥ0 where the gi-factors (see Appendix A) connect the
projected averaged magnetic moments 〈~µi〉z with the Bohr magneton µB. As long as
the coupling energy Ecouple between ~J and ~B is much smaller than the energy of the
Hyperfine coupling EHFS we are in the Zeeman regime (see Figure 2.1 (right)). In
this regime, the coupling between ~J and ~I is sustained and the energy shift can be
calculated using first order perturbation theory to be [29, 26]

∆EZeeman ≈ gF · µB ·mF ·B. (2.1)
3free means that no external magnetic field is applied
4without loss of generality we always assume ~B = B · ~ez
5i is a placeholder for the different angular momenta
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2. Atomic Properties of Alkali atoms
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Figure 2.1.: Hyperfinestructure of 6Li (left) and the energy splittings due to the
Zeeman effect for the Hyperfine ground states of 6Li (right).

For Ecouple >> EHFS, the Paschen-Back regime (see Figure 2.1 for the case of
6Li ), the coupling between ~J and ~I is no longer sustained and F is no longer a
good quantum number6. In analogy to equation 2.1 the energy shifts can then be
calculated to be [30]

∆EPaschen−Back ≈ µB (gJ ·mJ + gI ·mI)B, (2.2)

where the second term plays only a role for large magnetic fields, since gI << gJ
(see Appendix A).

As one can see in Figure 2.1, the Hyperfine coupling is in most cases already
canceled at quite low magnetic fields which can easily be produced in the laboratory.
This is in contrast to the Fine structure where ~J is only decoupled for magnetic
fields of some Tesla. For lithium, we are in most cases in the transition regime
between the Zeeman and the Paschen-Back regime. The energy shift has then to
be calculated numerically using the Breit-Rabi formula [29, 26]. In Figure 2.1 a
numerical calculation for the ground state 2S1/2 is depicted (taken from [30]).

6good quantum numbers give a set of eigenfunctions in which the Hamiltonian can be diagonalized
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2. Atomic Properties of Alkali atoms

2.4. Light polarisation and selection rules

In atomic physics the circular polarisation of a laser beam is in most cases not
characterized with respect to its wavevector ~k7, but to the direction of an external
magnetic field ~B. A beam propagating along ~B has σ+-polarisation if its chirality
is right-handed and σ−-polarisation if it is left-handed (see Figure 2.2). A linearly
polarised beam has π-polarisation and can also result as a superposition of a σ+-
and a σ−-beam.

B

k k k

σ+ - polarisation σ- - polarisation π - polarisation

Figure 2.2.: The different possible polarisations of a laser beam relative to a magnetic
field.

In optical dipole transitions, the magnetic quantum numbers m can only change
by ∆mF = 0,±1 in the Zeeman regime or ∆mJ = 0,±1 and ∆mI = 0 in the
Paschen-Back regime [31]. The induced transition depends on the polarisation of the
photon involved. In an absorption process, for σ+-polarisation we get ∆m = +1, for
σ−-polarisation ∆m = −1 and for π-polarisation ∆m = 0. In addition, ∆F = 0,±1
must be fullfilled whereas F = 0→ F ′ = 0 is forbidden. The same rule applies for J
in the Paschen-Back regime.
Considering these selection rules, it is suggestive to use the D2-line for laser

cooling. In this case we can excite the so-called ’fully stretched states’, where all
the angular momenta are parallel ⇒ |mF | = F = j + I = l + s + I. When for
example irradiating σ+-light without an external magnetic field, atoms from the
ground state |F = 3/2,mF = 3/2〉 can only be excited to |F ′ = 5/2,mF ′ = 5/2〉. Due
to the transition rules, the atoms can then only decay back into the ground state
|F = 3/2,mF = 3/2〉 and and one has no losses to other states. These transitions are
called ’closed transitions’ and are hence widely used in laser cooling as can be seen
in chapter 4.

7
∣∣∣~k∣∣∣ = 2π

λ
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3. The Lithium Master Laser

In order to be able to cool and trap lithium atoms (see chapter 4), we need a stable
laser source with a narrow linewidth at about 670.977 nm to excite the D2-line of
lithium. We therefore use a grating-stabilised diode laser because of its dynamic
tunability and reliability.

This chapter explains the principles of a grating stabilised laser diode. Our diode
mount is shown and a scheme to adjust the wavelength within an accuracy of 0.7 GHz
with the help of a wavemeter1 is presented. In addition, the principle of Doppler-free
spectroscopy, including our used setup, is described. Further, the derivation of our
error signal from the spectroscopy signal, and how it is used to stabilise the laser, is
explained. At last a short overview is given how the master laser is used to lock a
second laser, the slave laser, with an offset onto the master laser and how the beams
for cooling and trapping are prepared.

3.1. Grating-stabilized diode laser

Laser diodes are nowadays available for many wavelengths and are thus widely used
in atomic physics. In principle, they consist of a n- and p-type semiconductor with
an active region in between. The facets of the diode have a high reflectivity and
thereby form a cavity. When sending a current through the diode, it begins laser
action above a certain threshold current Ith. The emitted wavelength depends mainly
on the used semiconductor material but is also very sensitive to the current density
jLD and the temperature inside the diode. However, a free running laser diode has
two major disadvantages, namely its large linewidth and the poor tunability. But
since a laser diode is highly sensitive to optical feedback, these problems can be
solved with the help of an external resonator. We use the Littrow configuration
which is sketched in Figure 3.1 and uses a grating to reflect the laser beam. Optical
feedback is then achieved when the first order is reflected back to the diode and the
zero order is outcoupled from the system. Hence the external resonator is formed by
the grating and the rear facet of the laser diode [32].

The wavelength λ of the outcoupled beam can then be tuned by varying the angle
Θ of the grating. This comes from the fact that at a given Θ, the incoming and
reflected beam are superimposed only for λ = 2 sin Θ

m
where m is the number of lines

per unit length of the grating. With this technique a linewidth less than 100 kHz
can be achieved.

1A tool to measure the wavelength of a beam. We use the Coherent Wavemaster.
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3. The Lithium Master Laser

θ

peltier element

laser diode 
with collimating lens

holographic 
grating

piezoelectric
crystal

control platine

Figure 3.1.: Sketch of the Littrow configuration (left) and a picture of our current
laser diode mount (right)

3.1.1. Laser diode mount

In Figure 3.1, a picture of our current laser diode mount is shown. We use the
Toptica #LD-0675-0030-1 laser diode with an output power of about 30 mW at
a center frequency of 675 nm. Since fluctuations in the current and temperature
directly manifest themselves in the emitted frequency, these fluctuations have to be
very small. Hence, the current is controlled with the Thorlabs LDC 201 C and the
temperature is regulated with a peltier element which is controlled by the Tektronix
TED 200. The used diode proves to be very stable and shows no hysteresis effects or
drifts when turning it on and off and thus allows for day to day reproducability. The
laser diode is put into a lens tube with a collimator lens to compensate the beam
divergence of the laser diode. The lens tube is then build into a block of ’Neusilber’
which in turn is put onto a peltier element. The grating is attached to a lever arm
which can be either turned coarsely with a fine thread screw or more precisely with
a high-voltage piezoelectric crystal. The platine in front of the laser diode contains
the connector pins for the laser diode and is connected to the LDC by a 9-pin D-sub
jack. In addition, a Bias-T has been soldered onto the platine, which enables us
to modulate the laser current with radio frequencies2. The peltier element is also
connected to the TED with a 9-pin D-sub jack and the piezoelectric crystal has a
BNC input.

3.1.2. Tuning the diode lasers wavelength

The wavelength emitted by our grating-stabilized diode laser is determined by the
overlap of the different gain profiles. In Figure 3.2, these gain profiles and the
resulting mode structure are depicted. The center frequency of the grating profile
depends on the grating angle Θ and its width is determined by the grating quality
ν

∆ν
= N where N is the number of lines which are illuminated by the beam. In

our experiment we use a grating with m = 1800 lines
mm

and our beam width B is

2this is a relict from our first design
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~ 6 GHz

~ 70 GHz

Medium gain width
~ 10 THz

Grating profile
width ~ 50 GHz

Internal mode
profile width
~ 25 GHz

External mode
profile

emitted frequency frequency

Figure 3.2.: The overlap of the different gain profiles determine the emitted frequency.
The spacings between the modes are measured with a wavemeter.

approximately 5 mm. Therefore N = B · m and at our desired wavelength of
670.977 nm we obtain ∆ν = ν

N
= c

B m λ
≈ 50 GHz. By roughly changing the angle of

the grating one can therefore jump between different internal modes and the mode
spacing is measured using a wavemeter to be approximately 70 GHz.
As mentioned at the beginning, the diode laser can be seen as a cavity with an

internal mode profile which depends on the current density and the temperature
inside the diode. When altering the injected current, the refraction index inside the
diode changes and the internal modes are shifted. Thus by altering the laser current
one is able to jump between the external modes.
The external resonator, defined by the grating and the rear facet of the diode,

has a length Lext ≈ 2.5 cm and thus a mode spacing of about FSR = c
2 Lext

= 6 GHz.
This is also verified experimentally by altering the laser current and measure the
resulting mode jumps with a wavemeter.
To obtain our desired wavelength within an accuracy of ∆λ = 0.001 nm or corre-

sponding 0.7 GHz, we use the following scheme:

1. Adjust the grating angle: alters λ in steps of about ∆λ = 0.1 nm or accordingly
∆ν = 66.6 GHz

2. Adjust the laser current ILD: alters λ in steps of about ∆λ = 0.01 nm or
accordingly ∆ν = 6.6 GHz

3. Regulate the diode temperature: alters λ on the order of ∆λ = 0.001 nm or
accordingly ∆ν = 0.7 GHz
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3. The Lithium Master Laser

But this is only a rough starting point to find our spectroscopy signal (see
section 3.2). With the help of a piezo crystal which alters the angle of the
grating and thus also the length of the external resonator, we can then scan our
wavelength continuously over a range of 4− 5 GHz without any mode jumps by
fine adjusting the grating. This scan range could be enlarged with the help of a
Feed Forward. A Feed Forward simply scans the current simultaneously to the
grating and thereby shifts the internal modes at the same rate as the external
modes. Thus mode jumps are prevented and the scan range is improved. The
problem however is to find the right proportionality between scanning the
grating and the current. Since the spectrum we want to observe has a width
smaller than 0.5 GHz, we operate our diode laser without a Feed Forward.

3.2. Doppler-free saturation spectroscopy of lithium

In order to get a stable laser system, we need a frequency standard on which we can
lock our laser. A natural way is to choose an atomic transition of the used species.
Since lithium has a low vapour pressure compared to other alkalis we have to build
our own spectroscopy cell which we can heat up to temperatures of about 400 ◦C [33].
This is in contrast to e.g. rubidium where one can just buy a simple spectroscopy
cell and do not have to put any effort into it. In order to avoid coating of the glass
windows with lithium, the buffer gas argon has been inserted into the spectroscopy
cell to decrease the mean free path of the lithium atoms. For temperatures above
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Figure 3.3.: Setup for doppler-free saturation spectroscopy of 6Li.

some kelvin, the atomic transisitons are already strongly broadened by the Doppler
effect [25] on the order of GHz and thus we have to use doppler-free saturation
spectroscopy to resolve the Hyperfine structure of lithium.

In this section, an intuitive picture of doppler-free saturation spectroscopy is given
for the case of lithium. For a more general description one can refer to [34]. A
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3. The Lithium Master Laser

schematic of our used spectroscopy setup can be seen in Figure 3.3. In essence,
one splits the laser beam into two beams, probe and pump, by a polarizing beam
splitter (PBS). The two counterpropagating beams are then superimposed inside
the spectroscopy cell and therefore an atom with the velocitiy v sees an opposite
doppler shift for the two beams3. At last, the signal of the transmitted probe beam
is captured on a photodiode (Thorlabs DET36A) and observed with a scope. To
check wether our laser operates in single mode, we also installed a Fabry-Perot
interferometer (FPI) in confocal mode [35].

Without an external magnetic field, the D2-line is in essence a three level system
since the Hyperfine states of the excited state 22P3/2 are not resolved (see section
2.2). For simplicity we will denote the excited state 22P3/2 as |e〉 and the ground
states |22S1/2, F = 3/2〉, |22S1/2, F = 1/2〉 as |g1〉 and |g2〉, respectively. The transition
frequencies from the ground states to the excited state are denoted with ω1 and ω2.

To understand the shape of the transmitted signal one has to differentiate between
different cases which are depicted in Figure 3.4.
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Figure 3.4.: Three possible absorption schemes in doppler-free saturation spec-
troscopy. The blue rippled lines indicate the pumping processes by
spontaneous emission.

(a) When exciting the atom with an arbitrary frequency ω, there is for example
one velocity class v for which the probe beam (ωProbe = ω−k ·v) is in resonance
with the atomic transition |g1〉 → |e〉. But the pump beam (ωPump = ω+k ·v) is
then out of resonance to this transition and hence the probe beam is unaffected
by it. In this case one gets a normal absorption of the probe beam with a
broad Doppler profile on the order of some GHz.

(b) For ω = ω1, the velocity class v = 0 is resonant with |g1〉 → |e〉 for both
probe and pump beam. Atoms excited by the pump beam can then decay by
spontaneous emission into the ’dark’ state |g2〉 which is not resonant with either

3in the following considerations, v is always assumed to be parallel to the beams
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3. The Lithium Master Laser

of the beams for v = 0. Thus the absorption of the probe beam is attenuated
since there are less atoms in |g1〉 with v = 0, due to this pumping process. The
transmission signal is thus enhanced and has a sharp peak with a width at
the order of the natural linewidth4. Of course, similar arguments also hold for
ω = ω2.

(c) For ω = ω1+ω2

2
one gets an additional feature. In this case, the pump beam is for

example resonant with the transiiton |g2〉 → |e〉 for the velocity class v = ω2−ω1

2 k
.

Thus the pump beam can ’shovel’ atoms from |g2〉 to |g1〉. In |g1〉, these atoms
are now resonant with the probe beam and are also excited. The absortion is
therefore enhanced and one observes a minimum in the transmission signal,
the so-called crossover peak. Of course, similar arguments also hold for the
velocity class v = −ω2−ω1

2 k
.

In Figure 3.5, a measurement of our spectroscopy signal can be seen. The Hyperfine
structure is resolved and we can observe the three peaks for the different frequencies
mentioned above. The relative strength of these transitions can be understood by
the different degeneracy of the Hyperfine ground states, whereas |g1〉 has two and
|g2〉 has four magnetic substates. Thus the peak caused by |g1〉 → |e〉 is twice as
large as the one caused by |g2〉 → |e〉. For the crossover peak the substates of both
ground states are involved, thus it is thrice as large as the peak |g2〉 → |e〉. The
energy splitting between the ground states is 228.2 MHz and thus the width of these
peaks can be estimated to be roughly 30 MHz, approximately five times the natural
linewidth of lithium. This broadening is mainly caused by collisions with the buffer
gas argon. One hence has to find a trade-off between small, narrow peaks and
avoiding the coating of the glass windows of our spectroscopy cell.
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Figure 3.5.: The spectroscopy signal for lithium: 1 denotes the |g2〉 → |e〉transition,
3 the |g1〉 → |e〉 transition and 2 the crossover

4it is also broadend due to collisions with the buffer gas argon and saturation broadening [34]
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3. The Lithium Master Laser

3.3. Frequency stabilisation of the master laser

As a frequency standard for our master laser, we naturally choose the crossover peak
since it is the most distinctive feature in the spectrum. To lock the laser, we have to
give a feedback to the piezoelectric crystal. This feedback must contain information
on which side of the crossover the current frequency is. The spectroscopy signal
itself is hence not suited to this task since it has the same sign on both sides of
the crossover peak. But the derivative of the signal fullfils this necessary condition
and will be used to lock the laser. In the following it will be explained how one can
produce the error signal with electronics and how we finally lock our master laser
onto the crossover peak.

3.3.1. Producing the error signal

We use frequency modulation (FM) of our laser to produce the error signal. This can
be done by modulating the laser current5, which results in a FM with amplitude ∆ω
and modulation frequency ωLO. For ∆ω << Γ, the modulation can be intuitively

Γ

∆ω
 c

os
(ω

LO
.  t

)

ω0

ω0

spectroscopy signal error signal

Lock-In

Amplifier

Figure 3.6.: Generation of the error signal by frequency modulation of the laser.

understood as wiggeling the frequency around a center frequency ω and thus scanning
the vicinity of the lineshape f(ω) which is depicted in Figure 3.6. Since the amplitude
is small, the deviation caused by the wiggeling can be expanded in a Taylor series of
first order and thus will be proportional to its derivative

f(ω + ∆ω cos (ωLO · t)) ≈ f(ω) + f ′(ω)∆ω cos (ωLO · t). (3.1)

The term proportional to the derivative can now be extracted from the signal
using a lock-in amplifier (see Figure 3.6). A lock-in amplifier is essentialy a very
narrow bandpass with a tunable frequency which also provides a gain. Thus one is
able to extract even very small signals overlaid with noise.

5in our setup this is done with a Voltcraft 7207 function generator which is connected to the
Modulation Input of the Laser Diode Controller (see Figure 3.8)
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3. The Lithium Master Laser

This filtering is done by first mixing the input signal finp coming from the pho-
todiode with a reference frequency, in our case cos (ωLO · t)6, and then sending this
signal through a low pass filter with cut-off frequency ωc. The low pass can be
mathematically described as the time integral

1

τ

∫ τ

0

dt cos (ωLO · t) · finp (3.2)

with time constant τ = 1
ωc
. When inserting the Taylor expansion from (3.1) into

(3.2), we obtain

1

τ

∫ τ

0

dt
[
cos 2(ωLO · t)f(ω) + cos (ωLO · t)∆ωf ′(ω)

]
. (3.3)

For ωLO >> ωc, the term in (3.3) oscillating with cos (ωLO · t) will vanish after the
integration and only the term proportional to cos 2(ωLO · t) will survive. Thus the
output signal will be proportional to the derivative f ′(ω)

fout ∝ ∆ω · f ′(ω). (3.4)

The choice of τ will also determine how much noise is filtered. A large τ will on
the one hand filter more noise but on the other hand limit the reaction time of the
lock-in to changes in the signal. Thus we have to find a trade-off between low noise
and still seeing the derivative of the spectroscopy signal. A typical error signal is
shown in Figure 3.7. One clearly sees the derivatives of the three peaks with different
amplitudes and a different sign of the crossover slope.
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Figure 3.7.: Typical error signal for our setup. The width of the crossover is approx-
imately 18 MHz.

6in reality there is also a phase difference Φ between the input signal and the reference signal but
it can be compensated with a phase shifter at the lock-in amplifier. Thus we omit Φ in the
following calculations for the sake of simplicity.
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3.3.2. Locking scheme

Our locking scheme is depicted in Figure 3.8. The output of a Loop Amplifier is
given to the piezoelectric crystal on the diode laser mount. The Loop Amplifier is
fed by an an external sweep signal and can control both the offset and the amplitude
of the signal which corresponds to the scan range of the laser frequency. Thus, by
simultaneously decreasing the scan range and adjusting the offset, one can zoom the
scan of the laser frequency into the crossover region. In addition, the Loop Amplifier
gets the error signal from the lock-in amplifier as an input. This input can be given
as an integration and/or proportional feedback7 to the output and hence to the
piezoelectric crystal. Thus after zooming into the crossover peak and adjusting the
scan range to zero, the laser can be locked by turning on the feedback. When locked,
we measure a peak-to-peak noise of about 12 % of the height of the crossover slope.
Our achievable lock stability is therefore better than 1.2 MHz.

Scope
Reference
In

Mod In

@20 Hz

@20 kHz

Loop Amplifier

In Monitor

I, P
Sweep In

Out

ext. Sweep
Voltcraft 7207

Laser Diode
with piezo Spectroscopy

Photodiode
Thorlabs DET 36 A

Lock - In
FEMTO LIA-BV-150-H

Modulation ωLO
Voltcraft 7207

Figure 3.8.: Schematics of the locking scheme

3.4. Preparation of the laser beams for cooling and
trapping

Since the master laser has only an output power of some mW, we need a second
laser, the slave laser, with higher power which can be locked onto the master laser.
Therefore we use a Tapered Amplifier system (TA) from Toptica with an output
power of about 400 mW which is beat locked onto the master laser with an adjustable
detuning [36]. The output beam from the TA is then divided into several beams for
cooling and trapping with polarizing beam splitters and these individual beams are
shifted in frequency with the help of acusto-optic modulators (AOM’s) as described

7integration Feedback is essential since it can nullify the deviation. The proportional feedback can
be turned on in addition for a faster regulation.
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in detail in [36]. At the end, the individual beams are guided from the optical table
to the experiment with glass fibers .
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4. Experimental Techniques to Cool
and Image Atoms

In our experiment, the first step to cool lithium is to trap it in a magneto-optical
trap (MOT) [9, 31]. In order to achieve this, we first have to prepare an atomic
beam of lithium and cool the atoms inside it from an initial maximal velocity of
about vmax ≈ 700 m

s
to an end velocity of about vend ≈ 30 m

s
. This has to be done,

since otherwise the atoms in the beam would be too fast for the MOT to trap them.
This chapter explains the experimental steps needed to obtain an atomic beam of

cool, trappable atoms from a reservoir of solid lithium. In addition, the absorption
imaging technique as an experimental tool to probe atom clouds is introduced.

4.1. Preparing the atomic beam

For laser cooling which will be introduced in section 4.2, we need a gas in an ultra-
high vacuum because otherwise the atoms would collide with background gas and
thus heat up. But to obtain a decent amount of gaseous lithium, we first have to
heat up a lithium reservoir to temperatures on the order of 550 ◦C. For this purpose
we use a two-species oven (Figure 5.1 (a)) [37] where lithium and sodium can be
heated independently of each other.

two species oven

trapped
atom
cloud

glass cell

differential
pumping stage

big slower

small slower

Figure 4.1.: Schematic of our laser cooling setup (modified from [38])

The heating temperature for sodium is smaller (≈ 350 ◦C) compared to lithium due
to the low vapour pressure of lithium. After mixing both species inside the mixing
chamber, the atoms pass the oven nozzle and are collimated furthermore with the
help of a differential pumping stage. At the end we have a collimated atomic beam,
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entering our slower coils and travelling towards the glass cell where our experiments
are performed. A schematic of the whole setup can be seen in Figure 4.1.

4.2. Basics of laser cooling

The main idea behind laser cooling of alkali atoms is to decelerate them with
momentum transfer of absorbed photons. When choosing the right polarisation and
frequency of the laser beam, one can excite a closed transition (see section 2.4), and
the atom can be regarded as a two level atom. An atom with momentum ~patom,
irradiated with a counterpropagating laser beam with wavevector ~klaser (Figure 4.2
(a)), is excited, absorbing a photon and thus the momentum ~ · klaser (Figure 4.2
(b)). Since the photon is counterpropagating, the atom is slowed down. To absorb a
further photon, the atom has to decay into its ground state. This can happen either
by spontaneous or induced emission. When the atom decays by induced emission, the
resulting momentum change of the atom is zero since the photon is emitted into the
mode of the laser beam. But when decaying by spontaneous emission, the photon is
emitted isotropically and thus the momentum of the atom is changed by ∆~p (Figure
4.2 (c)). But since the emission is isotropic, the resulting force on the atom due to

patom

patomklaser

klaser

- klaser
∆p

(a) (b) (c)

| e >

| g >

| e > | e >

| g > | g >

patom

Figure 4.2.: (a): an atom is irradiated by a counterpropagating laser beam
(b): absorption of a photon
(c): spontaneous emission of a photon

spontaneous emission vanishes when averaging over many scattering processes and
the atom only experiences a force Fscatter opposite to its initial momentum. This
scattering force can be calculated as [31]

Fscatter =
dpatom

dt
= ~ · klaser ·

Γ

2

s0

1 + s0 + (2 δ/Γ)2 , (4.1)

where s0 is the saturation of the transition, δ = ωlaser − ω0 the overall detuning of
the irradiated beam and Γ the natural linewidth of lithium which determines the
maximal scattering rate. The saturation parameter s0 denotes the intensity I of the
laser beam normalised by the atom’s saturation intensity IS (see Appendix A).
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With equation (4.1) it is apparent that there is a maximal scattering force Fscatter,max

for infinite saturation s0. For lithium we thus obtain a maximal deceleration of

amax =
Fscatter,max

mLi
= 1.82× 106 m

s2
≈ 2 · 105 g, (4.2)

where g is the gravitational acceleration on earth. Although the recoil momentum
prec of a single photon for a lithium atom moving with v = 700 m

s
is only about

0.014 % · patom, the deceleration is still orders of magnitude larger than g, since the
scattering rate is on the order of 107 scattering porcesses

s
for a resonant beam with s0 = 1.

Hence, to decelerate such an atom to absolute halt, about 7000 scattering processes
are needed which corresponds to a deceleration time tdec = 0.76 ms.
However, until now we did not take a main feature of laser cooling, the Doppler

effect, into account. An atom moving relative to a laser beam sees the frequency of
the laser detuned [25, 31] with detuning

δD = −~klaser · ~vatom = −klaser · vatom · cosφ,

where φ = ∠
(
~vatom, ~klaser

)
. In our case of a counterpropagating beam the angle is

φ = 180◦ and thus
δD = klaser · vatom.

Hence, even when the atom is initially in resonance with the laser beam, it will drop
out of resonance after a few collisions due to the detuning caused by the Doppler
effect. To compensate this effect, several schemes have been developed over the past
decades like e.g. [39, 40, 41, 42, 43]. In our experiment we use a so-called Zeeman
slower which has been the first method to be experimentally realised [7].
An additional feature we take into account for our experimental implementation

is the divergence of the atomic beam entering the Zeeman Slower. To achieve that
the shape of the slower beam overlaps with the atomic beamand we are thus able to
scatter all atoms, we first enlarge our slower beam with a telescope and then focus it
using a lens with focal length f = 3 m onto the entrance points of the Zeeman slower.
Furthermore this compensates another effect: when approaching the entrance point
of the Zeeman slower, the slower beam is absorbed and the saturation s0 drops. The
focusing of the slower beam hence increases the intensity and therefore s0 in the
vicinity of the entrance point.

4.3. Zeeman Slower: Resonance condition and ideal
magnetic field

To prevent the atoms from dropping out of resonance during the slowing process,
we make use of the Zeeman effect introduced in section 2.3. By applying a spatially
varying magnetic field we can compensate the detuning of the laser frequency due
to the Doppler effect by shifting the resonance frequency of the atomic transition.
This compensation has to be fullfilled during the whole slowing process and can be
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formally described with the resonance condition

δ = δ0 + δD(v)− δZeeman(z)

= δ0 + klaser · vatom −
µB
~
{mJ,egJ,e −mJ,ggJ,g} ·B(z) (4.3)

= 0

where the indices e and g denote the excited and ground state, respectively. δ is
the overall detuning which determines the scattering force (4.1), and δ0 denotes the
detuning of the slower beam with respect to the transition at zero magnetic field.
The different sign of δ0 and δD compared to δZeeman comes from the fact that the
former two change the laser frequency whereas the latter one alters the resonance
frequency. For simplicity, the resonance condition (4.4) is only specified for the case
when both the ground state and the excited state are in the Paschen-Back regime.
Since our slower operates at magnetic fields on the order of 100 G, this is fullfilled for
lithium during the whole slowing process except over a small distance with B ≈ 0,
which is discussed in section 4.4.1

In order to be able to derive an equation for our magnetic field from (4.4), we
have to know the equation of motion of an atom. Thus we design our slower for a
constant deceleration a during the whole slowing process with a value

a = ζ · amax,

where the dimensionless factor 0 ≤ ζ ≤ 1 denotes the so-called safety factor. It takes
into account for example the finite saturation of the slower beam or imperfections in
the magnetic field. The minimal length Ls of the slower is thus in essence determined
by ζ and can be calculated to be

Ls =
1

2ζ
· v

2
max − v2

end

amax
,

where vmax is the maximal velocity of an atom the slower is still able to cool and vend

is the end velocity of the atoms leaving the slower. When inserting the corresponding
v(z) into equation (4.4) and solving for B(z), one obtains

B(z) = B0 ·
√

1− z

Ls
+Bb (4.4)

B0 =
~klaser · vmax

µB · {mJ,egJ,e −mJ,ggJ,g}
(4.5)

Bb =
~δ0

µB · {mJ,egJ,e −mJ,ggJ,g}
(4.6)

A common choice is for example the decreasing-field slower with δ0 = 0 which is
depicted in Figure 4.3 (a). The disadvantage of this configuration however is, that
the slower beam is in resonance with the trapped atoms in the MOT and thus
executes a light pressure onto them or heat up the atoms. Another slower type is
the increasing-field slower, depicted in Figure 4.3 (b), with Bb = −B0. In this case,
one has a large detuning of the slower beam but also a large magnetic field at the
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end of the slower. Since the experimental region is close to the slower end and the
magnetic fields can not drop to zero instantaneously, our slower field would therefore
disturb the magnetic field of the MOT. Thus in our experiment we use neither of
these types but a combination of these two, the so-called spin-flip slower.

(b)
B(z)

(a) 
B(z)

B0

Ls Ls

Bb

z z0 0

Figure 4.3.: Characteristics of the magnetic field for a decreasing field slower (a) and
an increasing field slower (b)

4.4. Spin-Flip Slower

The spin-flip slower is a trade-off between a large detuning of the slower beam on the
one hand and a low magnetic field near the trapping region on the other hand. The
form of the experimentally realised field can be seen in Figure 4.4. Its characterisitic
feature is the change of sign in the magnetic field.
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Figure 4.4.: Numerically calculated magnetic field for our spin-flip slower (modified
from [38])

This feature leads to some experimental difficulties which are explained in 4.4.1.
Techniqually, an increasing magnetic field of the form (4.5) can be realised by a coil
with spatially varying winding numbers. Since we have a decreasing magnetic field
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for B > 0 and an increasing magnetic field for B < 0, we use two such coils operated
with opposite currents.

A schematic of the experimental setup can be seen in Figure 4.1. Atoms leaving
the oven, enter the big slower coil which produces the decreasing field. Subesequently
they enter the small slower coil and are cooled down to an end velocity of about
30 m

s
. At the end of the small slower, they drop out of resonance and enter the

experimental region where they can be finally trapped. Further theoretical and
design considerations for our spin-flip slower can be found in the diploma thesis of
Jan Krieger [38]. Note that our slower has been optimised for sodium since it has a
larger mass and is thus less effectively cooled (see equation (4.2)).

4.4.1. Cooling processes for lithium

The magnetic field B(z) is almost over the complete length of the slower large enough
so that one is in the Paschen-Back regime both for the ground and the excited
states. In this case, the energy levels of the magnetic substates are not degenerate
anymore and one can adress the excited states of the atoms selectively (see Figure 4.5).
The slower beam is chosen to have σ+-polarisation and a detuning of δ0 = −2π ×
300 MHz. For B > 0, the cooling transition is then |22S1/2,mJ = 1/2,mI = 1〉 →
|22P3/2,mJ = 3/2,mI = 1〉. Due to the selection rules introduced in section 2.4, this
is a closed transition and one has no losses to other states. For B < 0, the
atoms see the the slower beam with σ−-polarisation. The closed transition is now
|22S1/2,mJ = −1/2,mI = −1〉 → |22P3/2,mJ = −3/2,mI = −1〉 and one therefore has
to pump the atoms from the mF = 3/2 substate into the mF = −3/2 substate before
they enter the small slower. This is done by implementing a distance with small
negative magnetic field between the two coils. Because the atoms are then in the
Zeeman regime, they are all pumped into mF = −3/2, provided that the time the
atoms spent inside this low field region is long enough. To ensure this, a numerical
simulation of this pumping process for the case of sodium has been executed [38].
Another thing we have to take into account for B ≈ 0 is that the quantization

axis is not very pronounced. Thus the atoms see both σ+- and σ−-light. In addition,
the magnetic substates are highly degenerate and the level spacing of the excited
Hyperfine states is smaller than the natural linwedith Γ. Hence, due to selection
rules, atoms can also be excited into the F = 3/2, 1/2 states from where they can
decay into the lower Hyperfine ground state in which they are lost for further cooling.
Thus a second beam, the Repumper, has to be applied which pumps the atoms back
into the cooling cycle. As depicted in Figure 4.5, the Repumper, being superimposed
with the slower beam, is in resonance with F = 1/2→ F ′ = 3/2.

4.4.2. Transversal widening of the atomic beam

When the atoms arrive at the end of the small slower, the magnetic field has a
maximum and the atoms therefore drop out of resonance, having an end velocity
vend ≈ 30 m

s
. They subsequently enter the glass cell in which we trap them with

our MOT. Until now, we considered only the movement of the atoms in z-direction.
But the transversal velocity distribution of the atoms will also widen up during
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Figure 4.5.: The relevant transitions for the cooling scheme of lithium. The energy
splitting in the Paschen-Back regime is only qualitatively depicted.

the slowing process. This is caused by spontaneous emission since although the
averaged force on the atoms by spontaneous emission is zero, the movement of the
atoms due to the recoil momenta of emitted photons can be seen as a random walk.
The rms-velocity of the atoms in transversal direction depends on the number of
scattering processes N and can be calculated to be [44]

vrms
⊥ =

~ · klaser

matom

√
N

3
. (4.7)

Inside the Zeeman slower, the longitudinal velocity vz is large compared to vrms
⊥

which takes at the end average values on the order of 4 m
s
. Thus the divergence of

the atomic beam due to spontaneous emission is negligible inside the slower. But it
plays a crucial role for the loading rate of the MOT. At the end of the slower the
divergence Θ of the beam is determined by the ratio

Θ =
2 · vrms

⊥
vend

, (4.8)

which is depicted in Figure 4.6.
Since vrms

⊥ depends on the number of scattering processes during the slowing
process, the initial velocity vi of the atoms will determine their divergence. For
vi = vmax ≈ 700 m

s
we have for example about 7000 collisions during the cooling

process and thus a divergence of Θ = 18 ◦ which means that the cooled atoms widen
up by 3 mm after a 1 cm flight distance. Thus when the end velocity of the atoms
becomes too small, many of them will not reach the trapping radius of the MOT
due to their large divergence (see Figure 4.6). Hence we need a trade-off between a
small divergence and a small end velocity which still enables us to effectively trap the
atoms in the MOT. The dependency of the loading rate of the MOT on the atoms
end velocity is investigated and discussed further in section 5.1.4.
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Figure 4.6.: Divergence of the atomic beam after the small slower.

4.5. Absorption measurement method

To be able to quantify important characteristics of trapped atom clouds, like for
example the total atom number or density distributions, several techniques have been
developed over the past decades. For example, one can capture the fluorescence of
the atom cloud onto a photodiode and gain information about the total atom number
from the signal’s strength. Another commonly used technique is the absorption
imaging method which can give many insights into the characteristics of the cloud
but has the disadvantage that it destroys the cloud.

The main idea of absorption imaging is to probe the trapped atom cloud with a laser
pulse. When capturing the transmitted pulse on a CCD camera, the column density
ñ =

∫∞
−∞ dz · n(~r) of the atom cloud can be infered by taking several pictures with

and without atoms. From the column density, one can then infer many interesting
properties like for example the total atom number Natom, the temperature Tcloud or
the phase space density of the cloud [45].
A schematic of our experimental implementation is depicted in Figure 4.7. The

imaging light is taken from the TA and can be switched on and off with an AOM.
When illuminating the atom cloud with the beam, the shadow cast by the atoms in
the plane of the cloud is imaged by a lens onto a CCD camera with magnification
M = 0.397. In general, the absorption of a beam with intensity Iz(x, y) travelling
in z-direction through a cloud with density n(~r) and scattering cross section σ(~r) is
given by the differential equation [31]

dIz(x, y)

dz
= −σ(~r) · n(~r) · Iz(x, y), (4.9)

where (x, y) denotes the plane of the cloud which is imaged onto the camera. The
solution of this differential equation can be quite complicated, since the scattering
cross section is dependent on the saturation s0 of the pulse which itself has a spatial
dependence due to the gaussian shape of the beam and also decreases when the pulse
pass the cloud due to absorption. But in the specific case when the intensity of the
laser pulse I0(x, y) is much smaller than the saturation intensity IS, which is the
case in our setup, we end up with a constant scattering cross section σ0 and equation
(4.9) simplifies to the Beer equation [46] with the solution

Iabsorption(x, y) = I0(x, y) · e−σ0·ñ(x,y), (4.10)
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Figure 4.7.: Setup for absorption imaging. The black rhombus indicates the casted
shadow of the atom cloud which is imaged onto the CCD camera. The
geometric properties are given for our used setup.

where Iabsorption(x, y) is the intensity of the beam after passing the atom cloud. For
s0 � 1 the scattering cross section σ0 for a two level atom at resonance is given by
[31]

σ0 =
~ω0

2IS
=

3λ2

2π
. (4.11)

For lithium we have to take into account that an excited atom only decays with a
probability of 2/3 into the upper Hyperfine ground state since at B = 0 the excited
Hyperfine states are not resolved. Thus only two out of three scattered photons are
due to absorption of the probe pulse. The scattering cross section for lithium hence
modifies to [47]

σ0,Li =
λ2

π
.

The total atom number can then be obtained from the column density by

Natom =

∫ ∫ ∞
−∞

dx dy ñ(x, y) (4.12)

= − 1

σ0,Li
·
∫ ∫ ∞

−∞
dx dy ln

(
Iabsorption(x, y)

I0(x, y)

)
. (4.13)

In the experiment, we obtain I0(x, y) and Iabsorption(x, y) by taking three pictures
with the CCD camera. The procedure is as follows: First the MOT is loaded till
it is saturated. Then, simultaneously, the MOT as well as the slower and atomic
beam are turned off and after a certain time of flight tTOF we take the first picture
by applying the imaging pulse. This gives us Ipic = Iabsorption(x, y) +B(x, y), where
B(x, y) is the background noise of the camera. For the second picture we make
sure that no atoms are left inside the glasscell1 before applying the imaging pulse.
This reference picture gives us the initial intensity distribution of the laser pulse
with additional noise and thus Irefpic = I0(x, y) +B(x, y). At last we take a picture
without any atoms or applying an imaging pulse to get Iback = B(x, y).

1this is done by including a sufficiently long delay time of about 0.5 s between the pictures
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We can now calculate Natom by using (4.13), but since we measure an averaged
value of the intensity for each camera pixel, the integration transforms into a sum
over all pixels (i,j) [45]:

Natom =
−1

σ0

· A
M2

∑
pixel (i,j)

ln

(
Ipic (i, j)− Iback (i, j)

Irefpic (i, j)− Iback (i, j)

)
(4.14)

where A is the area of each pixel and 1
M2 takes the magnification of the atom cloud

shadow into account. In our experiment we use a QImaging Retiga Exi camera
(without IR filter) with a pixel area of A = 6.45µm× 6.45µm and a resolution of
1.4 million pixels. Note that the camera does not measure intensities but only counts
the electrons released when absorbing photons. But since we are only interested in
relative intensities, this does not play a role for absorption imaging. But when one is
interested in the total photon numbers captured with the CCD camera, one would
need to multiply the counted electrons by a factor α, which is characteristical for the
camera, to obtain the captured photon number. For further details of our imaging
procedure one can also refer to [38].
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In this chapter, our experimental results are presented. In the first part we characterise
the influence of our slower by turning the different experimental knobs our slower
provides us with. Our goal is to optimise the loading rate L and the total atom
number Natom of our MOT. In the second part we use a CCD camera to calibrate our
atom number. This is done by absorption imaging which is explained in section 4.5.

5.1. Characterisation of the Zeeman Slower

For optimisation of the number of trappable atoms, we first investigate how the flux
of the atomic beam coming out of the oven depends on the oven temperature. Then
we analyse the influence of the slower beam power on the loading rate of the MOT.
After this, the current of the big slower coil is scanned since it determines in essence
the maximal initial velocity vmax of atoms which can still be cooled. At last, we
turn the small slower current to see which influence the atoms end velocity has for
the amount of trappable atoms. All these measurements are done by collecting the
fluorescence signal of the MOT on a photodiode and measure the loading rate and
total fluorescence signal.

5.1.1. Oven temperature

The first experimental knob we can turn to improve the loading rate of the MOT
is the temperature of our lithium oven. The oven setup is described in section 4.1
and also depicted in Figure 5.1 (a). By heating up the lithium reservoir, the vapour
pressure rises and more atoms enter the gas phase. Thus we expect an increase
in the loading rate of our MOT for a rising oven temperature. To describe the
experimental behaviour we make the following assumptions: Since the atoms pass
through a differential pumping stage before entering the Zeeman slower, the pressure
pslower in the slower is much smaller than the initial pressure poven in the oven. The
flux of the atomic beam is hence assumed to be [48]

dM

dt
∝ (poven − pslower) ≈ poven, (5.1)

where M is the total atom mass entering the slower.
However, only atoms with a velocity below the maximal initial velocity vmax are

cooled in the Zeeman slower and thus can be trapped in the MOT. Therefore the
MOT loading rate also depends on the velocity distribution f (vz) which itself is
temperature dependent.
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Figure 5.1.: (a): Schematic of our two species oven.
(b): The loading rate of the MOT versus the oven temperature. The
blue curve is obtained from our assumed theory.

Inside the oven, the atoms have an isotropic velocity distribution

f(v) ∝ v2 · e−
mLi·v

2

2·kB ·T , (5.2)

where mLi is the lithium mass, kB is the boltzmann factor and T is the temperature
of the gas. The probability of an atom to pass the oven nozzle is proportional to v
[34] and thus to obtain the distribution behind the oven nozzle, the former f (v) is
multiplied by v which leads to a velocity distribution in the z-direction when entering
the Zeeman slower of [48]

f(vz) ∝ v3
z · e

(
−mLi·v

2
z

2·kB ·T

)
. (5.3)

Hence, we expect our MOT loading rate L to be [49]

L ∝ poven (T ) ·
∫ vmax

0
dvz v

3
z · e

(
−mLi·v

2
z

2·kB ·T

)

∫∞
0

dvz v3
z · e

(
−mLi·v2z

2·kB ·T

) . (5.4)

But since the gaseous lithium will collide with the walls of the vacuum chamber,
which is not on the oven temperature, the gas temperature when passing the oven
nozzle will not coincide with Toven. Therefore we assume the gas temperature to be a
mixture of the oven temperature Toven and the temperature of the vaccum chamber
Tchamber

Tgas = β · Toven + (1− β) · Tchamber,

where β is a dimensionless constant with 0 ≤ β ≤ 1.
We assume that Tchamber itself does not depend on Toven, which is justified due

to the finite heat conduction of the vacuum chamber and the spatial separation
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between the oven oven and the vacuum chamber. For our fitting procedure we
assume Tchamber = 540 ◦C, which is the mean of the oven nozzle and mixing nozzle
temperature (see Figure 5.1 (a)). Our result is displayed in Figure 5.1 (b), where
the dependency of the vapour pressure from the temperature is taken from [30] and
β ≈ 0.5 is the fitting result. One can see that the fit agrees well with our data within
the error bars. In addition, β = 0.5 seems quite reasonable since one obtains then
simply an equilibrium between both temperatures,

Tgas =
Toven + Tchamber

2
.

In conclusion, we observe that a higher oven temperature leads to larger loading
rates of the MOT. But we are limited with the temperature to about 600 ◦C, since for
higher temperatures the aluminium, which is wrapped around the vacuum chamber
to enhance the heating efficiency, would melt. In addition, higher temperatures
would also limit the working time of our lithium reservoir.

5.1.2. Slower beam power

From equation (4.1) it follows that the scattering rate depends on the saturation
s0 of the slower beam. Thus when decreasing the power in the slower beam1, s0

becomes smaller and the scattering force on the atoms decreases. Since amax saturates
with increasing intensity, we expect less trappable atoms leaving the slower when
decreasing the slower power below a critical value. This behaviour is experimentally
verified for different detunings δ0 of the slower beam. In Figure 5.2 the behaviour is
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Figure 5.2.: (a): loading rate L versus slower beam power Pslower.
(b): atom number Natom versus slower beam power Pslower.

only shown for δ0 = −2π × 300 MHz since the characteristics have been the same
for all measurements. The overall slower power Pslower is measured including the
repumper beam with a ratio of

Pslower − Prep

Prep
= 2.5,

1this can be done with the VCO level of the acousto-otic modulator (AOM)
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where Prep is the power of the repumper beam.
One can see that both the loading rate L and the total atom number Natom have

a very steep slope above a beam power of 50 mW. This can be seen as an evidence
that we are limited by our beam power. But with the current setup we are not able
to put more power into the slower beam since this comes at the cost of less power in
the z-beams of the MOT which would also reduce the loading rate.

A possible explanation for this behaviour is the intensity profile of the beam. The
saturation s0 is spatially dependent and we assume the intensity of the beam to have
a gaussian profile as a rough approximation. When now reducing the power, the
peak intensity decreases and the radius r of the beam with s0 ≥ 1 becomes smaller
which is depicted in Figure 5.3 (a). Thus on the wings of the beam where s0 < 1, the
atoms, especially the ones with a large divergence at the end of the slower, are not
effictively cooled and hence the loading rate decreases. To investigate this behaviour
further, one could put an adjustable iris into the beam path. Thereby one can cut
off the wings of the beam at a constant peak intensity and observe the influence on
the loading rate (see Figure 5.3 (b)). If the loading rate shows a similar behaviour
as for reducing the slower power, this would be an evidence that the saturation at
the sides is not sufficient for smaller slower powers.

1

s0

0 radius rr1 r2 r3

P1 > P2 > P3

(a) (b)

focus lens
f = 3m

adjustable
iris

telescope

slower
beam

Figure 5.3.: (a): Intensity profile for different slower powers. The widths with s0 ≥ 1
are indicated.
(b): Scheme of the proposal experiment to test our hypothesis.

Another possible way to increase the loading rate could be to use a different
telescope to widen up the slower beam. If the slower beam is too small to completely
overlap with the atomic beam, we are limited in the amount of trappable atoms.
Thus this should be checked since it could increase our loading rate without much
effort.

If it proves true at the end that we are only limited by our power, one could still
consider to seed a Tapered Amplifier (TA) with the slower beam and thus get much
higher powers. But this would be a rather expensive solution and is not considered
at the moment.
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5.1.3. Big slower current

After increasing the flux of the atomic beam from the oven and optimising the shape
of the slower beam by a telescope, we now map out the influence of the big slower
parameter, namely the current Ibs. The atoms entering the slower have a velocity
distribution f (vz), which in combination with the maximal coolable initial velocity
vmax determines the amount of trappable atoms. Thus, we expect the loading rate of
our MOT to be proportional to

L ∝
∫ vmax

0

dvz v
3
z · e

(
−mLi·v

2
z

2·kB ·T

)
, (5.5)

where we assumed the same velocity distribution in section 5.1.1.
As can be seen from equation (4.6), vmax depends linearly on B0. We operate our

lithium oven at 550 ◦C and thus, according to equation (5.3), the most likely velocity
would be at about 1800 m

s
. Since in our experiment vmax is on the order of 700 m

s
,

we expect a steep slope for increasing B0, which is in essence determined by the
magnetic field of the big slower and the detuning δ0 of the slower beam. The result
of our measurement is shown in Figure 5.4.
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Figure 5.4.: Loading rate of the MOT versus B0: the blue curve is obtained from
theory.

With our measurement, we can confirm that a larger vmax enhances the loading
rate of our MOT, but the slope is not as steep as we would expect from our theory.
This deviation is probably caused by the divergence of the atoms at the end of the
small slower due to scattering, which is explained in section 4.4.2. Atoms with higher
initial velocity perform more scattering processes during the cooling and therefore
have a larger divergence when leaving the Zeeman slower. For example an atom
entering the Zeeman slower with v = 400 m

s
has a divergence of 14 ◦ whereas an atom

entering with v = 800 m
s
has a divergence of about 19 ◦. Thus when increasing the

magnetic field of the big slower and therefore vmax, many of the atoms whose velocity
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is now below vmax can still not be trapped. The resulting increase in the loading rate
for enlarged vmax is hence smaller than predicted by our theory.

Another reason one could think of is that by increasing the magnetic field B0, the
gradient of the magnetic field also is increased. Thus initial fast atoms could drop
out of resonance and would thus be lost to cooling, which would also explain the
lower loading rate compared to theory. But we exclude this for our setup since the
Zeeman slower has been optimized for sodium, whose mass is about four times larger
and hence the deceleration for lithium atoms is more than sufficient.
In conclusion, we see that it is advantageous for our loading rate to operate our

big slower at high currents. However, above Ibs ≈ 26 A, the power dissipated in the
slower coils leads for continuous operation to a too high coil temperature. An idea is
hence to pulse the slower during the lithium MOT loading phase to higher currents
and thus have an averaged power which the water cooling of the slower coil can
compensate.

5.1.4. Small slower current

For this measurement, the oven temperature was set to Toven = 550 ◦C, the big slower
current to Ibs = 16 A and the detuning to δ0 = −2π × 300 MHz. Our results are
shown in Figure 5.5. For currents below 6.5 A, the magnetic field at the slower end
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Figure 5.5.: (a): loading rate L versus small slower current Iss
(b): atom number Natom versus small slower current Iss
In both cases a gaussian fit (blue line) is fitted as a guide to the eye.

is small and thus the end velocity vend of the atoms is quite high. A large amount of
the atoms then exceeds the maximal trapping velocity vtrap of the MOT and both
the loading rate L and the total atom number Natom are rather small. As we increase
the current, vend becomes smaller and both L and Natom rises until they reach their
maximum. This can be explained by the fact that the end velocity vend is then
smaller than the trapping velocity vtrap and thus a further increase in Iss has no
positive effect on the number of trappable atoms. Instead, when increasing Iss even
further, L and Natom begin to drop again. This has two reasons. First, when vend

becomes smaller, the divergence of the atoms leaving the Zeeman slower rises (see
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4.4.2) and thus less atoms can arrive within the trapping radius of the MOT. Second,
for large Iss the atoms can be even accelerated back into the slower and less atoms
reach the trapping radius of the MOT at all. In our measurement we can not say
with certainty which of these two effects causes the dropping of our loading rate. To
check this, one could use the iris method from section 5.1.2. When cutting off the
beam at the wings and observing no change in the loading rate, this could be seen
as an evidence that the atoms are accelerated back into the slower.

To obtain an estimated FWHM of the plateau, we use a gaussian fit without being
theoretically motivated. The loading rate has its maximum at about Issmax = 7.4 A
and a FWHM of ∆Iss ≈ 2.2 A.

These numbers are important for the simultaneous loading of a sodium and lithium
MOT. In the experiment, sodium is loaded optimally at Iss = 9 A and therefore
we will still have a loading rate for lithium of about 25 % of the peak value when
loading sodium. Thus the lifetime of the lithium MOT during the sodium loading is
enhanced by a factor 4/3, where we have not considered the influence of the sodium
MOT for the lifetime of the lithium MOT yet [50].
In addition, we carefully checked this behaviour for different detunings δ0 of our

slower beam but found out that for δ0 = −2π × 300 MHz our MOT is optimised.

5.2. Atom number calibration using absorption
imaging

As mentioned before, to optimise our MOT, we capture its fluorescence onto a
photodiode and derive the total atom number from the signal’s strength. But this
method suffers from the uncertainty in the determination of the captured solid angle
and the scattering rate and the measured atom numbes are therefore not exact. Hence
we also use a more sophisticated method to quantify our trapped atom numbers,
namely absorption imaging which was introduced in section 4.5.

After turning off the MOT we image our atoms with a time delay of tTOF. To be
on resonance during the imaging pulse, we have to shift the frequency of the TA.
Since this frequency shift is not instantaneous [36], we measure how the chosen time
of flight tTOF influences our measured atom number Natom. Therefore we scan tTOF

in steps of 0.2 ms from tTOF = 0.1 ms up to tTOF = 1.9 ms and take for every tTOF

three shots. Figure 5.6 displays the result: Each point represents the mean value of
the three measurements with the standard deviation of the mean as error. For small
time of flights, the three measurements show a large variance. This can be due to
the fact that the frequency shift of the TA takes up to 1 ms with possible oscillations
and thus the detuning of the imaging pulse can differ from zero. For tTOF > 0.7 ms
the atom number is almost constant and thus gives us a reliable result for our atom
number calibration. We therefore choose tTOF = 0.8 ms and take ten shots of the
MOT. After averaging, we obtain

Natom = (2.68± 0.67)× 108 atoms.

In comparison, we obtain an atom number of (1.81 ± 0.09) × 108 atoms with the
fluorescence signal on the photodiode. Thus our fluorescence measurement just gives
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an approximation of the total atom number and differs from the one obtained by
absorption imaging by about 30 %.
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Figure 5.6.: Total atom number Natom versus time of flight tTOF.

When imaging the atom cloud, we choose a rather long imaging duration. Thus
during the imaging process, the atoms experience a recoil and drop out of resonance
due to the Doppler effect. Hence, the absorbtion of the pulse decreases which leads
to an underestimation our total atom number according to equation (4.14). Our
atom number calibration with absorption imaging gives us therefore at least a lower
bound for our total atom number.

The total atom numbers of the MOT after the optimisation of all experimentally
tunable paramters are given in Table 5.1. In conclusion, absorption imaging is our
first choice when measuring the total atom number. To optimise the MOT however,
the fluorescence measurement with a photodiode is the method of our choice since it
has a ’live’ character and is non-destructive.

Method Total atom number [108 atoms]

fluorescence on photodiode 2.7± 0.4
absorption imaging 4.0± 1.0

Table 5.1.: Final results for the total atom number after all optimisation steps.

Note that the time of flight method can also be used to obtain the temperature of
our MOT. Therefore one assumes a gaussian density distribution inside the MOT
and determines the 1/e-radius2 of the cloud for different tTOF. The 1/e-radius behaves
as [47]

r1/e (tTOF) =

√
r2
1/e (t = 0)2 +

2kBT

mLi
· (tTOF)2,

where t = 0 defines the time the MOT is turned off. Thus the temperature of our
MOT can be obtained by a time of flight series and a subsequent fit. However, later
on when sympathetically cooling our lithium with the sodium in the magnetic trap,

2radius for which the density dropped to 1/e of its peak value
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our achievable end temperature will first and foremost depend on the size and the
temperature of the sodium MOT and thus we are not constrained by the temperature
of our lithium MOT .
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6. Conclusion and Outlook

In the course of this thesis, we were able to trap a cloud of lithium atoms in a
magneto-optical trap which is another milestone on our way towards our desired
bose-fermi mixture. First we built up a lasersystem for lithium consisting of a
master laser with stable frequency and low output power and a slave laser with high
output power being beat-locked onto the master laser. The frequency stabilisation
of the master laser, a grating stabilized diode laser, has been achieved by setting
up doppler-free saturation spectroscopy for lithium and locking the laser onto the
crossover peak of the spectroscopy. With our setup, we reached a stability of about
1 MHz, which is more than sufficient for laser cooling.

This laser system enabled us finally to cool lithium atoms and trap them in our
MOT, as to be seen in Figure 6.1. Since the trapped cloud was rather small at the
beginning, we optimized it using all the experimental knobs our setup provided us
with. In particular, we investigated the dependency of the MOT properties from the
oven temperature, the currents through the Zeeman slower coils and the shape of the
slower beam. In addition, the behaviour for different power splittings in our beams
or the detuning has also been checked. Finally we were able to optimize our MOT
to have an atom number of about 4× 108 atoms with more than half of the atoms
being loaded in less than 10 s.

Figure 6.1.: First picture of our MOT

The next step towards our experimental goal of investigating polarons is to load
the lithium atoms from the MOT into a magnetic trap since the temperatures
achievable in a MOT are not sufficient to cool the atoms into quantum degeneracy.
The temperatue limit in the MOT is given by the light scattering and hence another
cooling technique has to be used. In the magnetic trap, the atoms are cooled by
microwave induced evaporation of sodium. Hot sodiums are removed from the trap
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and the remaining cooler ones thermalizes by inter and intra species collisions and
thus the temperature is decreased at the cost of loosing sodium atoms. The transfer
into a magnetic trap has already been achieved for sodium and thus we can rely
on an existing trap setup. Additionally, evaporative cooling for sodium alone has
also been performed and a sodium condensate achieved. Thus a next step will be
to control the evaporative cooling in the presence of lithium atoms. As mentioned
in the introduction, for our polaron experiment we need to control the interactions
between both species using Feshbach resonances. Hence we need the magnetic field
as a free parameter and trapping atoms inside an optical dipole trap (ODT) becomes
essential. The transfer from the magnetic trap into our dipole trap [51] has been
done for sodium already. Therefore we are optimistic to see intra species Feshbach
resonances of sodium in the near future. After all this is done, we can finally focus
on the inter species Feshbach resonances between sodium and lithium.
With our current setup we are not limited to the investigation of polarons, but

we could also use the sodium only as a ’refrigerator’ for lithium and thus produce
large degenerate fermionic clouds by evaporating the complete sodium out of the
trap. Thus we could produce large spin mixtures of the |22S1/2, F = 1/2〉 substates,
which has a broad Feshbach resonance at 834 G with a width of 300 G [52]. The
properties of purely fermionic systems, like for example the compressibility of an
ideal Fermi gas [53], the superfluidity of a strongly interacting Fermi gas [54] or fermi
polarons in an imbalanced spin mixture [55, 56] has been of great interest in recent
years. Another result has been for example the verification of universal relations, the
Tan relations [57, 58, 59], in the unitarity regime [60] which can give new insights in
the many-body physics of these systems. However, there are still a lot of unsolved
questions and hence the physics of fermionic systems will remain a challenging and
interesting field in the years to come.
In conclusion, the near future at the NaLi experiment promises to be really

exciting.
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A. Properties of Lithium

The following data and graphs are taken from [30] and characterize the D2-line of
6Li.

Item Notation Value

mass mLi 9.9883414× 10−27 kg
nuclear spin ILi 1
wavelength λ 670.977338 nm
frequency ν 446.799677 THz
lifetime τ 27.102 ns

natural linewidth Γ 2π × 5.8724 MHz
atomic recoil velocity vrec 9.886776 cm

s

recoil temperature Trec 3.53581152µK
saturation intensity IS 2.54 mW

cm2

total electronic g-factor ground state gJ(22S1/2) 2.0023010
total electronic g-factor excited state gJ(22P3/2) 1.335

g-factor of the nucleus gI −0.0004476540

Figure A.1.: magnetic field dependence for the 22S1/2 state (left) and the 22P3/2 state
(right)
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