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Abstract

AtliX (Antiproton Talbot-Lau Interferometry eXperiment) aims
at testing the wave nature of antiprotons. Proton interferometry acts
as an intermediate step towards this goal. The device of choice is a
Talbot-Lau interferometer, consisting of three equidistant transmission
gratings. Misalignments in the order of tens of µrad will wash out the
interference pattern. Therefore precise control of the mutual angle
between the gratings is required.
Here, a concept using three independent Mach-Zehnder interferometers
provides a means to monitor the angular differences. Two designs are
detailed. One acts as a proof of principle using only two independent
interferometers. The second one makes use of translational stages
to implement all required beams. The results obtained in this work
include characterization of the main components. A discussion on the
signal shape and the methods to extract the phase information follow.
Lastly the minimal detected resolution is given and compared to the
critical angle for the Talbot-Lau interferometer.

AtliX (Antiproton Talbot-Lau Interferometry eXperiment) hat zum
Ziel, die Welleneigenschaft von Antiprotonen zu testen. Protoninter-
ferenz handelt als Zwischenschritt in diese Richtung. Das verwendete
Gerät ist ein Talbot-Lau Interferometer, das aus drei äquidistanten
Transmissionsgittern besteht. Abweichungen in der Größenordnung
von zehn µrad verwaschen das Interferenzmuster. Deswegen ist präzise
Kontrolle über den gegenseitigen Winkel zwischen den Gittern erfor-
derlich.
Hier gibt ein Konzept, das drei unabhängige Mach-Zehnder Interfe-
rometer verwendet, Aufschluss über Winkeldifferenzen. Zwei Designs
sind im Detail erklärt. Das Erste ist ein Machbarkeitsbeweis, das
nur zwei unabhängige Interferometer verwendet. Das Zweite benutzt
lineare Aktuatoren um alle benötigten Strahlen zu implementieren.
Die Ergebniss dieser Arbeit beinhalten eine Charakterisierung der
Hauptkomponenten. Es folgt eine Diskussion über die Signalform und
die Methoden zur Phasenmessung. Zum Schluss wird die minimale
gemessene Auflösung angegeben und mit dem kritischen Winkel des
Talbot-Lau Interferometers verglichen.
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1 Introduction

1 Introduction

The wave nature of matter has been predicted by de Broglie [1]. Successful

demonstrations were given with electrons [2], atoms [3] and molecules [4].

Antimatter is expected to follow the same principle. The AtliX project [5]

(Antiproton Talbot-Lau Interferometry eXperiment) aims at demonstrating

this with antiprotons at CERN. As an intermediate step AtliX aims to show

interference with protons in Heidelberg. A Talbot-Lau interferometer is a

proven tool for matter wave interference [6] [4] [7]. It was introduced by

Ernst Lau in 1948 [8] and used with different particle species since then.

In combination with the moiré effect, proton interference measurements are

possible. The setup in AtliX consists of three equidistant transmission gratings

and a position sensitive detector.

When using nanometric gratings, misalignments in the order of tens of µrad

will wash out the interference pattern. Therefore controlling the angular

positions is crucial. This thesis will outline a method to monitor angular

differences between three equidistant gratings by means of laser interferometry.

Three independent Mach-Zehnder interferometers make precise control of

relative angles possible. Phase differences between the outputs are directly

related to angular differences between the gratings. Similar experiments in

the past have successfully employed this technique before [9] [10]. Here, a

prototype for the conditions in AtliX is designed and tested.

The chapters are organized in the following structure:

Chapter two gives details on AtliX and (anti-)proton interferometry.

Chapter three discusses the theory of interferometry. It begins with a short

introduction to interferometry in general before giving details on the three-

beam Mach-Zehnder.

Chapter four focuses on the experimental realization. The main components

for the project are introduced. These are the actuators, used to control the

grating motion, the gratings and the laser system. Two setups are detailed.
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The first acts as a proof of principle for the concept. The second is the full

device using translational stages.

Chapter five gives the results of the experiment. Characteristics of the

actuators are measured. A discussion on the signal shape follows. The main

part of this chapter are the results of the angular measurements. The methods

of phase extraction are discussed. This chapter concludes with the minimal

achieved angular resolution in comparison to the desired one.

Chapter six concludes this thesis. It gives a summary of the work presented

and an outlook into the next steps necessary to implement this concept AtliX.
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2 Antiproton Interference In AtliX

2 Antiproton Interference In AtliX

This section will give an outline of the antiproton interference experiment in

the scope of AtliX. It aims at giving the motivation behind the work towards

grating alignment. This includes an introduction to AtliX. The focus is on

antiproton interferometry with a device called Talbot-Lau interferometer.

The critical angle associated with the experimetal setup is given as the goal

for this work.

2.1 Experimental Principle

AtliX (Antiproton Talbot-Lau Interferometry eXperiment) is meant to test

the wave nature of antiprotons and, as an intermediate step, of protons. Ex-

perimentally this is achieved by a device known as Talbot-Lau interferometer.

AtliX is a side project of AEgIS1 (Antimatter Experiment: Gravity, Interfer-

ometry, Spectroscopy) whose goal is to test the weak equivalence principle by

measuring the gravitational force on antimatter.

The Talbot-Lau interferometer [13] is based on observations by Talbot in 1836

[14] and Lau in 1948 [8]. Three equidistant gratings of periodicity d = 258 nm

form an interferometer based on the Talbot- and moiré effect. Grating one

and two form a ’microscopic’ fringe pattern of the grating periodicity d based

on the Talbot-effect. Further detail can be found in section 3.1.3. The

third grating is used as a mask for this fringe pattern. A tilt between the

’microscopic’ fringes and the grating slits gives rise to a ’macroscopic’ fringe

structure based on the moiré effect. Figure 2.1 shows an example. Here,

proof for the quantum character of the used particles is given by the visibility

profile ν (often referred to as ’contrast’) of the measured fringes

ν =
Imax − Imin

Imax + Imin

. (2.1)

1Further information about the experiment can be found in [11] [12]
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2 Antiproton Interference In AtliX
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Figure 2.1: Moiré effect. The interference pattern is superimposed by a tilted
grating of same periodicity. The resulting macroscopic fringes are recorded
by a spatially resolving detector.

Different to the classical case, ν depends on the mean particle energy if

operated in the wave regime. Figure 2.2 shows the behavior for the conditions

in AtliX. Put together, this forms an interferometer that has two advantages:

Firstly, it can operate with a diffusive source. And secondly, the ’macroscopic’

fringes after the interferometer do not require a high resolution detector to

be recorded.

2.2 Characteristics Of The Source

The antiprotons are provided by the Antiproton Decelerator (AD) at CERN.

They are created by a pair production process. The antiprotons exit the

decelerator in bunches of 107 approximately every 100 s. Their mean energy is

5.3 MeV. At this energy the silicon gratings become transparent. The project

is envisioned to operate in a range between E = 1 keV − 10 keV. Therefore a

degrader foil together with a selection process for the low energy antiparticles

is needed. The result is a drastic decrease in flux to 30 antiprotons per shot

with a broad energy spectrum, which is insufficient for commissioning the

device.

In order to study the systematics of the experiment, as an intermediate

step AtliX is planned to perform Talbot-Lau interferometry with protons.
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Figure 2.2: Visibility of the interference pattern as a function of proton energy.
In the wave regime, the visibility changes drastically with particle energy. For
the classical case, no change in visibility is expected. Courtesy of A. Demetrio
[15].

Protons and antiprotons show the same behavior when exposed to electric

and magnetic fields (with an opposite charge) and can be easily produced

throughout standard plasma sources. Furthermore, reproducible results on

proton interference do not exist.

The experimental setup in Heidelberg makes use of a tunable ECR proton

source [16] with an operating flux of the order of 105 particles per second.

The source emits a beam of particles in the energy range between 500 eV and

2 keV, with a 1 % monochromaticity. Relying on a setup operated in controlled

conditions and independent on AD beam time makes the development of the

device considerably easier.

2.3 Challenges

AtliX is sensitive to several effects. Charge up in the setup leads to electric and

magnetic stray fields, thus disturbing the measurement. Any non conductive

elements, such as the gratings, must be metal coated. To reduce the influence

from external magnetic fields, a mu-metal shield surrounds the setup. With a

relative permeability in the order of µr = 100 000, this alloy guides external

magnetic fields inside itself. It also acts as a Faraday cage. Secondly, vibrations

of the order of d between the gratings wash out the fringe pattern, thus
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2 Antiproton Interference In AtliX

destroying the measurement. To mitigate vibration, both the gratings and the

position sensitive detector are mounted on a single aluminium block. Lastly,

the relative angle between the gratings must be controlled. For low flux, as

is expected with antiprotons, angular changes during the integration time

washes the pattern out. Furthermore, one wants to know beforehand what the

relative angular position of each grating is. The moiré pattern is dependent

on the angle between the microscopic fringes and the slits of the third grating.

With a grating periodicity of d = 258 nm and a grating width of b = 7 mm,

for every angular difference of

∆αcrit. =
d

b
= 37 µrad (2.2)

one more macroscopic fringe appears. The angular relationship between

the pattern and the third garting gives the number of expected fringes.

Also differences between grating one and two can potentially wash out the

interference pattern created by the Talbot-effect.

The work presented in this thesis is focused on an experimental method to

control the angular relationship between the gratings. A system of three

independent Mach-Zehnder interferometers is supposed to make measurements

of angular differences possible. This technique found use in similar applications

[9], [17]. Throughout this thesis, a prototype outside the vacuum will be

tested. A means to measure tilts independently and precisely would advance

the experiment towards antiproton interferometry.
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3 Theory

This chapter provides the theoretical background for the three-beam Mach-

Zehnder interferometer. The interferometer is a tool used to monitor the

alignment of three equidistant gratings. A short summary on interferometry

is provided before discussing examples. This includes the Talbot-Lau and the

Mach-Zehnder interferometer. The chapter concludes with a description of

the three-beam Mach-Zehnder interferometer.

3.1 Interferometry

The dictionary “Merriam Webster’s” defines the term interferometer as “an

apparatus that utilizes the interference of waves (as of light) for precise

determinations (as of distance or wavelength)”[18]. This is a very broad

definition but it describes the process that is known as interferometry very

well.

Interference has been known since Thomas Young’s double slit experiment

in 1801 in which he illuminated two slits with the same light source and

observed the famous interference pattern behind it. The interferometers that

have been developed since then got increasingly sophisticated and precise.

If two waves are superimposed the resulting pattern is given by the intensity

of the field, which is not directly the sum of the fields. Furthermore, the

waves can’t be generic: they have to have the same polarization and the same

wavelength, otherwise no interference pattern can be seen. This formation of

characteristic patterns is known as constructive and destructive interference.

For light the equivalent is the superposition of electric Ei and magnetic Bi

fields. Since the intensity I is given by the temporal average of the square of

the electric field2 E(t).

I ∼ 〈E2(r, t)〉T = 〈E2
0 cos2(k · r − ωt+ δ)〉T (3.1)

2vectors are written as ~a = a
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3 Theory

In experiments not the electric field is measured but the intensity of the light.

So if one has a superposition of two fields E1 and E2 the observed intensity

becomes

E2 = E2
1 + E2

2 + 2E1E2 (3.2)

I = I1 + I2 + I12 . (3.3)

The last term is identified as the interference term

I12 = 2〈E1E2〉T , (3.4)

with

〈E1E2〉T =| E1 || E2 | cos(δ) (3.5)

for sufficiently large integration time T . δ denotes the phase difference. The

total intensity is given by

I = I1 + I2 + 2
√
I1I2 cos(δ) . (3.6)

For equal intensities I1 = I2 = I0 one finds

I(δ) = 2I0(1 + cos δ) = 4I0 cos2(
δ

2
) . (3.7)

The phase shift δ can be expressed as a function of the wavelength λ as

δ = 2π
d

λ
, (3.8)

where d is the optical path difference between the two waves. Thus, by

measuring δ, one can calculate path differences with high accuracy. This is

the essence of interferometry [19] [20] and is used in many different applications.

The most prominent ones will be detailed now.
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Figure 3.1: Schematic of the Fabry-Pérot interferometer. Light entering
experiences multiple reflections. At every turn a fraction leaves the device. A
lens focuses the light in its focal plane where the beams interfere.

3.1.1 Fabry-Pérot Interferometer

The Fabry-Pérot-Interferometer [20] has been designed by Charles Fabry

and Alfred Pérot in 1897. It consists of two semitransparent mirrors placed

at distance d. This setup can be used with a extended light source, often

in combination with a lens. Light enters the device under an angle Θ and

experiences multiple reflections inside with a fraction leaving on every turn.

A lens behind the device is bringing the output beams to a common focus

where they interfere. Changing the distance between the mirrors affects the

phase difference between each reflected beam.

The Fabry-Pérot is more commonly used as an optical resonator because of

its great spectral resolution.

3.1.2 Michelson Interferometer

Introduced by Michelson, this type of interferometer is best known for an

experiment in 1887, when Michelson and Morley [21] used a version of it

to measure the constant nature of the speed of light. More recently a large

scale Michelson-Interferometer LIGO [22] reported success in the detection of

gravitational waves.

The Michelson-interferometer consists of two mirrors, a beam splitter, and a

monochromatic light source as shown in figure 3.2. The beam splitter divides

the beam into two paths, leading to mirrors with ideally 100 % reflectivity.
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Figure 3.2: Schematic of a Michelson interferometer. The light is split by a
beam splitter. Two mirrors reflect the arms back. The splitter recombines
both arms. The signal depends on the path difference.

A difference in length between the two paths generates a phase shift in the

observed light pattern. Equal distance gives constructive interference and a

difference in distance of ∆x = (2m + 1)λ
4
, where m ∈ Z, gives destructive

interference.

3.1.3 Talbot-Lau Interferometer

The Talbot-Lau-interferometer [13][15] is at the heart of the AtliX experi-

ment. It can be seen as the quantum-mechanical counterpart of the Moiré-

Deflectometer in which classical particle paths are considered.

The Talbot-effect [14], named after H. F. Talbot in 1836, describes how a plane

wavefront with wavelength λ transmitted through a grating with periodicity

d gives a characteristic structure in regular intervals. This is valid for the

near field regime. At integer multiples of the so called Talbot-length

LT =
d2

λ
(3.9)

a fringe pattern of period d builds up. For fractions of LT a pattern of higher

periodicity is observable. This structure is called ’Talbot carpet’. For a

diffusive wavefront the pattern washes out and the fringe visibility ν goes to

zero. E. Lau [8] showed in 1948 that this problem can be circumvented by
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Figure 3.3: a. Talbot carpet produced by a plane wave impinging on a
grating. Self imaging of the gratings occurs at integer multiples of LT ; b. For
a diffusive source the first grating creates spacial coherence at the second
grating. An interference pattern is measured in the detector plane. Courtesy
of P. Bräunig [13].

using a second grating. Here the first grating creates coherence at multiple of

LT where grating two is placed. Therefore in the detector plane at the same

distance from grating two the same fringe pattern is observed as in the case

of plane waves. Figure 3.3a. shows the Talbot-Lau interferometer with plane

waves and 3.3b. with a diffusive source.

3.2 Mach-Zehnder In General

Ludwig Mach [23] and Ludwig Zehnder [24] introduced the concept that is

now known as the Mach-Zehnder interferometer independently in 1892 and

1891 respectively. Even though the most commonly used setup consists of

beam splitting cubes and mirrors the underlying idea is very generic: Split

a light beam into two equally long arms and recombine them. This is also

known as amplitude splitting. An optical path difference introduced in one of

the arms has then an effect on the output.

The two different Mach-Zehnder interferometer are now discussed in detail.

• Splitting via cubes:

This method is the most commonly used. Splitting and recombination

16



3 Theory

of the beam is done by beam splitting cubes while mirrors are used to

guide the beams. A simple sketch of the most general setup can be found

in figure 3.4a. The beam paths ideally create a parallelogram which

keeps both arms equally long. An optical path difference introduced in

one of the arms leads to a phase shift in comparison with the other arm.

For instance, placing a target of optically transparent material with

refraction index n 6= 1 in one arm will cause a phase shift proportional

to the depth of the target. In this setup one finds two outputs where

the signal is modulated by ∼ cos2( δ
2
) and ∼ sin2( δ

2
) respectively (see

figure 3.4a.).

The particular design of the Mach-Zehnder setup with its separated

arms has the advantage that it can be scaled to desired proportions.

This type of interferometer often finds use in plasma diagnostics [25]

and wind flow studies [26].

• Splitting via gratings:

This type of Mach-Zehnder interferometer uses diffraction gratings for

both beam splitting and guiding. Three gratings are placed directly

behind each other and the beam is traveling through them experiencing

diffraction. In the simple picture with two arms one considers the zeroth

and first order from the first grating and the first and minus first order

respectively after the second grating. The third grating recombines

both arms again (See figure 3.4b.). In analogy to the case above one can

find two equivalent outputs. But in contrast the output is dependent

on the type of grating used. When using phase gratings, the two output

signals are proportional to ∼ cos2( δ
2
) and ∼ sin2( δ

2
), while for amplitude

gratings the outputs show the same behavior ∼ cos2( δ
2
).

The Mach-Zehnder interferometer consisting of gratings falls in the

category of a white light interferometer, since this type of interferometer

works over a long bandwidth of optical frequencies. For gratings this is

true since only the diffraction angle depends on the frequency. Every

17
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Figure 3.4: Mach-Zehnder interferometers. a. beam splitting is done by
beam splitter cubes. The two arms are guided by mirrors and recombined by
another cube. b. diffraction gratings split, guide and recombine the light.

wavelength interferes in a different position on the third grating.

The wave nature of particles allows this interferometer type to be used

to test particle interference. As an example neutron interferometry has

been realized using this type of interferometer [9].

3.3 The Three-Beam-Mach-Zehnder Interferometer

This concept can be found in similar applications in work on neutron interfer-

ometry[9] and in theses from M. Weber[10] and G. Van der Zouw[27].

The Mach-Zehnder interferometer has been used to monitor mechanical sta-

bility and vibrations of different systems, due to the accuracy achieved by

carefully choosing the wavelength and the geometry of the device. Previous

work in in this group used a set up of two Mach-Zehnder interferometers to

monitor the stability of a grating deflectometer [28].

Here, a design is discussed which is suitable to measure the relative angles

between the gratings of a Talbot-Lau interferometer. The device consists of

three independent Mach-Zehnder interferometers, whose outputs can be used

to determine the orientation of the single gratings with an expected accuracy
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of less than the critical 37µrad for the Talbot-Lau interferometer in AtliX.

The theoretical description of the three-beam Mach-Zehnder interferometer

is based on the Fourier framework of diffraction. The Fourier character of

Fraunhofer diffraction introduces the effect of phase shifts given by translation

of the aperture. Since the length of the slits is significantly bigger than the

beam size it is sufficient to discuss only the one dimensional transformation.

The Fourier transform is defined as

F [f(x)] =

∫ ∞
−∞

f(x)ei2πkxdx . (3.10)

A translation of the original function introduces the phase shift Φ

f(x) −→ f(x− a)⇒ F [f(x)] −→ eiΦ(a)F [f(x)] . (3.11)

A measurements of phase differences is possible by interference. This concept

is at the core of the grating Mach-Zehnder.

In order to extract this information, it is necessary to estimate the difference

in phase between the two paths of the interferometer.

For a grating with periodicity d the phase factor introduced in equation 3.11

is left invariant under a translation ∆ti = d, in which the index i refers to

the grating,

∆Φ =
2π

d
(n1∆t1 + n2∆t2 + n3∆t3) , (3.12)

where ni ∈ N. Shifting all gratings by the same arbitrary amount ∆ti must

leave the phase unchanged

∆Φ = 0 −→ n1 + n2 + n3 = 0 (3.13)

and shifting only grating 1 or 3 must have the same effect for symmetry

reasons

n1 = n3 . (3.14)
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One finds the sensitivity of the Mach-Zehnder interferometer to an arbitrary

set of translations ∆ti to be[27]

Φ =
2π

d
(∆t1 − 2∆t2 + ∆t3) . (3.15)

One can also retrieve the same result by using the properties of the Fourier

transform. In particular, the phase shift is dependent on the nth order of

diffraction via

Φn = 2πn
∆ti
d

. (3.16)

In order to get the phase in the resulting output one takes the phase accumu-

lated in both arms and calculates the difference

Φtotal = (Φ1 + Φ−1 + Φ0)Arm2 − (Φ0 + Φ1 + Φ−1)Arm1

=
2π

d
(∆t1 −∆t2 + 0 ·∆t3)2 −

2π

d
(0 ·∆t1 + ∆t2 −∆t3)1

=
2π

d
(∆t1 − 2∆t2 + ∆t3) . (3.17)

This is the same relation as derived above.

A small tilt by the angle α manifests itself by ∆ti = αiyi where yi is the

respective position on the grating along the slits. This yi will later be the

distance between two parallel beams.

Φ =
2π

d
(α1y1 − 2α2y2 + α3y3) (3.18)

The following setup takes advantage of this phase behavior to monitor the

tilts:

Two parallel (’straight’) Mach-Zehnder beams are traveling through the

grating with a separation distance h. One straight interferometer will give

the zero position in yi = 0. In these coordinates the other straight beam is

in position yi = h. A third angled Mach-Zehnder beam is aligned such that
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Figure 3.5: Geometry of the setup. Top view: ’Left’ and ’Right’ interferometer
are parallel with distance h. ’Cross’ intersects the ’Right’ beam at grating
one and the ’Left’ beam at grating three. Side view: Arms of the grating
Mach-Zehnder. Grating one and two rotate around the x-axis; grating three
translates in z-direction.

it intersects one straight beam in the plane of grating one and the other in

the plane of grating two (see figure 3.5). By choosing this geometry one can

eliminate y2 with

y2 =
y1 + y3

2
(3.19)

This reduces the expression for the phase between the interferometers to

Φ =
2π

d
[(α1 − α2) y1 + (α3 − α2) y3] (3.20)

Note that this expression is only dependent on the periodicity of the gratings

and the spacial separation of the Mach-Zehnder interferometers. The only

constraint on the distance between the gratings (besides being equidistant)

is to be in the far field regime for Fraunhofer diffraction. This is a ’soft’

constraint since beyond this regime the grating distance L can be chosen

freely.

The three beams are denoted as ’Right’, ’Left’, and ’Cross’. One straight
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beam is taken as reference (y1 = y3 = 0) with arbitrary phase ΦOffset. The

other two phases are then known as:

ΦRight = ΦOffset (3.21)

ΦCross = 2π
h

d
(α3 − α2) + ΦOffset (3.22)

ΦLeft = 2π
h

d
[(α1 − α2) + (α3 − α2)] + ΦOffset (3.23)

By taking the phase differences one can retrieve angular differences between

the gratings

ΦLeft − ΦCross = 2π
h

d
(α1 − α2) (3.24)

ΦCross − ΦRight = 2π
h

d
(α3 − α2) (3.25)

One sees that one full phase shift of ∆Φ = 2π corresponds to an angular

difference of ∆α = d
h
. This means that the angular sensitivity in general can

be adjusted by choosing the parameters d and h to the needed conditions.

For a maximal sensitivity on the angles measured, the distance between the

two straight Mach-Zehnder interferometers is kept as large as possible.

The maximum phase shift that can be resolved is limited to 2π. Therefore,

bigger shifts can’t be properly recognized. This means that this method is

best suited for precision monitoring/alignment that needs to be complemented

with a second rough monitoring method.

In order to measure the phase differences introduced by relative tilts of the

gratings one of the three gratings is shifted in a direction perpendicular to the

grating vector. A movement ∆z = d is needed to record a full modulation.

The phase shift recorded can be then translated to a relative angular difference

between the scanned grating and the other two, as expressed in Eq. (3.24)

and (3.25). If grating three is scanned linearly the tilt of grating two is given

in relation to grating three and then grating one in relation to grating two.
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4 Experimental Realization

This section gives a description of the experimental setup shown in figure 4.2

and 4.3. The main component are introduced in the following subsections.

The actuators are in place to tilt grating one and two and to linearly move

grating three in z-direction. These diffraction gratings provide the basis

for the Mach-Zehnder interferometers. A Helium-Neon laser provides the

coherent light for this experiment. The chapter concludes with a discussion

of the initial and the improved designs of the setups.

4.1 Actuators

Three actuators provide the ability to move the gratings in rotational and

straight direction. Grating three is mounted on a linear actuator while grating

one and two are mounted on goniometers. The actuators are manufactured

by attocube systems AG [29] in Munich. Their original working environment

is the main experiment in AtliX. The important parameters for this work are

listed in Table 4.1 and 4.2. The input and readout electronics is provided

by attocube as well. A linear continuous scanning mode is not available. It

ANPz101 RES

Parameter Value

footprint; height
travel range
fine pos. range at 300K
step size repeatability
readout mechanism
sensor resolution
repeatability

24× 24; 20 mm
5 mm
5 µm
typ. 5 %
resistive sensor
approx. 200 nm
1−2 µm

Table 4.1: Parameter table for the linear positioner ANPz101 RES in z-
direction manufactured by attocube [29]
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ANGt101 RES

Parameter Value

footprint; height
travel range
step size repeatability
step asymmetry
readout mechanism
sensor resolution
repeatability

24× 24; 11 mm
0.115 rad
typ. 5 %
typ. 5 %
resistive sensor
approx. 1.7 µrad
35 µrad

Table 4.2: Parameter table for the goniometer ANGt101 RES manufactured
by attocube [29]

is possible to go continuously to a position but this is highly nonlinear in

velocity. For this work this means step by step scanning will be used. The

linear actuator can be reliably used down to a steps size of 0.5 µm while the

goniometers have a minimal reliable angular step size of 35 µrad.

With the goniometers the group has observed a discrepancy between the

applied step size and the actual traveled range. A factor of 1.2 has been

measured with simple tests described in section 5.1. That factor has to be

accounted for in the read out.

In the linear actuator a hysteresis effect is observed. Details are described in

section 5.1.

4.2 Gratings

Three diffraction gratings form the Mach-Zehnder interferometer. The grat-

ings are produced out of a silicon wafer on which the pattern is printed by

Deep Reactive Ion Etching (DRIE) [30]. This is a multi step process starting

with covering the parts of the silicon waver that are not supposed to be etched

with a mask. Then a plasma (of SF6 for silicon wavers) is accelerated onto

the waver by applying an electric field starting the etching process. After
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Figure 4.1: SEM picture (Scan Electron Microscopy) of the 40 µm grating.
The vertical black stripes are the slits. In gray structure is the silicon.
Horizontally the support structure is visible. The measured open fraction is
smaller than the nominal η = 30 % (SEM pictures courtesy of Lisa Veith and
Anne Kast)

a short exposure time (several seconds) a polymer membrane is created by

introducing a gas (C4F8) into the plasma region that protects the walls in

the etching areas. By alternating this method of etching and protection deep

vertical valleys can be achieved. Out of this wafer pieces of area 1 cm× 1 cm

are cut and glued on an aluminium support. The gratings have been coated

with a gold/palladium alloy to prevent charging up of the underlying silicon.

The diffraction gratings used in this work are transmission gratings of peri-

odicity d = 40 µm. The pattern is superimposed by a perpendicular support

structure. These are bars of distance 2 mm that are supposed to stabilize the

grating slits. This support structure does not have a significant effect on the

diffraction of red laser light used here.

The open fraction η of the gratings was measured by ’SEM’ [15] (Scanning

Electron Microscopy) and by measuring the Talbot carpet [31] since it is

critical to the fringe visibility in (anti-) proton interferometry. η is defined

as the fraction of slit width b and grating periodicity d. The effective open

fraction is between η = 14 % [15] and 22 % [31] compared to the nominal
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η = 30 % [32] due to the production process.

Detailed information on the gratings and the development process can be

found in the Phd. thesis of F. Haupert [32].

4.3 Laser System

The light source is an intensity stabilized HeNe-laser. This laser provides

1 mW of power and a wavelength of λ = 633 nm. In order to get the beam

into position it is fiber coupled and ends in an adjustable focusing lens. The

power output measured after the fiber exit is:

P = 330± 5 µW . (4.1)

One has to consider the power loss that occurs by having diffraction orders

that are not relevant for the grating Mach-Zehnder. A simple measurement

with a power-meter revealed that in the order of 1 % of the incoming power

is left in the output one is interested in.

4.4 Set-Up

This section discusses the experimental realization of the three-beam Mach-

Zehnder. With the actuators, gratings and the laser described above two

different designs are given.

The first setup was intended as a proof-of-principle, therefore one of the two

parallel beams was omitted. As can be seen in equation (3.24) and (3.25) a

simple setup can be designed only with one straight and the cross beam that

gives the corresponding angular differences. Here, setting up only the ’Left’

and the ’Cross’ beam will give the angular difference between Grating 1 and

2.

The complete three beam interferometer for tilts is described afterwards,

in section 4.4.2. As the available laser is too weak for the full three beam

Mach-Zehnder the laser was motorized via linear actuators, thus simplifying

the build but - at the same time - introducing systematic effects, which will
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be discussed in Chapter 5.

4.4.1 Proof Of Principle

A schematic of the setup is shown in Figure 4.2. The two beams originate from

the same intensity stabilized HeNe-laser (λ = 633 nm) of random polarization

that is fiber coupled into an adjustable focusing lens. The beams are then

split in two by a polarizing beam splitting cube (note that the polarization is

of no importance for the amplitude gratings used in this experiment). The

beam going straight is the straight interferometer while the beam reflected

by 90◦ is guided by a mirror in the ’Cross’ position.

The gratings are mounted on aluminium supports which are fixed onto the

piezo actuators. These are in turn mounted on an aluminium block from the

AtliX main experiment. The block is designed for a distance between the

gratings of L = 171.7 mm. The distance between the gratings must be in the

far field regime. This condition is valid when

d2

Lλ
� 1 . (4.2)

Here, d = 40 µm is the aperture size and λ = 633 nm is the wavelength. One

finds a value of 0.015� 1, validating this condition.

In order to prevent more than two orders of diffraction from going through

each grating, an aluminum aperture was placed in front of the gratings.

Although this solution allowed for an easier beam selection, it led to unwanted

multiple reflections, which distorted the signal shape. Replacing them with

equivalent slits made of black cardboard ’cleans up’ the signal completely. A

detailed discussion is given in section 5.

The data is recorded by standard reverse biased photodiodes from Thorlabs

(Model DET10A/M [33]). Due to space constraints of the work environment

and the size of the package around the diodes a beam splitter or a mirror has

to be placed inside the beam path to get the signal onto the active area of

both diodes. Another Polarizing Beamsplitter Cube (PBC) has been chosen
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Laser

Grating 3 Grating 2 Grating 1

'Left'

'Cross'

Photo Diode
Mirror

M
irror

Beam Splitter

Figure 4.2: Setup to prove the basic concept. A HeNe laser is coupled to a
fiber, split by a Polarizing Beamsplitter Cube and guided by mirrors into the
’Left’ and ’Cross’ positions on the gratings. The signal is recorded by two
photodiodes. Due to space constraints the ’Cross’ beam has to be reflected
once more.

because it could be mounted to guide one beam without obstructing the other.

4.4.2 Variable System With Actuators

A schematic of the setup is shown in figure 4.3. To build the full system with

3 Mach-Zehnder interferometers a design using translational stages is in place.

Here the same HeNe-laser as mentioned above is used. Because the intensity

in the previous build with the available laser was so low (order of magnitude

1 µW; see section 5) instead of splitting it into three parts, the full intensity

is put into one Mach-Zehnder.

The idea is to move both the laser out coupler and one photodiode on two

linear translational stages. A third linear actuator is used to tilt the laser out

coupler into the ’Cross’ position. These actuators of type Oriel encoder mike

have a resolution of 0.1 µm and a range of 51 mm which fits the requirements.

This means the third grating needs to be scanned three times to make a

statement on the angular differences between the gratings. The non reflective
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Laser

'Left'

'Right'

'Cross'

1

2

3

Photo Diode

Grating 3 Grating 2 Grating 1

Figure 4.3: Set Up using linear actuators for translation of the laser out
coupler and the photo diode. The tilt of the out coupler is given by a third
linear actuator. Position of each Mach-Zehnder ’Left’, ’Right’ and ’Cross’ in
the gratings is recorded by the same Laser and photo diode. Operation of
actuators: 1. parallel movement of laser; 2. tilt of laser; 3. parallel movement
of photo diode

slits mentioned above are included in this setup. Another difference is, that

the gratings have been moved from the aluminium block and placed with

the actuators on an aluminum bar at a longer distance of L = 250 mm. This

made the positioning of the screens and the alignment of the photodiode

simpler since the diffraction orders are spaced further apart. By equation 4.2

this distance is in the far field regime.

Only two of the Oriel actuators can be controlled simultaneously. One scan

consists of three individual measurements with repositioning of the laser and

the photo diode in between. The procedure is in order (see figure 4.3):

1. Movement of the laser parallel to the gratings

2. Tilt of the laser out coupler (’Cross’- or ’Straight’-position)

3. Movement of the photo diode parallel to the gratings. This position is
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determined by observation of the output. It reaches its maximum if the

laser is centered on the active area of the diode.
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5 Results

The results obtained from the setups in chapter 4 are presented. Measurements

on the hysteresis and correction factor for the actuators are detailed in section

5.1. Furthermore a discussion on the signal shape is found in section 5.2.

Section 5.3 aims at giving the minimal resolved angular resolution. This

includes comments on cross correlation and fitting of sine- and linear functions

to the data for phase extraction. The relation between applied angle and

measured angle serves as a means to verify the results.

5.1 Testing The Actuators

As discussed in section 4.1 the linear actuator shows hysteresis effects and

the goniometer readout needs to be adjusted with a correction factor. These

will be detailed in the following parts.

Linear Positioner

When reversing the direction of the linear actuator movement, one observes a

discrepancy of the real position and the readout. This effect vanishes when

moving in the new direction.

Figure 5.1 shows this effect in the given actuator by observation of the fringe

pattern when scanning grating three. One full period must correspond to a

movement of d = 40 µm. The blue curve is taken as reference over a long

scan of (400 µm). The orange curve is supposed to be a repetition of the

range between 2200µm to 2400 µm. In the beginning of the scan a clear

mismatch between the reference and the repeated scan is visible. By the end

both signals are in phase. This effect can be attributed to hysteresis of the

actuators. A counter strategy is to go further back and then move up to the

desired position. At this point it will already have caught up and the signals

match. It was found that going back by 200 µm is sufficient to ensure the

actuator reproducibility.
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Figure 5.1: Hysteresis effect. The plot shows two scans of the same region.
When changing direction of the linear actuator, hysteresis becomes visible.
At first, the signal is out of phase. After approx. 200 µm the signal stabilizes.
As a counter measure, moving further back and forth before measurement
eliminates the hysteresis effect. This phenomenon is reproducible.

Goniometer

The Goniometers show a discrepancy between the applied angular step and

the actual tilt. One finds a correction factor ccor. of

αreal = ccor. · αread out (5.1)

ccor. = 1.2 . (5.2)

A first indication of this effect was found during the work presented here when

the results obtained on the angular scans (see section 5.3) did not match the

expected result.

Two independent tests by the group verified this.

• Tilt sensors

Precise tilt sensors, manufactured by Wyler were used to determine

the angular discrepancy. These devices of type Zerotronic inclination

sensor [34] have a high resolution of 8.7 µrad and are therefore ideal to
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make this measurement. (Application in the main experiment would be

ideal but lack of vacuum compatibility and size prevent this.)

• Diffraction

Mounting a grating on the goniometer and shining a laser on it creates

a diffraction pattern on a screen at a distance L (= 1 m). This pattern

is perpendicular to the grating slits. A tilt of angle α of the gratings

moves the diffraction pattern by the same α.

5.2 Shaping The Signal

As mentioned in section 4.4.1 the initial signal showed distortions that needed

to be resolved. Nevertheless it is possible to extract phase information out of

it which will be discussed in section 5.3. Here an overview will be given on

the signal shape and the measures taken to improve it.

The signal is given by scanning grating three in the z-direction. In practice

this means step wise acquisition since the actuators do not support linear

continuous scanning (see section 4.1). Discrete steps are taken in the z-

direction and at every step the intensity is averaged over t = 1 s. This method

eliminates largely the influence of noise on the data. Main contributors to

noise is electronic noise in the photo diode (thermal, 1/f,...) and ambient

light. Both setups are inside a box to minimize this effect, but small leaks

couldn’t be prevented.

As discussed in section 4.3 most of the power is diffracted into ’unused’ orders.

Therefore the signal amplitude is in the order of Pout = 1 µW. Furthermore

it depends on the position on the grating. This indicates a variance in the

open fraction η across the grating. The acquisition electronics has a negative

voltage bias of VBias = −4 mV giving a constant negative offset to the signal.

Back and forth reflections between the aluminium slits and the frame of the

grating holders introduced distortions to the signal, as can be seen in figure

5.2a. The reflections accumulate additional phase and therefore manifest as

bumps between the main peaks. It is still possible to extract phase information
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Figure 5.2: Signal shape when scanning grating 3; a. signal including distor-
tions; b. pure signal. The distortions in a. are due to reflections within the
setup that accumulate phase. Replacing the aluminium aperture with a non
reflective screen cleans up the signal shape.

out of this signal via cross correlation which will be shown in section 5.3.

Usage of non reflective black cardboard as screens between gratings gives the

expected sine function as shown in figure 5.2b. Here simple curve fitting is

sufficient to get the phase information.

5.3 Monitoring The Tilt

This section discusses results on tilt monitoring with the concept of the

three-beam Mach-Zehnder interferometer. Methods to extract the phase are

discussed. This includes cross correlation and fitting. Lastly the minimal

achieved resolution is given.

Phase Extraction via Cross Correlation

Cross correlation as a means to extract the phase between the two recorded

signals is the topic of this sub chapter. Cross correlation is the product of two

functions f and g as a function of their displacement τ between each other

(f ? g)(τ) =

∫ ∞
−∞

f ∗(t)g(t+ τ)dτ . (5.3)

35



5 Results

4 4.5 5 5.5 6

Applied Angle [mrad]

0

0.05

0.1

0.15

0.2

0.25

0.3

M
ea

su
re

d 
P

ha
se

 [d
]

4.5 5 5.5 6 6.5

Applied Angle [mrad]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
ea

su
re

d 
P

ha
se

 [d
]

a. b.

Figure 5.3: Phase difference as function of angle on grating 2; a. sampling
of 2 µm; b. fine sampling of 0.5 µm; each point has been calculated by cross
correlation. The step size is linked to the achieved resolution. The discrete
steps of 0.05d in a. match the step size of 2 µm. A smaller step size, as seen
in b. with 0.5 µm improves the resolution.

For discrete functions the integral turns into a sum. As discussed in section

5.2 the signal shape in the initial set up is not a sine function but shows

distortions, as can be seen in figure 5.2a. Nevertheless it is still possible

to extract phase information out of such a signal as long as the bumps are

constant within one full phase. In this case cross correlation proves to be a

powerful tool. Here it can be used to find the phase by ’sliding’ one recorded

signal on top of the other. When the cross correlation function is maximal

both signals are in phase. Out of this information the phase shift can be

calculated. The results are plotted in figure 5.3. There the phase difference

between the ’Left’ and the ’Cross’ Mach-Zehnder is given as a fraction of the

periodicity d = 40 µm plotted against the angle of grating two.

The signals recorded during one scan of the third grating is a collection

of discrete data points. For such a discrete cross correlation the minimal

detectable phase shift is given by the finesse of the sampling. Two signals

with different step size in the z-direction are shown in figure 5.3. Fig. 5.3a. is

scanned with a step size of 2 µm and Fig. 5.3b. with 0.5 µm. The difference

in phase resolution is clearly visible. The signal sampled in 2 µm steps shows

a discontinuous behavior. The distance between each jump, 5 % of d, corre-

36



5 Results

4 4.5 5 5.5 6

Applied Angle [mrad]

0

0.5

1

1.5

2

2.5

3

M
ea

su
re

d 
A

ng
le

 [m
ra

d]

Data
Fit

Figure 5.4: Phase evolution as a function of angular difference and linear fit
to the data. Data has been recorded with step size of 0.5 µm. The fitted slope
is compatible with the expected factor of a = 1.2.

sponds directly to the 2 µm step size. However the 0.5 µm steps applied in fig.

b. give sufficient resolution.

Applied Angle vs. Measured Angle

The following discussion shows that with a combination of distorted signal and

cross correlation the theory described in section 3.3 matches the experimental

outcome.

According to equation 3.24 a linear behavior of the phase difference with the

angular difference is expected. In the setup given in section 4.4.1 the relevant

parameters are the periodicity d and the distance on the first grating h:

h = 4.2± 0.3 mm (5.4)

d = 40 µm (5.5)

A linear fit is done on the data in figure 5.3b. as is shown in figure 5.4. The

phase is calculated into the corresponding angle with the parameters given
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Figure 5.5: Intensity over one scan of third grating. The phases are extracted
by fits to same data set; a. sinus fit; b. linear fit. The data in a. is
approximated by a sine function. Both approaches are compatible. The linear
fit is preferred due to better reliability and smaller fitting errors.

above. The fit gives a slope c of

c = 1.216± 0.030 (5.6)

This result is compatible with the measured correction factor ccor. found in

section 5.1.

Phase Extraction via Fitting

The data presented above has been taken in the initial setup described in

section 4.4.1. The main improvement in the second iteration (see section

4.4.2) is the ’clean’ signal shape. This means the phase can be extracted by

a fitting procedure. In the following discussion both a sine fit as well as a

linear fit will be considered. A fitting method is desired compared to the cross

correlation discussed above. Such a procedure will require less acquisition of

data and will speed up the measuring process.

Figure 5.5 shows two fits on the same data points. An offset has been added

to shift the mean to zero. Figure 5.5a. shows a sinusoidal fit while figure 5.5b.

shows the linear fit on the maximum slope of the signal. Information on the
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phase is encoded in the fitting function sin(2π
d

(x− Φ)) in case a. and in the

intersection with the x-axis of a(x− Φ) in case b.

Figure 5.5a. reveals that the detected signal is more complex than a sine

function. It is skewed in its peaks to one side. This could be due to the

gratings themselves.

Using these two approaches to extract the phase difference out of a data set

gives compatible results.

Angular Scans On Translational Stages

With the variable setup described in section 4.4.2 and this method of phase

extraction the angles are monitored as before.

Starting with big angular steps of 1.7 mrad the set up is tested. Figure 5.6

shows the behavior of the angular difference between grating 1 and 2 as well

as 2 and 3 when grating 2 is tilted. Since both results are extracted from the

same grating, both plots must show the same behavior. Indeed linear fits on

the evolution in figure 5.6a. and b. gives compatible results within 3σ.

c1,2 = 1.218± 0.041 (5.7)

c2,3 = 1.382± 0.084 (5.8)

Notice that these results are compatible within 3σ with the correction factor

c obtained in section 5.1. Still, a2,3 is not matching as well as previous results.

This could possibly be explained by a misalignment in the intersection plane

of ’Right’ and ’Cross’ beam.

The second data point in figure 5.6b. is significantly off the expected line.

This can be attributed to an error during the data acquisition in which the

parallel translation of the laser went further than planed. Therefore it has

been excluded in the fit.
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Figure 5.6: Grating 2 is moved by 1.7 mrad in each step. Figure a. shows
the measured angle between grating 1 & 2; b. between grating 2 & 3. A
linear Fit is added. The second point in b. is due to an error during data
acquisition and is excluded from the fit. The slopes are compatible with the
expected value of 1.2.

Fine Angular Scan

After proving the working principle the minimal detectable tilt is tested with

this version. In order to get there, the second grating is tilted by 35µrad in

each scanning step. Figure 5.7 shows the extracted angle between grating one

and two, both with the sine fit (orange) and the linear fit (blue). The errors

are given by the 68 % confidence intervals of the fit parameter. Both methods

are compatible with each other within 2σ. Interestingly there is a systematic

offset between both results of αoffset = 59± 13 µrad. This could be due to the

signal shape described above. This skewing of the sine might influence the fit

parameter for the phase Φ. The error given by the fits is smaller in the linear

case. This comes from the reduced number of parameters that need to be

considered.

It becomes apparent, that the data in figure 5.7 does not allow reliable

reconstruction of the applied angle. A linear fit on the data reveals a trend of

c = 1.31± 0.39 (5.9)
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Figure 5.7: Measurement with 35µrad steps on grating two. The Phases
have been extracted by fitting: blue: linear function; orange: sine function.
An offset between both methods is visible and due to the skewed signal
shape. The data points are not on a line but scatter. The translational stages
introduced further uncertainties.

Even though this is compatible in principle, an error of 30 % on the slope

does not give confidence in the result.

How can this be explained? The idea to move the setup onto translational

stages introduced these fluctuations seen in figure 5.7. One data point is

taken by three individual scans with translations of the laser in between. In

this procedure two effects are possible:

• Hysteresis: The actuators of type ’Oriel encoder mike’ show most

likely a hysteresis effect. This will have an effect on the position and

the tilt of the laser beam. Displacements in the plane of grating one or

two show up linearly in the measured phase difference. This means a

hysteresis effect over time would accumulate linearly.

• Drifts: Drifts of the set up are very well possible. The laser out coupler

is mounted on a translational stage and has an additional actuator

mounted horizontally to introduce a tilt. Also there are cables and a

fiber attached which might stress the build during movement. Having
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the aperture move over many scans can influence the stability of the

position.

Relying on a movable setup is the main reason the angular behavior is

distorted. A setup which has all three beams fixed is the main step for the

next iteration of this project.

Achieved Resolution

Lastly the minimal detectable resolution will be given. Even though the last

measurement can be labeled as inconclusive, the work presented here can give

a few insights on this topic. The combination af both setups presented gives

the following result:

A step size of

∆α = (87± 14)µrad (5.10)

= (5.0± 0.8)mdeg (5.11)

was resolved. With the correction factor of a = 1.2 the real achieved resolution

is:

∆α = (104± 17)µrad (5.12)

= (6.00± 0.96)mdeg (5.13)

This is the mean and its standard deviation over all data points presented in

figure 5.4.

The results show, that

∆αresolved > ∆αcrit. . (5.14)

The resolution achieved is not sufficient to meet the requirements for AtliX.

Phase extraction via cross correlation is linked to the step size in the z-direction.

The 0.5 µm steps are sufficient for the resolution given above. Going for a

genuine, fixed three-beam Mach-Zehnder will open up the possibility of a

slope fit again. This method has potential to give better resolution over a
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shorter acquisition time (less periods with less finely sampled data).
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6 Summary & Outlook

This chapter will gave a brief summary of the results as well as an outlook

for the steps necessary to implement a fully realized version of this work in

the main experiment of AtliX.

6.1 Summary

This thesis details work on system designed to monitor tilts of a Talbot-Lau

interferometer consisting of three equidistant gratings. A concept using three

independent laser Mach-Zehnder interferometers describes how their mutual

phase differences is related to the angular differences between the gratings.

In order to achieve this, two setups have been designed as a means to test the

theory. For both designs the chosen method for phase extraction is discussed

and results for the monitored angle are given. Lastly the minimal achieved

resolution is given as

∆α = (104± 17)µrad (6.1)

= (6.00± 0.96)mdeg (6.2)

This resolution is bigger than the critical angular difference ∆αcrit. for the

Talbot-Lau interferometer in AtliX of

∆αcrit. = 37 µrad . (6.3)

A static setup is expected to improve the resolution.

6.2 Outlook

Following this work it is clear that the next step is to build a setup which

mimics the conditions that the final version will work with. This means the

full three-beam interferometer with simultaneous readout of all three outputs.

In fact at the time of writing work has already begun to realize this. A new

44



6 Summary & Outlook

laser is in place that will give more power output to improve the signal. It is

a pigtailed laser diode with 70 mW of power at λ = 638 nm. The provided

laser beam will be split in four parts by a fiber splitter with each at approx.

25 %. Three of the outputs will be collimated and used for each individual

interferometer. The fourth can be used to monitor the intensity output of

the laser.

The advantages are clear. This system is the complete equivalent to the

envisioned implementation in the main experiment. This implementation in

the main experiment should be straight forward. However there are some

details to consider:

A full version of the work presented here must be operational in vacuum and

should not disturb the main experiment of proton interferometry. Vacuum

compatibility means the parts used inside the chamber can not outgas (when

parts are manufactured with chemicals such as glue). This could potentially

effect the vacuum quality. Furthermore any charge up effects between or after

the gratings, when the proton beam is on, must be eliminated. This means

coating any elements placed inside (such as the screens blocking unwanted

diffraction orders) or ’hiding’ them in places where contact with protons will

not happen.

At the time of writing new gratings have been commissioned with this three-

beam interferometer in mind and should arrive soon. Their 7 mm× 7 mm

area is divided into an upper and lower part of 3 mm× 7 mm with a 1 mm

bar between them. The upper part is a grating with nanometric pitch for

the Tolbot-Lau interferometry of protons while the lower part is intended for

monitoring of the tilt with the method presented in this work. The advantage

of this setup is that the angle between the nanometric and 40µm grating is

controlled and ideally zero.

The path to a full implementation of angular grating control with a three-

beam Mach-Zehnder interferometer is clear and has the potential to improve

precision measurements of (anti-) proton interferometry in AtliX.
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