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Lagrangian approach to the dynamics of dark matter-wave solitons
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We analyze the dynamics of dark matter-wave solitons on a Thomas-Fermi cloud described by the Gross-
Pitaevskii equation with radial symmetry. One-dimensional, ring, and spherical dark solitons are considered,
and the evolution of their amplitudes, velocities, and centers is investigated by means of a Lagrangian ap-
proach. In the case of large-amplitude oscillations, higher-order corrections to the corresponding equations of
motion for the soliton characteristics are shown to be important in order to accurately describe its dynamics.
The numerical results are found to be in very good agreement with the analytical predictions.
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I. INTRODUCTION

Dark solitons (DS’s) are nonlinear excitations of the non-
linear Schrodinger (NLS) equation with repulsive interac-
tions, which have been studied in the context of Bose-
Einstein condensates (BEC’s) both experimentally [1] and
theoretically. In particular, as BEC’s are confined in external
trapping potentials, many studies dealt with the dynamics of
dark solitons in harmonic [2-7] or optical lattice [8] poten-
tials. Especially, in the former setup, it has been found that in
elongated harmonic traps a dark soliton oscillates with fre-
quency /y2 (Q being the axial trapping frequency). This
result is valid for both limiting cases pertaining to the two
types of DS’s—namely, the nearly black (deep) solitons
[4]—and the grey (shallow) ones [3]; notice that it has re-
cently been shown that, in the framework of the adiabatic
approximation, the above result refers to DS’s of arbitrary
amplitudes [6]. Thermal [9] and dynamical [10] instabilities,
mainly referring to rectilinear DS’s, have been investigated
as well. On the other hand, generalizations of the traditional
rectilinear dark solitons, such as the ring dark solitons, have
recently been proposed [11] (see, e.g., Refs. [12]). System-
atic studies of the sound emission of dark solitons interacting
with BEC inhomogeneities, as well as soliton sound interac-
tions, have been performed [13]. It has been shown that
quantum depletion of purely black (stationary) solitons [14]
reduces their lifetime, as atoms tunnel in to fill up the notch
at the soliton center. Finally, a method for the stabilization of
dark solitons against dissipative losses, based on a paramet-
ric driving mechanism, has recently been proposed [15],
which may pave the way for observing long-lived dark soli-
tons in BEC’s in future BEC experiments.

In this paper, we employ the Lagrangian approach devised
in [16] to study the dynamics of dark solitons in trapped
BEC’s in the framework of the Gross-Pitaevskii equation
(GPE). Our analytical consideration concerns all cases per-
taining to quasi-one-dimensional (quasi-1D) dark solitons—
namely, rectilinear ones as well as ring and spherical DS’s—
which are found as perturbative solutions with radial
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symmetry of the GPE. The evolution equations for the soli-
ton parameters (amplitude, velocity of the center, or radius)
are derived analytically, and the respective results are com-
pared with numerical ones, obtained by direct numerical in-
tegration of the respective GPE’s (for the 1D and 2D set-
tings). For harmonic traps, and solely in the 1D case, it is
shown that the soliton oscillation on top of the Thomas-
Fermi (TF) cloud is harmonic (with frequency /+2). This
result is valid both for sufficiently deep dark solitons moving
in regions around the trap center (with a length =~25% of the
TF radius) and for shallower ones, oscillating in regions as
wide as =85% of the TF radius, in accordance with the
results presented in [6]. We show that in the particular case
of gray solitons, it is necessary to incorporate higher-order
corrections to the evolution equations for the soliton param-
eters, in order to describe accurately the DS dynamics. In the
higher-dimensional (cylindrical and spherical) settings, the
effective (attractive) potential describing the soliton dynam-
ics incorporates an additional (repulsive) curvature-induced
logarithmic potential. Importantly, in the latter settings, these
higher-order corrections are necessary for a satisfactory esti-
mation of the critical radius for the formation of stationary
ring DS’s, as well as for a description of the nonlinear oscil-
lation of the soliton radius up to the onset of the snaking
instability. Finally, it is noted that our analysis does not rely
on the specific form of the trap, as it can generally be applied
in all cases where the soliton width (defined by the system’s
healing length) is sufficiently smaller than the spatial scale
characterizing the external potential.

The paper is organized as follows: In Sec. II, the model
and pertinent analytical considerations are presented, in Sec.
IIT the analytical predictions are compared with direct nu-
merical simulations, and, finally, in Sec. IV, the main results
of this work are summarized.

II. ANALYTICAL RESULTS

A. Model and the effective perturbed NLS

Purely 1D dark solitons, in a 1D setting, as well as
quasi-1D ones with radial symmetry—namely, cylindrical
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(or ring) dark solitons—in a quasi-2D setting, and spherical
dark solitons, in a 3D setting, can be described, in the frame-
work of the mean-field theory, by the following normalized
GPE (with repulsive interatomic interactions):
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where ¢A(r,1) is the mean-field wave fuction and the Laplac-
ian is considered to be in the form
# (D-1)9d

Vi=—+ —, 2
ar? r or @

with D=1,2,3. In this setup, for D=1, Eq. (1) is actually a
1D GPE, describing a quasi-1D (“cigar-shaped”) BEC, con-
fined in a highly anisotropic trap with a very tight radial
confinement; in this case, assuming that the longitudinal di-
rection is x, the confining frequencies are w,<w, and the
variable r represents the longitudinal one—i.e., r=x. Simi-
larly, for D=2, the GPE (1) describes a quasi-2D (“pan-
cake”) condensate, assumed to lie mainly in the x-y plane; in
this case, the trap frequencies are such that w; < w, and the
variable r is the radial one—namely, = \x?>+y>. On the other
hand, for D=3—i.e., in the purely 3D setting with spherical
symmetry—the confining frequencies in the longitudinal and
transverse directions are equal (taking the same value, say,
w) and the variable r=\x>+y”+z%. In all cases (D=1,2,3), r
is scaled in units of the fluid healing length §=7/\nyg;p,m
(which also characterizes the size of the dark soliton), ¢ in
units of &/¢ (where c=\nyg;p/m is the Bogoliubov speed of
sound), the atomic density is rescaled by the peak density 7y,
and energy is measured in units of the chemical potential of
the system wu=g;pn, (m is the atomic mass). Note that in the
above definitions, g;p (with j=1,2,3) correspond to the in-
teraction strengths in 1D, 2D, and 3D; particularly, g,p and
gop are effective interaction strengths, which are obtained
upon integrating the 3D interaction strength gyp=4mh%a/m
(a is the scattering length) in the transverse or the longitudi-
nal directions, respectively. Finally, in the case of a harmonic
trapping potential, the potential in Eq. (1) is V(r)
=(1/2)Q%r?, where the parameter () determines the magnetic
trap strength and takes the values Zw,/g,png, Aiw, /g pny,
and hiw/gspny for D=1, 2, and 3, respectively. Note that in
the following analysis it is assumed that the width of the
soliton (~§) is significantly smaller than the spatial scale
characterizing the trap (Q7"?)—ie., Q&<1. Generally
speaking, our analysis does not rely on the specific form of
the trapping potential. Thus, hereafter, we will proceed with
the presentation of the analytical results assuming a general
form of the trapping potential V(r) and we will deal with the
experimentally relevant case of the harmonic trap in the nu-
merical simulations.

In order to treat analytically the dynamics of the tradi-
tional rectilinear dark solitons, we look for solutions of Eq.
(1) of the form

= (r)exp(= ipt)v(r,1), 3)

where ¢(r)exp(—iur) describes the background wave func-
tion, v(r,7) describes the dark soliton, and u is the normal-
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ized chemical potential, which is connected to the number of
atoms of the condensate. Below, without loss of generality,
we will assume that u=1; note that for ) of order ~1072,
and for typical values of trapping frequencies used in experi-
ments, this choice leads, for a 8Rb condensate, to a number
of atoms, N~ 10°. The stationary function ¢(r) can be ap-
proximated in the TF framework [7] as

¢(r) =N1-V(r) (4)

in the region where V(r)<1 and ¢(r)=0 outside. On the
other hand, substituting the ansatz (3) in Eq. (1), it is readily
found that the soliton wave function v(r,?) is governed by
the evolution equation

v 1 ¢*v 212 (D
15 22 ¢>(|v|—1)v———1n¢)—

1)&v

e

In the case of slowly varying external potentials under con-
sideration, the logarithmic derivative of ¢ is apparently small
[e.g., for the parabolic potential V(r)=(1/2)Q?%, it is of
order of (), which is assumed to be a small parameter]. Ad-
ditionally, in the special cases D=2,3, we may also assume
that the cylindrical (D=2) and spherical (D=3) dark solitons
are characterized by a large radius, such that 1/r=0(().
Thus, it is clear that the right-hand side (RHS) and also part
of the nonlinear terms of Eq. (5) can be treated as a pertur-
bation. To obtain this perturbation in an explicit form, we
first use Eq. (4) to approximate the logarithmic derivative of

@ as
d 1dv
——lng=~-—(1+V+V?. 6
&rnd) 2dr( V) (©)

As we will show below, if the soliton is sufficiently deep and
moves in a small region around the trap’s minimum, its dy-
namics can be described analytically, with a good accuracy,
taking into regard solely the leading-order term on the RHS
of Eq. (6); in such a case and for a parabolic trap, the soliton
dynamics is described by means of the equation of motion
for a linear oscillator. Nevertheless, as we are interested in
the case of shallow solitons as well, it is necessary to incor-
porate the higher-order corrections—i.e., the last two terms
in the RHS of Eq. (6)—which play an important role in the
description of the soliton motion.

Substituting now Egs. (4) and (6) into Eq. (5), the follow-
ing perturbed NLS equation is obtained:

1
‘;‘t’ +258 = (o~ Do=PO), )

where the total perturbation P(v) has the form

dvov (D-1)dv
P)==|2V(1 =)o+ —— - —
©=3[2vt=loPo+ 2=
1 dVv dv
“V+V)——, 8
VAV (8)

with the last two terms corresponding to the higher-order
corrections in Eq. (6). In the absence of the perturbation
P(v), Eq. (7) represents a conventional defocusing NLS
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equation, which possesses an exact analytical dark soliton
solution of the form [17]

v(x,t) =B tanh { +iA, 9)

where {=B(r—At) and the parameters A and B represent,
respectively, the velocity and amplitude of the dark soliton,
connected through the simple equation A%+ B%=1 (note that
the limiting cases B=1 and B<< 1 correspond, respectively, to
the stationary “black” soliton and the “gray” soliton, moving
with a velocity near the speed of sound). It is clear that for
D=1,2,3 the solution (9) represents, respectively, a plane, a
cylindrical (ring), or a spherical dark soliton; note that the
cylindrical (spherical) soliton resembles an annular trough
(dark spherical shell) on top of the TF cloud.

B. Lagrangian approach

To treat analytically the effect of the perturbation (8) on
the dark soliton, we employ the adiabatic approximation of
the Lagrangian perturbation theory for dark solitons [16].
According to this approach, the parameters of the dark soli-
ton become slowly varying functions of time, but the func-
tional form of the soliton remains unchanged. Thus, the soli-
ton velocity, amplitude, and coordinate become A —A(¢), B
—B(t) and {— {=B(t)[r—ry(r)], where ry(t) is the soliton
center. Note that in the unperturbed case, dry/dt=A, but in
the general perturbed case under consideration, this simple
relationship may not be valid (see below).

As has been shown in Ref. [16], the corresponding equa-
tions of motion of the soliton parameters «;(t) [which is a
generic name for ry(rf) and A(r)] may be obtained as the
Euler-Lagrange equations

JdL  d|dL v
=2Re P(v)_—dr¢, (10

da; dt e da;
where aj’-Edaj/dt and L=[7drL{v} represents the aver-
aged Lagrangian of the dark soliton of the unperturbed NLS

equation [namely, for P(v)=0], with the Lagrangian density
L being given by

o e 1 1
L{v}= (v E—v;)(l |v|2) 2
(11)

Next we first substitute the ansatz (9) into Eq. (11) to find the
averaged Lagrangian

d B 4
L=2ﬂ{—AB+tan—'(—)}——B3. (12)
dt A 3

) 2
or

1
—5(|U|2— 1)%.

Then, substituting Eq. (8) into Eq. (10) and taking into ac-
count that for any spatially slowly varying trapping potential
V(r) its higher-order derivatives may be omitted, we obtain
the following evolution equations for the soliton parameters:

PR = )
" —A{I—ZV(VO)} 432(3 9 [1-2V(ro)]

(13)

and
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Equations (13) and (14) describe the DS dynamics, in
both cases of nearly black solitons (A=0 or B~ 1) and gray
ones (with arbitrary A or B). In the latter case, as we will
show below, incorporation of the higher-order corrections in
Eq. (6) is necessary to describe accurately the DS dynamics.
In this respect, it is worth tracing the contribution of each
term in the approximation, Eq. (6): First, the leading-order
term gives rise to the first two terms on the RHS of Egs. (13)
and (14), while inclusion of the first-order term in Eq. (6)
leads to the additional terms ~(JdV/dry)? in Eq. (13) and
~(aVIdrg)V(ry) in Eq. (14). Finally, incorporation of all
terms in Eq. (6) leads to the final result of Egs. (13) and (14).

Let us discuss now the most simplified version of Egs.
(13) and (14), corresponding to the above-mentioned leading
order of approximation. In this case, the following equation
for the soliton center can readily be derived:

&’ 19v (D-1 A% gV
T
dt 2(?”'0 3}"0 2&

(15)

This equation can further be simplified considering a nearly
black soliton B~ 1 (A=0), moving in a vicinity of the trap’s
minimum (where u=1>V). In such a case, Eq. (15) is re-
duced to the following Newtonian equation of motion for the
soliton center:

2

Ly Mo 09
dt or 0

where Vg(ro)=(1/ 4)Q2r%—ln rE)D_l)B. Equation (16) recov-
ers the well-known result [2,4—6] that in a 1D setting (D
=1), a nearly black soliton oscillates with frequency /42 in
the harmonic trap V(x)=(1/2)Q%x*. Nevertheless, as the soli-
ton becomes shallower—i.e., its amplitude B (velocity A) is
decreased (increased)—it is clear that the time-dependent
prefactors on the RHS of Eq. (15) come into play; at the
same time, the soliton moves in regions where the value of
the trapping potential becomes comparable to the chemical
potential and, as a result, the soliton dynamics is accordingly
modified. In this case, to describe the oscillatory motion of
the gray soliton it is necessary to employ the full set of
equations (13) and (14). Importantly, as we will show in the
next section, the oscﬂlatlon frequency of the gray soliton is
again found to be Q/ V2. Finally, it is worth mentioning that
in the higher-dimensional settings with D=2,3 the equation
of the soliton motion becomes nonlinear, even for nearly
black solitons, due to the presence of the repulsive curvature-
induced logarithmic potential; note that a similar equation of
motion was first derived and discussed in [11], in the case of
ring dark solitons (D=2).
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FIG. 1. Motion of the center of a dark soliton in a quasi-1D
BEC confined in a parabolic trap with 2=0.035 and TF radius
~40. The soliton is initially placed at x((0)=0, and its initial ve-
locity is A(0)=0.7. The almost coinciding solid and dash-dotted
lines correspond, respectively, to the results of the direct numerical
integration of the GPE and the analytical predictions of Egs. (13)
and (14). The dashed and dotted lines are results obtained from
simplified versions of Egs. (13) and (14), corresponding to the
leading- [Eq. (15) for D=1] and first-order approximations in Eq.
(6) (see text).

III. NUMERICAL RESULTS

We have found that our analytical findings are in very
good agreement with direct numerical simulations. In par-
ticular, we have systematically compared dark soliton trajec-
tories, as predicted by Egs. (13) and (14), with the ones
obtained by direct numerical integration of the GPE (1) and
present the relevant results in what follows.

As far as the simplest 1D case (D=1) is concerned, we
have considered a BEC confined in the harmonic trap V(x)
=(1/2)Q%x? (with 2=0.035) and we have performed a series
of simulations, pertaining to solitons of the same initial po-
sition [x((0)=0—i.e., at the trap center], but of different ini-
tial velocities A(0), in the interval (0,0.8); note that larger
values of A are physically less interesting, since for A= 1 the
very shallow dark soliton is hardly distinguishable from
sound. We have found that Eq. (16) describes accurately the
soliton dynamics only for initial velocities 0<A(0)<0.2,
corresponding to soliton oscillations performed in =25% of
the TF radius. In the interval 0.2<<A(0) <0.4 (oscillations up
to =40% of the TF radius), it is necessary to take into ac-
count the first-order correction in Eq. (6) and employ the
simplified version of Egs. (13) and (14) [incorporating the
terms ~(dV/dry)? in Eq. (13) and ~(dV/dry)V(r,) in Eq.
(14)] to describe the soliton dynamics with sufficient accu-
racy: In particular the error in the estimation of the soliton
oscillation frequency is reduced from =5% to =~1% in the
above-mentioned successive orders of approximation. Fi-
nally, for initial velocities 0.4<<A(0)<0.8 (amplitude of
soliton oscillation up to =85% of the TF radius), the dynam-
ics of the dark soliton can only be described correctly using
Egs. (13) and (14). In the latter case, the error in the estima-
tion of the soliton frequency is, respectively, reduced from
~15% to =3% and, finally, to =1%. As an example, in Fig.
1, the soliton trajectory [for A(0)=0.7] obtained by numeri-
cal integration of the GPE (1) is compared with the trajecto-
ries obtained by Egs. (13) and (14) including simplified ver-
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sions corresponding to above-mentioned different orders of
approximation. Importantly, the numerically found oscilla-
tion frequency of the gray soliton was obtained to be w,,,
~0.025, which is in excellent agreement with the value
Q/\2=0.024 75, which also corresponds to the prediction
based on Egs. (13) and (14) (compare the solid and dash-
dotted curves in Fig. 1). This result is in accordance with the
one obtained in [6], where it was pregicted that the oscilla-
tion frequency of gray solitons is 2/\2. It is conjectured that
the small discrepancy observed is merely due to nonadiabatic
effects: In particular (as already suggested in [6]), deviation
of the above-mentioned value of the oscillation frequency is
due to the inhomogeneity-induced radiation (sound emis-
sion) of the dark soliton [13], which is not included in the
present analysis [the original ansatz (9) used in the Lagrang-
ian perturbation theory does not incorporate radiative ef-
fects]. Note that for deeper dark solitons [e.g., for 0 <<A(0)
<0.2], all three analytically predicted curves in Fig.
I—namely the dashed, dotted, and dash-dotted ones—almost
coincide, in accordance with the results reported in earlier
relevant works [2,4,5]. Finally, it is worth mentioning that
additional simulations with different values of the trap
strength Q [but of the same order O(1072), so that the per-
turbative approach is valid] led to qualitatively similar re-
sults.

Let us now consider the 2D case—namely, the dynamics
of cylindrical (ring) dark solitons. For the latter, the combi-
nation of the (attractive) harmonic trapping potential and the
effective curvature-induced (repulsive) logarithmic potential
[see Eq. (16)] indicates the existence of a critical radius R,
for which a stationary ring exists, in contrast with their coun-
terparts known in nonlinear optics [17]. Numerical simula-
tions have confirmed the above prediction, and the critical
radius has been found to be R.,=('1/2)Q, a result which is
now compared with analytical predictions: While Eq. (16)
predicts the value (v2/3)Q~" (see also [11]), which leads to
an error of ~13.5%, the full set of equations (13) and (14)
predicts the value V0.516 18Q~!, which is very close to the
numerical one, with an error of 4%.

We have performed numerical simulations to compare the
ring soliton trajectories found by the GPE (1) to the ones
predicted by Egs. (13) and (14) (as well as their simplified
versions). As the ring radius oscillates between a minimum
and a maximum value (see also [11]), we have considered
solitons of sufficiently large minimum radius, so as to ensure
the validity of the analytical approach (recall that we have
assumed that r~'~Q<1). Additionally, in all cases the
simulations were performed up to the onset of the snaking
instability [10,17], which leads to the disintegration of ring
solitons and the formation of vortices and vortex patterns
[11] (see also [18] for recent reviews). In all cases, we found
the analytical results to be in fairly good agreement with the
numerical simulations, with an increasing accuracy from the
simplified verions to the full model of Egs. (13) and (14).
As an example, in Fig. 2 we show the evolution of the
radius R=r of a ring dark soliton in a condensate confined
in the trap V(r)=(1/2)Q*r* (with Q=0.035). The initial ra-
dius coincides with the minimum one—namely, Ry=R;,
=18.2—while the maximum radius is R, ,,=22.2. Only
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FIG. 2. Same as in Fig. 1, but for a cylindrical (ring) dark
soliton with initial velocity A(0)=0. The initial value of the ring
radius R is R(0)=18.2=R,,;,, while R, =22.2. Note that at ¢
=110, the snaking instability sets in.

~3/4 of the oscillation period is shown (then, the snaking
instability sets in). The evolution of the radius obtained by
the numerical integration of the GPE (solid line) is directly
compared to the ones obtained by Egs. (13) and (14) (dash-
dotted line), as well as to the simplified versions correspond-
ing to the leading-order [dashed line, Eq. (16)] and second-
order (dotted line) of approximation. It is worth mentioning
that the error in the estimation of R, is significantly re-
duced from 22% to 10.8% and, finally, to 7.2% in the suc-
cessive orders of approximation.

IV. CONCLUSIONS

In conclusion, we have studied the dynamics of purely 1D
and quasi-1D (cylindrical and spherical) dark matter-wave
solitons in the framework of the Gross-Pitaevskii equation.
Considering dark soliton solutions of the latter with radial
symmetry, we have derived an effective perturbed NLS
equation, which was then analyzed by means of the Lagrang-
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ian approach for dark solitons. Equations of motion for the
soliton centers (radii in the 2D and 3D settings) have been
obtained. For nearly stationary (black) dark solitons, moving
close to the trap center (i.e., in regions where the chemical
potential is significantly larger than the trapping potential)
the soliton dynamics is successfully described by a Newton-
ian equation of motion. In this picture, the dark soliton be-
haves as a classical particle in the presence of a parabolic
potential combined with a curvature-induced logarithmic po-
tential (in 2D and 3D). Nevertheless, in the more general
case of mobile (gray) dark solitons, oscillating in large re-
gions on the Thomas-Fermi cloud, higher-order corrections
in the evolution equations for the soliton characteristics have
been found, which have to be incorporated to describe accu-
rately the soliton dynamics. Numerical simulations for the
1D and 2D cases have been found to be in very good agree-
ment with the analytical findings.

One of the main conclusions of this work is that the soli-
ton oscillation frequency does not depend on the soliton am-
plitude, in accordance with the results reported recently in
[6]. On the other hand, it should be noticed that in the pre-
sented approach, inhomogeneity-induced radiation effects
(sound emitted by the dark soliton) are not encapsulated in
the presented Lagrange averaging method. An analytical
consideration of the radiation effects, as well as a detailed
investigation of the soliton dynamics under their presence, is
an interesting subject for future work. Finally, a more de-
tailed study of the purely 3D case is another interesting sub-
ject for a future investigation.
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