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Abstract: For many years, neural networks have demonstrated their power in

approximating different kinds of functions and modeling nonlinear processes. Re-

cently, their abilities have been exploited for tackling the exponential complexity

of representing a quantum many-body wave function: A specific type of neural

networks, the Boltzmann machine, was introduced to compress the information

encoded in the wave function. In this thesis, we attempt to understand the

role that this neural network architecture and the network weights play in

representing the quantum many-body states. We also find that the optimization

method used in previous works suffer from misconvergence in many cases. To

improve the convergence performance, we introduce a global search algorithm

called Differential Evolution. This method can also be generalized to other

neural network optimization problems and used for studying the geometry of

the objective function.

Zusammenfassung: Seit vielen Jahren werden neuronale Netze genutzt um

verschiedene Arten von Funktionen zu approximieren und nichtlineare Prozesse

zu modellieren. Vor kurzem wurde seine Fähigkeit genutzt um die exponentielle

Komplexität der Darstellung einer Quanten-Vielteilchenwellenfunktion in Angriff

zu nehmen: Eine spezielle Art von neuralen Netzen, die Boltzmann-Maschine,

wurde eingeführt, um die in der Wellenfunktion kodierte Information zu

komprimieren. In dieser Arbeit versuchen wir zu verstehen, welche Rolle diese

neuronale Netzwerkarchitektur und die Netzwerkgewichte bei der Darstellung der

Quanten-Vielteilchenzustände spielen. Wir zeigen, dass die Optimierungsmeth-

ode, die in früheren Arbeiten verwendet wurde, oftmals zu Fehlkonvergenz

führen kann. Um die Konvergenzverhalten zu verbessern, führen wir einen

globalen Suchalgorithmus namens Differential Evolution ein. Diese Methode

kann auch auf andere Optimierungsprobleme neuronaler Netze verallgemeinert

und bei der Untersuchung der Geometrie der Zielfunktion verwendet werden.
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1 Introduction

In quantum physics, the physical world is described by the wave function. An

explicit expression of the wave function requires, in general, an exponential amount

of information. For instance, the wave function describing a spin system with N sites

has 2N complex coefficients, rendering an exact simulation of a large system on a

classical computer impossible. On the other hand, the wave function of a meaningful

physical many-body system may only cover a small corner of the entire Hilbert

space. The manifold of states that can be reached in polynomial time with a local

Hamiltonian is also exponentially small[1]. Therefore, compression of the quantum

state into an efficient representation with a limited number of parameters can be

a useful method to solve quantum many-body problems with accessible classical

resources. The key feature of those representations relies on reducing the number of

parameters to a reasonable range while preserving important physical features like

quantum entanglement.

The classical way of constructing a representation of correlated physical systems

is starting from a non-interacting Hamiltonian, for which a well known or even ana-

lytically solvable solution is available, and then perturbatively adding mixed terms

with corresponding coupling coefficients to switch on the interaction. Many of those

methods will, however, fail to describe complex systems e.g. in the presence of strong

correlations, because many assumptions used in simplifying the wave function are

no more valid as the interactions get stronger. In this thesis, we use an efficient rep-

resentation based on an artificial neural network architecture to compress quantum

many-body states. Unlike the strategy mentioned above, the neural network starts

from a very general ansatz with ample representation possibilities. By encoding the

physical properties in the training methods, it enforces the system to evolve towards

the desired representation. The flexibility of the network structure makes it possible

to adapt to different requirements, without changing the main learning procedure.

The type of neural network structure we are going to use in this thesis is called the

Boltzmann machine. It has recently been introduced to represent quantum many-

body states[2]. Boltzmann machines can be divided into two groups, the Restricted

Boltzmann machine (RBM) and the Deep Boltzmann machine (DBM), depending

on the number of layers allowed for the neurons. Numerical results have shown

that such a Boltzmann machine, trained with a learning algorithm, is capable of

representing a lot of many-body states and tracking the time evolution[2][3]. The

relationship of this neural network model with other quantum states, like Matrix

Product States[4], Graph States[5][6], String-Bond States[7] and chiral topological

states[7] has also been analyzed, which demonstrate the efficiency, representation

power, and limitation of this model under different conditions. It has also been
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proven that the entanglement entropy of a short-range RBM satisfies an area law

while a long-range RBM could exhibit volume-law entanglement[8]. In practical

applications, the RBM is favored over the DBM since information can be extracted

very efficiently. If the restriction on the number of layers is removed, the exact

representation of most quantum states and the time evolution can then be achieved

with the DBM structure by adding neurons and modifying the existing network

parameters in a deterministic way[6][9][10]. The difference between the RBM and

the DBM in their representation power is also demonstrated by the construction,

proving the existence of states which only have an exact representation in the form

of DBMs[6].

Despite the great success in many aspects, understanding the neural network still

poses a great challenge due to its complicated structure and non-linearity. The nu-

meric algorithm applied is also in its early stage and far from practical applications

beyond benchmarking cases where exact solutions can be obtained by other meth-

ods. In this thesis, we try to gain an insight into the structure of the complex RBM

by construction and numerical experiments and improve the usability of the learning

algorithm. In section 2, we show the generic ansatz of the RBM representation as

well as the learning algorithm: stochastic reconfiguration. The energy surface dur-

ing the ground state search is studied for the Transverse-field Ising Model (TFIM)

and illustrated from several different aspects. We show how the basis of the wave

function and the interaction in the Hamiltonian change the RBM representation of

the ground states. During the study, some weaknesses of the learning algorithm

appear while finding many-body ground states, namely the misconvergence of the

optimization. The situation and reasons for this misconvergence are qualitatively

studied in section 3.1. The main problem turns out to be the gradient descent

method used in the optimization. In section 3, the usability of the algorithm will be

improved by introducing a global search algorithm, Differential Evolution (DE), and

detailed tuning of hyper-parameters. DE can be adapted so that, for problems with

no previous knowledge about the ground state, the desired balance between accu-

racy and efficiency can be achieved by tuning the hyper-parameters. The improved

algorithm is also benchmarked for small and large systems with the TFIM.

2 Boltzmann machine and neural network repre-

sentation

2.1 Boltzmann machine as a representation of quantum states

The Boltzmann machine is a network structure consisting of neurons and connections

among them, with each neuron taking a binary value -1 or 1 and each connection a
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Figure 1: Examples of Boltzmann machines. The red and green circles denote the
visible and hidden neurons and a weight is assigned to each connection between
two neurons. In the figure, a is an RBM, while b and c are examples of DBMs. In
general, all complex Boltzmann machines can be transformed into the form of 2-
layer DBMs like in b[6]. d illustrates the simplification of network structure and
weights due to the symmetry in the Hamiltonian of TFIM. The hidden neurons
are grouped and the same lifestyle is used for weights with the same value.

real number (Fig. 1). Following an evaluation rule, the network will give a positive

number depending on the values of neurons and connections. This structure can

then be used to represent functions of binary vectors by leaving some of the neurons

open as input, called visible neurons, and treating other neurons as part of the

structure, called hidden neurons.

In classical Boltzmann machines, the evaluation rule is defined by

Ψ(v; Ω) =
∑
{hj}

e
∑

i θisi+
∑

i<j siwi,jsj (1)

where s = (v,h) denotes all visible and hidden neurons and Ω = (θ, w) are pa-

rameters associated to the connections, which are also called network weights.

{hj} ∈ {−1, 1}M denotes a summation over 2M hidden neuron configurations with

M the number of hidden neurons. For a given binary vector v = (v1, v2 · · · vn) with

vi ∈ {1,−1}, the evaluation of the network will give a positive number, which can be

viewed as a probability up to a normalization since the outcome is always positive.

The specialty of the Boltzmann machine introduced in reference [2] is that, in-

stead of real numbers, it uses complex numbers as weights. The network structure

and the weights then serve as a representation of a many-body quantum state defined

in the computational basis |Ψ〉 =
∑

v Ψ(v) |v〉 up to a normalization factor.

In general, the Boltzmann machine is divided into two types. One type contains

Boltzmann machines with no connection between hidden neurons or between visible

neurons, called Restricted Boltzmann machine (RBM). One example of RBMs is
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depicted in Fig. 1 (a). With this restriction, the evaluation rule simplifies to

Ψ(v; Ω) =
∑
{hj}

e
∑

i aivi+
∑

j bjhj+
∑

i,j viwi,jhj (2)

If a Boltzmann machine has N visible and M hidden neurons, carrying out the sum

over all possible hidden neuron configuration hj will take 2M summations. However,

for the RBM, there are only connections between visible and hidden neurons, the

sum of each hj configuration can, therefore, be carried out separately and explicitly

Ψ(v; Ω) = e
∑

i aivi
∏
j

cosh (bj +
∑
i

viwi,j) (3)

where the constant factor 2 for each cosh function is neglected. The complexity is

then the equivalent as going through all N ·M connections. In practice, RBMs have

a much broader range of applications because of their efficiency in the evaluation.

The other type, the Deep Boltzmann machine (DBM), is the complementary of

the RBM (Fig. 1 (b) and Fig. 1 (c)). As more layers of hidden neurons are allowed,

the simplification above loses its validity and resources needed for the evaluation of

DBMs scale exponentially with the system size because of the summation over all

the hidden neuron configurations {hj}. In classical machine learning, importance

sampling can be applied to reduce the computation effort. However, most of those

methods are based on probability theory, which cannot be applied here because

of the complex weights. Therefore, the application of the DBM in representing

quantum wave functions is only restricted to very small systems.

The mathematical foundations of the ability of the classical Boltzmann machine

to represent intricate probability distributions are given in [11]. It is proven that

adding hidden units will always improve the approximation and RBMs are a uni-

versal approximator of discrete distributions. Although those proofs are based on

probability theory, many examples have shown that the complex Boltzmann machine

is capable of representing intricate quantum many-body systems[8]. Furthermore,

theoretical analysis has also shown that the DBM can approximate most physical

states efficiently, including many states with high entanglement, while the RBM

is limited by its simplified structure in some cases[6]. The limitation of the RBM

lies exactly in the reduction of its computation requirement. Those states that are

proven to require an exponential amount of computation resources cannot be repre-

sented exactly by the RBM, nor can this be done by any other methods with efficient

evaluation. Despite this limitation, the RBM still shows outstanding performance in

many examples, therefore we focus here on the RBM and its application in solving

the quantum many-body problem.
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2.2 Learning rule for searching the RBM representation of

many-body ground states

One of the most important tasks in quantum physics is to find the unknown ground

state of a physical system. For neural networks, it means that one needs to define a

training rule so that by varying the network weights, the network converges towards

a good approximation of the desired state. In reference [2], a stochastic framework

is presented which is capable of finding the ground state of a given Hamiltonian and

solving the time-dependent Schrödinger equation with the RBM.

To find the best representation of the ground state of a given Hamiltonian Ĥ, we

follow the variational method and define a learning rule for network optimization.

One varies the network weights so that the expectation value

E(|Ψ〉) =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

(4)

is minimized. In the end, the wave function |ψ〉 represented by the neural network

will be a good numeric approximation of the ground state. At each step, a stochastic

estimation of the energy gradient is obtained and the next set of weights is calculated

by an improved gradient descent method, called Stochastic Reconfiguration (SR).

SR is an improved gradient descent method introduced by Sorella to alleviate the

sign problem in Variational Monte Carlo methods [12][13]. The idea arises from the

imaginary time evolution, where the ground state ΨG is filtered out by iteratively

applying an operator Ĝ = e−H∆t for a short time ∆t. To avoid the calculation of

the exponential of Hamiltonian, one can replace it by Ĝ = Λ−Ĥ with a sufficiently

large constant Λ. Then a projected state is defined by

|ΨP 〉 = (Λ− Ĥ) |Ψn〉 (5)

which is closer to the ground state compared to the current state |Ψn〉. This pro-

jected state can then be approximated in the following way: One first writes down

the general form of the updated wave function

|Ψn+1〉 = α0 |Ψn〉+
K∑
k=1

δαk
∂

∂αk
|Ψn〉 (6)

where δαk are variations of parameters αk of the n-th generation defined by

αn+1
k = αnk + γδαnk . (7)

with a learning rate γ. Notice that a0 in equation 6 is not used in the numerical
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algorithm since it plays the same role as the learning rate. We also define the

variational derivatives Ô

ÔkΨn(S) =
∂

∂αk
ln Ψn(S) (8)

with Ψn(S) the coefficient for spin configuration S so that

|Ψn+1〉 = α0 |Ψn〉+
K∑
k=1

δαkÔk |Ψn〉 (9)

To make the updated function as close as possible to the projected function, a set

of mixed average correlation functions for any k is set to be equal

〈Ψn|Ô†k|Ψn+1〉
〈Ψn|Ψn+1〉

=
〈Ψn|Ô†k|ΨP 〉
〈Ψn|ΨP 〉

(10)

After plugging in equation 5 and 6, the constant Λ cancels out and one obtains an

updating rule:

αn+1
k = αnk − γS−1F (11)

with

Sk,l = 〈Ψn|Ô†kÔl|Ψn〉 −
〈Ψn|Ô†k|Ψn〉 〈Ψn|Ôl|Ψn〉

〈Ψn|Ψn〉
(12)

Fk = 〈Ψn|Ô†kĤ|Ψn〉 −
〈Ψn|Ô†k|Ψn〉 〈Ψn|Ĥ|Ψn〉

〈Ψn|Ψn〉
(13)

where F is called the force and S the covariance matrix. Notice that the learning

rate γ is not the only parameter determining the step size of each upgrade. The

vector S−1F itself is self-adaptive in the sense that, through the SR procedure, the

step size keeps decreasing as one goes closer to the ground state.

The most fragile part of this algorithm is the inverse of S. In practice, a regu-

larization Sregk,l = Sk,k + λ(n)δk,lSk,k is introduced in reference [2] to avoid S being

non-invertible, but the procedure could still fail, especially at the early stage where

the energy surface is complicated and varies rapidly. As the range of initial weights

increases, this failure happens more and more frequently. Therefore, the initial

weights are suggested to be chosen close to zero to maintain the stability of this

inverse.

2.3 The energy surface of the ground state search

We can now use the leaning rule introduced above to optimize the network weights

to best represent the ground state by minimizing the energy expectation. The

objective function, i.e. the energy surface, as a function of the RBM weights is
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determined by equations 3 and 4, which is a sum of 2N energy terms with each

term consisting of M multiplications of cosh functions. For large system size N ,

metropolis sampling is used to sample the coefficients according to their amplitude

in the current network state[2]. As training the RBM refers to an optimization in a

high dimensional real space, there is no direct way to imagine how this energy surface

may look like. However, one can still gain some insight into this intricate network

structure by looking into some special states and visualizing the energy surface on a

lower dimensional subspace. In this section, the Hamiltonian of the TFIM is used as

an example to analyze the energy surface. We show that the weight distribution is

dependent on the basis in which the state is given, on the degeneracy of the network

representation and on the interaction term in the Hamiltonian. By plotting the

projection of the energy surface onto a 2-dimensional subspace, we will see that the

energy surface is characterized by the state it represents and shows different features

for different states.

2.3.1 The Transverse-field Ising Model

The Transverse-field Ising Model (TFIM) is one of the prototypical examples of phys-

ical models with a quantum phase transition in a discrete system. The Hamiltonian

of the 1-dimensional TFIM is defined by

Ĥa = −J
∑
i

σxi σ
x
i+1 − h

∑
i

σzi (14)

where σx and σz are the Pauli matrices. The periodic boundary condition is ap-

plied so that σN+1 = σ1. It describes a 1-dimensional spin chain of length N with

neighboring spin interaction and interaction with an external field. The first term

describes the ferromagnetic interaction between spins if J is positive since the sys-

tem prefers each pair of spins being parallel to each other. The second term is the

interaction with an external magnetic field of strength h. Throughout this thesis, J

will be set to 1 to specify the ferromagnetic case and h is the only parameter of the

Hamiltonian.

The ground state energy and wave function of the Hamiltonian for the 1D-

TFIM can be calculated exactly [14]. To get the exact ground state energy, one first

rewrites the Hamiltonian with Jordan-Wigner operators, which satisfy the fermionic

anti-commutation relations. The diagonalization of the Hamiltonian then follows

by a Fourier transformation and a Bogoliubov transformation and takes the form

of fermionic harmonic oscillators. The ground state ends up to have the following

energy

Eg =
1

N

∑
p∈PN

√
J2 + h2 − 2Jh cos(p) (15)
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where PN is defined by

PN =

2π
N

(
− N−1

2
,−N−3

2
, · · · , N−1

2

)
if N is even

2π
N

(
− N

2
,−N

2
+ 1, · · · , N−1

2
− 1
)

if N is odd
(16)

The difference for odd and even N arises from the Fourier transform aiming at

achieving the desired sign of periodicity. This energy will be used to benchmark the

accuracy of the RBM-represented ground state.

In the TFIM, the quantum phase transition occurs at hc = ±|J | where the spin

correlation length is at its maximum. One can define the magnetization as an order

parameter in the spin system. For |h| > 1, the expectation of this order param-

eter will be 0. In this case, the system has a Z2 symmetry: the order parameter

is invariant if all the spins are flipped. As one goes below |h| = 1, the magnetiza-

tion will acquire a non-zero value. This breaking of the Z2 symmetry is called the

spontaneous symmetry breaking.

In the following, we will use |↑〉 and |↓〉 to denote the eigenstates of σz with

eigenvalues 1 and -1 and |+〉, |−〉 for eigenstates of σx respectively. In addition, if

all the spins are in the same state, we will shorten the notation, e.g. |↑〉 for |↑↑ · · · ↑〉

2.3.2 The dependence of network weights on the basis

Equation 14 is not the unique way to define the Hamiltonian as an objective function.

Another physically equivalent definition of the Hamiltonian Ĥa is

Ĥb = −J
∑
i

σzi σ
z
i+1 − h

∑
i

σxi (17)

which can be easily obtained through a basis transformation. Although those two

Hamiltonians are physically equivalent, the energy surface of the RBM and the

performance of the ground state search is different. Because the state is always

represented in z basis by the RBM, the same quantum states on different bases have

also different RBM-representations. Therefore, basis in which the state is given will

also influence the performance of algorithm. Here we can see the difference between

the wave function and the network representation. This difference is also suggested

by the following two examples:

� For negative h, finding the ground state is much harder for Ĥb than for Ĥa,

because finding |−〉 is harder with the applied learning strategy, which will be

discussed later in this work.

� If h = 0, where the ground state is degenerated, Ĥa will select the |+〉 state

because of our initial choice of weights while Ĥb will end up in a superposition

8



of |↑〉 and |↓〉. The spontaneous symmetry breaking and an equal probability

of obtaining one of the pure states cannot be observed in the network. If there

is degeneracy in the Hamiltonian, which state the network will choose merely

depends on which representation is easier to reach.

Since the Hamiltonian is the only information we give to the training process, the

resulting state will also only contain properties of this Hamiltonian, regardless of

other physical properties. The network may also add its own bias if the difficulty of

reaching the degenerated states is not equal.

2.3.3 Degeneracy in the Hamiltonian and network representation

In the last section, we see that our learning rule does not treat the degenerated state

in an equal way. In the presence of degeneracy, the difficulty of reaching the state

determines which state the RBM will choose. The state found by our learning rule

does not fully reproduce the freedom in the degenerated states. Furthermore, even

for small |h| it is difficult to distinguish between the ground state and the second

lowest state. The resulting energy is very close to the ground state energy, but the

state it represents is usually still a mixture of the two states.

Apart from this degeneracy, there is also a translation invariance if the periodic

boundary condition is applied: The shift of all the spins si → si+k should leave the

state intact. This results in a large amount of redundancy in our representation. To

reduce this redundancy, one can simplify the RBM structure in the following way[2]:

First, we only allow the ratio between the number of hidden and visible neurons to

be an integer α = M/N . The hidden neurons can then be divided into α groups

and the translation of spins is absorbed by the translation of hidden neurons. To

guarantee the invariance, the weights wij are set to be equal if the distance between

the visible and hidden neurons connected by them d = |i − j| ∈ {1, 2, · · · , N} are

the same. The ansatz then simplifies to

Ψ(v; Ω) = ea
∑

i vi
∏
g

∏
d

cosh (bg +
∑
i

viwg,i+d) (18)

where wg,i+d = wg,i+d−N if i + d > N denotes the weights in group g. This simpli-

fication is illustrated in Fig. 1 (d). It reduces the number of weights w from N ·M
to M , same as the number of hidden neurons and there are only α different weights

b and only one weight a. However, notice that even if the degeneracy in the Hamil-

tonian is eliminated, the network representation is still not unique since the state

remains the same by translation of weights within one group wg,d → wg,d+1. This is

the consequence of translation invariance of the periodic boundary condition.

In general, degeneracy exists at two levels, in the Hamiltonian and in the network
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weights representation. A lot of computation effort can be saved by simplifying

the RBM structure according to the symmetry in the Hamiltonian and using an

appropriate network representation of the wave function.

2.3.4 Construction of specific states

Once the objective function is specified by the Hamiltonian and an appropriate

mapping between network weights and wave function is defined, finding the desired

RBM representation of a quantum state is basically varying the weights so that in

the end a balance between each cosh term in equation 3 is achieved, where each spin

contributes to an appropriate amount of amplitude and phase determined by the real

and imaginary part of the network weights. For a given state, there could be many

different ways of achieving this balance in the RBM, which make the understanding

of the RBM representation very difficult. In this section, we start with some simple

examples and construct some special states to understand the RBM structure and

how the state reacts to the change of network weights. However, one should keep

in mind that the constructed weights are usually not the only way to achieve the

desired states. In many cases, the constructed weights are not those found by

the variational method because the simplicity in the constructed weights does not

necessarily have advantage in the numerical procedure and some weights can be very

sensitive to small perturbations. The construction should be viewed as an attempt

to understand the network weights and does not always characterize the weights of

the ground state found by the RBM.

� |↑〉 and |↓〉

Among all states, |↑〉 and |↓〉 are the easiest ones to construct. This con-

struction involves only the weight a. The weight a describes how much the

amplitude and the phase will change if one spin is flipped independently of

the network structure and other weights. The only thing that matters is the

total number of up-spins or down-spins, i.e. the magnetization. This gives us

a way of generating |↑〉 and |↓〉 states by simply amplifying this selection. If

all the weights w and b are set to be zero, expression 3 becomes

Ψ = ea
∑

i vi (19)

The ratio of |↑〉 and the state with only one spin down is e
∑

i 2a/N , which

can be used to characterize how good is the |↑〉 state approximated. The

division of N comes from the fact that states with only one spin down have N

configurations. The weight b has a similar function but works only within one

group and its influence also depends on all other weights w in the same group.
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If this construction was the weights that the variational method would pursue,

it would have nothing to do with the number of hidden neurons, but achieving

the exact representation would then require a to be infinite. For a large system,

one should be careful if one of those bias weights starts to explode.

� |+〉 and |−〉

|+〉 and |−〉 are quite an opposite in terms of network representation. The |+〉
state is easily achieved by setting all the weights to zero. This construction is

also favored by the variational method since the weights are always initialized

near 0 in our algorithm to maintain the stability of SR. It is observed that

while the network approaches the |+〉 state, all the weights are getting smaller

and smaller.

To get the |−〉 state, we need an expression in which the flip of one spin gives

us exactly a phase -1. Thus we need the help of w and b. Since all spin

configurations have the same amplitude, the real part of all the weights can

be set to 0. The cosh function then becomes a cos function. Like in weights a,

the imaginary part of b and w also controls the relative phase, but in a much

more complex manner. We can give bg=0 an imaginary value of π/2 to transfer

cos to sin and choose all weights w to be zero except one wg=0,d=0 = wi with

w ∈ R in group 0. Since the weights in all other groups are 0, each v only

appears once and the expression 3 then becomes

Ψ =
∏
g

∏
d

cosh(bg +vdwg,0) =
∏
d

cosh(
π

2
i+vdwi) = (−1)d

∏
d

sin(vdw) (20)

This construction is usually not the one chosen by the variational method

since π/2 is already a very large value. But we can see that to achieve |−〉
starting from |+〉 is not an easy task because of the alternating sign. This is

actually the main obstacle while applying our method on the TFIM and will

be discussed later in this thesis.

� Two non-zero weights

If some of the weights w are very large, the other weights can be seen as zero.

Only one very large real weight in each group is not enough to make a big

difference because the expression will simply become

Ψ =
∏
g

∏
d

cosh(vdwg,0) (21)

which is still the |+〉 state only with a larger normalization constant.
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If two weights in one group are very large compared to the others we can

simplify the ansatz (with a, b = 0) to be

Ψ =
∏
g

∏
d

cosh(vdwg,0 + vd+lwg,l) (22)

If both weights are positive and the interaction term is in the z basis, they

simulate the ferromagnetic interaction between two spins. We will see this

more clearly if we generalize the interaction term of the TFIM to long-distance

interaction:

Ĥ = −J
∑
i

σxi σ
x
i+l − h

∑
i

σzi (23)

For example, if l = 1, the expression 22 selects states with parallel neighboring

spins. which will be reflected in the real part of the weight distribution as a

single peak. The result is then a superposed state of |↑〉 and |↓〉, provided that

the two weights are large enough to suppress other states.

2.3.5 Weight distribution of the ground state

Figure 2: The distribution of the real part of the network weights for different h
with Hamiltonian Ha of a 10-site system is depicted in the figure. The Hamil-
tonian has interaction between neighboring spins in the x basis. For each h, the
average value of |Re[wg,i]| from 10 samplings is calculated. The weights within
one group are shifted so that the largest one is always in the middle to compare
the broadness, but the relative position of the weights remains the same. Because
of the symmetry of the cosh function, the absolute value is taken to avoid can-
cellation. There is no significant change in the shape of the distribution despite
the height.

In the previous section, we showed that the real part of two dominant weights

resembles the interaction in z basis. An interesting question arising from this con-

struction is, whether the network weights of the ground state of the TFIM show

a similar correlation as in the spin system. This is, unfortunately, not true. The
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Figure 3: The distribution of the network weights of an 80-site spin chain is
depicted for different h and interaction distance l. The number of visible neurons
is equal to the number of hidden neurons (α = 1). The blue and yellow lines are
the real and imaginary part of the weight. The interaction occurs on z basis. For
neighboring interaction, there is only one position where the weights deviate far
from 0. For other l we can see periodic peaks selecting spin configurations with
the desired interaction. If l is not a divisor of N , other small peaks arise to remedy
this asymmetry. Since the ground state wave function of the TFIM is real, the
imaginary part does not provide much information. The non-zero imaginary part
simply comes from the real part during the SR optimization. They compensate
for each other during the evaluation of the wave function and only leave a global
phase in the end.

distribution of weights is characterized mainly by the interaction between the spins.

To clarify this idea, we first recall that the RBM representation depends strongly on

the basis. A basis transformation from z to x in the Hamiltonian will totally change

the amplitude in the computational basis as shown in the previous construction. In

the following, we will illustrate the distribution of weights in the TFIM with two

examples concerning interaction terms σxσx and σzσz.

We first look at the Hamiltonian with interaction term σxσx in a small system.

Fig 2 depicts the weight distribution of the ground state of Ha for different N, where

a ferromagnetic interaction σxσx exists between neighboring spins in a spin chain of

length 10. If the weights we get from the variational methods (at least the real part)

simulate the interaction, we should observe a very high and narrow peak for large

field strength h and broadening of the weight distribution as the system approaches

the critical point h = 1, where the correlation length increases. In Fig 2, although

the distribution of |Re[wg,i]| shows a certain pattern, the shape of the distribution is

almost the same for all the ground states of the TFIM as h is varied across the phase

transition points. There is no significant change in the broadness of the distribution

but only the height. The absolute value of weights always has one peak within a

group and the shape barely changes. The balance between the weights, in this case,

is achieved not through the relative difference of the absolute value, but the relative
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sign.

Now we switch to the Hamiltonian with interaction term σzσz and also generalize

the Hamiltonian for different interaction lengths as defined in equation 23. Fig. 3

shows how the interaction distance influences the weight distribution of the ground

state in a spin chain of length 80. For nearest neighbor interaction, the weights

only deviate from 0 significantly around one position. An interaction term with

distance l result in a periodic behavior of the weights. This kind of distribution can

be observed as long as one stays away from the physical degeneracy at h = 0.

In a word, the shape of the weight distribution is characterized by the interaction

between spins and the basis in which the interaction term is given. It does not, in

general, resemble the spin correlation in the physical system.

2.3.6 2D weights diagram
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Figure 4: The energy distribution as a function of two randomly chosen weights in
a small system with 10 spins and 20 hidden neurons. The white point denotes the
minimum. In (a) and (b), the weights are chosen from the same group, while in
(c) they are chosen from two different groups. (a) is the typical energy surface for
ground states near the |↑〉 and |↓〉 states and (b) is a typical one for ground states
near the |+〉 state. The energy difference in (c) is small because one dominant
weight will give us |+〉 state, which is very close to the desired ground state. The
figure illustrates several characteristic features which are typically found, like a
large plateau and a narrow valley.

We have seen in the previous section that, although some quantum states can be

represented with only a few weights, these representations are usually not what the

variational method converges to. In this section, we turn to the numerical aspect and

try to visualize the energy surface as a function of the network weights by plotting

its projection onto a two-dimensional subspace, where only two degrees of freedom

are left open. The most interesting areas of the energy surface are those around the

ground state, thus we use the variational method to first find a good approximation

of the ground state and then plot the energy dependence on two random weights
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around it. The Hamiltonian used here is Ĥa.

Ĥa = −
∑
i

σxi σ
x
i+1 − h

∑
i

σzi (24)

Fig. 4 shows three examples of those energy distribution maps, where the color

shows the energy and the white point is the minimum. The distribution is character-

ized by the state it represents. Because of the translation invariance we discussed in

section 2.3.3, the groups from which the weights are chosen will also affect the energy

surface. Fig. 4 (a) is a typical energy distribution for states near |↑〉 or |↓〉. One can

see that a large plateau of low energy appears with energy E = −|h| (energy for |↑〉
or |↓〉 state) when both weights are very large and have the same sign. The shallow

minimum lies in a small area close to the edge of the plateau. This is because two

large weights in a same group with the same sign will select the state with aligned

nearest neighbor spins. For small |h|, the state is selected to be near the |+〉 state.

In Fig. 4 (b), the weights are chosen from the same group and the energy increases

significantly if both weights are far away from the minimum. If two weights are

chosen from different groups, varying them shows a relatively weak effect on the

energy since one dominant weight in a group reproduces the |+〉 state, as shown in

Fig. 4 (c). The balance between all the spin configurations are achieved mainly by

the weights within one group, weights from different groups work independently.

3 Improvement of the optimization algorithm

In the previous section, the RBM structure and a learning algorithm are introduced

for the ground state search problem and we have grasped the first insight of the

complicated energy surface we are dealing with. For a set of network weights,

the energy is calculated from 2N wave function coefficients, each determined by

a complex number calculated from a product of M cosh functions. With such a

complicated objective function, one would expect the presence of local minima.

On the other hand, the SR method we used for the optimization is an improved

gradient-descent (GD) based algorithm which offers relatively fast convergence by

moving towards the direction of the ground state. Although this method makes use

of the first-order differential, it is short-sighted and easily gets itself trapped in local

minima since the next step is only determined by the current position. If we have

no previous knowledge of the ground state energy, it is difficult to find out whether

the ground state found by SR is a good approximation or some local minima that lie

far beyond it. For the TFIM, SR works well for positive h, but the problem of local

minima is encountered while looking for ground states at large negative h which are

close to |−〉.
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Before we turn to the details, it is worth to spend some time to first clarify the

meaning of local minima and global minima. Mathematically, the difference between

those two is obvious. But working with a numerical approximation, especially with

such an intricate objective function, it is neither possible nor necessary to dig out

the real global minimum in the search space. Thus, in our case, the word global

minimum would be used as a synonym of a minimum with high enough quality. For

different precision requirements, the meaning of the global minimum may also vary.

In the first part of this section, we analyze the local minima that appear in the

ground state search of the TFIM and illustrate them by plotting the 2D weight dis-

tribution. Furthermore, we show that the convergence behavior of SR is dependent

on the hyper-parameters, which are parameters that control the learning algorithm.

Repeating SR with different initial weights is not enough to solve the problem of the

local minima because of this dependence. In the second part, a global optimization

method called Differential Evolution (DE) is introduced to guide the optimization

and locate the global minimum. As one always has to make a compromise be-

tween accuracy and efficiency, a hybrid algorithm is built and benchmarked with

the Hamiltonian of the TFIM. The stability of the learning procedure is greatly

improved and a representation of the ground state with good quality can be found

with very high probability.

3.1 Misconvergence and local minima

In general, gradient-based optimization methods often have problems with saddle-

points and local minima. As an improved method, SR gets rid of some of the

drawbacks of the common GD. For example, since SR does not strictly follow the

deepest gradient, it does not have problems with a narrow curved valley in the energy

surface. Furthermore, the step size is also self-adaptive as the difference between

projected and current state gets smaller and smaller as we get closer to the ground

state. But it still cannot avoid the problem of local minima, which will be described

in detail in this section.

3.1.1 Difficulty in finding |−〉

For the TFIM, the misconvergence happens most frequently while using Ĥb

Ĥb = −
∑
i

σzi σ
z
i+1 − h

∑
i

σxi (25)

with negative h. As h goes to negative infinity, the ground state approaches the

|−〉 state, which requires a balanced amplitude for all spin configurations and an

alternating sign.
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Figure 5: The energy surface of Ĥb with negative h, for which the ground state
is close to |−〉. The RBM has the same structure as in Fig. 4. The ground state
energy is relatively sharp and occasionally surrounded by high barriers. If the
initial weights lie far away in the high dimensional search space, it is quite likely
that following the current gradient does not lead one to this minimum. It is worth
to mention that although all these minima lie close to zero and seem to be well
behaved around it, it is only a 2-dimensional subspace with all other weights in
their optimal values. If all weights deviate from this value, the landscape can be
much more complex.

Let’s first have a look at the energy surface around the variational ground state

for large negative h (approximately the |−〉 state). As shown in Fig. 5, the minimum

is sharper than those shown in Fig. 4 and surrounded by a high plateau. Despite

this difference, the minimum is still well behaved. However, as SR cannot climb over

high energy barriers easily, its convergence performance relies more on the choice of

a good starting point.
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Figure 6: The energy distribution around local minima with the same RBM
setup as in Fig. 5. The local minima are usually located among very complex
landscape.

It is also interesting to have a look at how the energy surface looks like around

the local minima. Those local minima the RBM encounters are usually even sharper

and narrower than the global one (Fig. 6). This is also validated by several other
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evidence, e.g. convergence into a local minimum (starting to fluctuate and stagnate

instead of decreasing) usually takes only several hundred steps, while converging into

a high-quality minimum requires ten times of that or even more steps. It is not clear

how those sharp local minima arise from an analytical function. The multiplication

of many cosh functions may result in some network weights being very sensitive at

a certain point and forming the local minima. From this point of view, the number

of local minima could increase as we go to larger systems.

With those sharp traps in our picture, it is not difficult to gain some insight

into why it is so hard to find a good set of network weights representing the |−〉
state with our algorithm. For the stability of SR, one usually starts from a set of

initial weights close to 0, the initial state is then very close to |+〉 and the RBM

has to wander a long way down to find the |−〉 state. Numerical evidence shows

that starting randomly from those initial weights, the optimization could fall into

many different local minima. Optimization with SR is like walking downhill from

the peak (|+〉) with many local traps all along the way. If it can only see a small

region around itself, the longer it has to go, the higher is the probability that it will

fall into a local minimum.

In general, the difficulty of finding a state |f〉 from an initial state |i〉 is char-

acterized by the distance and the landscape of the energy surface between them.

Similar difficulties are observed when one starts from |−〉 as described in equation

20 and searching for the |+〉 state. This distance is not solely determined by the

energy difference, but the distance in the search space. It can also happen that

although they are far from each other, the energy surface between them is smooth

and only a few traps exist. Example for the latter one is that this difficulty is only

observed between |+〉 and |−〉 but not between |↑〉 and |↓〉.

3.1.2 Dilemma in the choice of learning rate and initial range

As described in section 2.2, two hyper-parameters, the learning rate γ and the range

of initial weights, can be adjusted to control the convergence behavior. In practice,

however, the adjustment of those hyper-parameters faces a dilemma. It is difficult

to keep the algorithm stable and avoid local minima at the same time. Finding

appropriate values of these hyper-parameters may need a lot of test runs.

For the stability of SR, the learning rate γ should not be too large. Although

the RBM may take longer to reach the minimum, starting with a relatively small

γ seems to be a safe choice if we don’t know what kind of landscape we landed

in. However, since many local minima exist in the form of sharp holes on the

energy surface, a small learning rate, i.e. a small step size, makes it easily fall

into the local minimum, as can be seen in Fig. 7, where the minimum energy and

corresponding relative energy difference found by SR is plotted for two different
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Figure 7: The histogram of the ground state energy found by the RBM with
h = −10, two learning rates and initial range 0.0001. The RBM has 10 visible
and 20 hidden neurons. The exact ground state energy is at about -10.025. For
each learning rate, several hundred minima found by SR are recorded and both
the minimal energy and the relative difference is shown in the figure. For a large
learning rate, a bunch of very accurate minima can be found, which disappear
after the learning rate is reduced to 0.001.

learning rates. After reducing the learning rate, the few minima found with high

accuracy disappear.

The adjustment of initial weights faces the same situation. For an unknown

problem, the safest way is to sample with random initial weights, but in which

range should the weights be generated? On the one hand, a too small range could

make the sampling meaningless. On the other hand, large initial weights will reduce

the stability of SR and the probability of finding a good representation with SR

also drops as the search range grows rapidly with the initial range (Fig. 8). The

high-quality minima are clearly not spread uniformly around the search space.

In some situations, a good starting range and learning rate may exist, but they

are not only dependent on each other but also dependent on the size of the system

and the Hamiltonian. A wrong choice of those hyper-parameters in SR will not only

reduce the stability but also affect the performance of the ground state search. As

SR itself hardly offers any information about the quality of the minimum, we need

to turn to other methods to improve the stability and quality of the found minima.

3.2 Differential evolution

In supervised neural network machine learning, like feed-forward networks, the prob-

lem of local minima does not attract much attention as long as the network is

confident in its prediction. It has also been shown that, under certain assump-

tions, most local minima in large-size networks have high quality and yield similar

performance[15], which is very similar to what we get in Fig. 6. However, for our

use, the local minima will directly limit our accuracy. The simplest way of tackling

this problem is trying to repeat SR with different initial values. But for a larger
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Figure 8: The convergence performance of SR as a function of N for different
initial range, where Ĥb is used at h = −10. The blue and orange points denote
the minimum and average ground state energy by repeating SR optimization 20
times with random initial weights and the black points show the probability of
convergence with good quality (∆E/E < 10−4). Since for large initial range, the
matrix inverse fails frequently at the beginning, a preselection is used so that
the weights are ditched if SR fails within the first hundreds of steps. As can be
seen in the figures, different choices of initial range lead to different convergence
behaviors. The convergence also shows a trend of getting worse as the system
size N increases.

system or a more complex Hamiltonian the probability of SR converging to a min-

imum with good quality might decrease and one always has to tune the learning

rate and initial weights to adapt it to the current problem. To mitigate these prob-

lems, we introduce a global optimization algorithm to guide the system towards a

high-quality minimum. In this section, a global search algorithm called Differential

Evolution (DE) is introduced to improve the convergence performance.

Compared to a gradient-based algorithm, DE has several advantages: First, it is

much more robust than SR, since no matrix inverse is needed in the evolution and it

is much less likely falling into a local minimum. The reason will be discussed later in

this section. Second, DE is a population-based search algorithm and, at each step,

the update of each trial vector is independent and can be implemented parallelly.

The free choice of the population size also offers the possibility to balance between

efficiency and accuracy. In consideration of the efficiency, the goal of applying DE

is not to find the true global minimum but to filter out the low-quality minima.

As one always has to trade the accuracy for efficiency, DE offers the flexibility to

achieve this balance.

3.2.1 Evolutionary algorithm

The term evolutionary algorithm (EA) refers to a class of population-based stochas-

tic search algorithms inspired by the mechanism of natural evolution. It resembles

the natural evolution by simulating the process of reproduction and selection. EA

is particularly suitable for solving complex optimization problems with many local

optima and can deal with problems with no gradient information. These features
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greatly increase the robustness and the scope of applications of EA. The most well

known EA for optimization problems includes the Genetic Algorithm (GA), the

Evolutionary Strategy (ES) and the Differential Evolution (DE)[16].

For more than two decades, EA has been applied to training neural networks at

three different levels: network weights, architectures, and learning rules [17]. Since

the structure of RBMs is already quite clear and accompanied by a well-defined

learning rule, the application of EA in our case focuses on optimizing the network

weights.

The first step in building any EA is always to find an appropriate genetic rep-

resentation of the problem. For network weights optimization, the representation is

simply a vector of real numbers with the length twice of the number of the weights.

Since it is an optimization in continuous space, DE is a suitable choice.

3.2.2 Basic concept and implementation of DE

 1  2  3 𝑛𝑝𝑥௜  𝑥௥ଵ… … … … …  𝑥௥ଷ   𝑥௥ଶ

  𝑣௥ଵ

  𝑢௥ଵ

 1  2  3 𝑛𝑝𝑥௜  𝑥௥ଵ… … … … …  𝑥௥ଷ   𝑥௥ଶ

Mutation  v௜ = 𝑥௥ଵ + 𝐹(𝑥௥ଶ − 𝑥௥ଷ)

Crossover

G

G+1

Comparison  𝑥′௜

Figure 9: Illustration of the Differential Evolution strategy.

DE was first introduced by Price and Storn in 1995[18][19]. In the language of

evolutionary algorithms, one potential solution to the problem is called one individ-

ual. The individual in DE is represented by a vector of real numbers. The length of

this vector is the dimension of the search space. Like other search algorithms in the

family of EA, DE explores the search space to find the individual minimizing the

objective function. DE is characterized by its unique way of generating new individ-

uals: It perturbs the target vector with a scaled difference between two randomly

selected vectors. Not like ES, where the new generation is created around an existing

individual with a predefined distribution, the step size of DE is self-adaptive. The

search algorithm of DE has three steps: mutation, crossover and selection. In the

beginning, the system generates an initial population consisting of np vectors within

the search range. In each iteration, a trial vector will be generated by the mutation
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and crossover operation and is compared with a current vector in the population.

The vector with a lower value in the objective function, i.e a lower energy, will sur-

vive to the next generation so that the number of vectors in the population remains

constant. The detailed implementation of the original DE algorithm is described as

follows[19]:

� Initialization

To establish a starting point, an initial population P of np vectors xi is gen-

erated randomly within the initial range. For low dimensional searches, a

population of np is suggested to be 5 to 10 times the dimension of the search

space D[19]. For high dimensions, it can be reduced to save computation

resources.

In classical DE, the initial population should cover the search area. For opti-

mizing neural networks, however, the weights don’t have a well-defined bound-

ary. If we naively generate random numbers within a real boundary [-R, R],

most of the vectors will be created far from 0 where a good solution rarely

appears and the convergence will be extremely slow. In high dimensions, DE

may have to stagnate for a long time until one of the offspring occasionally hits

a lower area to lead the convergence. Instead, one can generate the initial pop-

ulation near the origin and set a relatively large boundary of the search space.

In this way, we allow some weights to be large while reducing the exploration

of the unnecessary area. The population will first expand and spread out until

a rough area of a minimum is located (usually not far from 0) and then start

to converge. The only thing one should notice is that enough diversity of the

population should be guaranteed by the mutation and crossover operation to

avoid premature convergence, where DE converges to a local minimum before

it spreads out.

In practice, the initial range of about 0.1 is sufficient and the boundary of

vector components can be set to 3 or π, depending on whether it comes from

the real or the imaginary part of the network weights. These small initial

weights speed up the search for the TFIM, but whether DE can find the

minimum is not sensitive to it (as long as 0 itself is not a strong local minimum).

The population will spread out and then converge to the area with low energy.

How these values need to be adapted for other models remains to be analyzed

further.

� Mutation

For each target vector xi, where i goes from 1 to np, a mutated vector vi is
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constructed by

vi = xr1 + F (xr2 − xr3)

where r1, r2, r3 are random numbers from 1 to np and r1 6= r2 6= r3 6= i and F

is called the mutation scale factor. It is suggested empirically that F should

lie between 0 and 1[19]. F is one of the most important factors to guarantee

the diversity of the population. Zaharie has demonstrated that a scale factor

too low could cause premature convergence while the selection pressure is still

absent[20]. Randomizing the scale factor, on the opposite, will be useful in

high dimensional search with a relatively small population. Since for small

population, the combinations between present individuals are limited, random

F can increase the diversity of the population and prevent stagnation, when

no better solution can be found by combining existing vectors in DE [19].

In practice, it is observed, while applying DE to RBMs with 10 visible and 20

hidden neurons, that F=0.2 could cause premature convergence. A uniformly

distributed F between 0 to 1 or a Gauss distribution will help DE to detect

minima close to 0 and hence shorten the convergence time dramatically while

still leave DE enough possibility of exploiting relatively far away areas. The

possibility of generating small F can be regarded as enhancing local exploita-

tion ability.

Another variant of DE mutation is to replace xr by xbest where the latter one

denotes the best individual in the population. This choice will speed up the

convergence, but it should not be used if the population or initial range is

small, since searching only around the best individual is too greedy and may

lead to convergence into a local minimum.

� Crossover

After a mutated vector vi is generated, it is mixed with the vector in the

current population xi to yield a trial vector ui according to

uij =

{
vij, rand(j) ≤ Cr or j = rand np

xij, else

where rand(j) ∈ [0, 1] is a uniform random number for the j-th component.

The random integer rand(np) ∈ {1, 2, · · · , np} choses a random element from

the trial vector and forces it to take the value from the mutated vector to

prevent ui from being identical to xi. Cr is the crossover probability and

describes how many parameters are inherited from the mutated vector. For

decomposable objective functions, Cr can be chosen around 0.2 so that each

time only one or two elements are altered[18]. In case of dependent parameters,
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like in the neural network, the most effective choice of Cr proves to be about

0.9, which will provide extra diversity to the pool of possible solutions[18].

However, Cr = 1 should also be avoided since it may result in an extremely

slow convergence on some occasions[19].

� Selection

The classical DE, not like GA, sets no selection pressure while choosing par-

ents. All vectors in the current population have equal probability to contribute

to the next generation. Therefore, a survival selection must be adopted to push

the evolution towards better solutions. DE adopts a tournament selection,

which can be described by

xG+1
i =

{
uGi , f(uGi ) < f(xGi )

xGi , f(uGi ) ≥ (xGi )

with the number of generation G and f the objective function. Under this

survival selection scheme, the best individual will always remain in the next

generation. The population is evolving towards better solutions while the ran-

domness in the choice of pairs to be compared (consequence from the random

number r1 in the mutation stage) prevents the population from converging too

greedily towards a local minimum.

The general search process of DE can be described, intuitively, in three steps: First,

all individuals are generated around 0 and spread out in several dozen generations

until a large area of low energy is covered. Second, DE starts to search in this area

by reproduction according to the rules introduced above. The population tends to

wander towards the low-energy region and if more than one regions are detected,

competition takes place. Third, all the individuals converge into one minimum and

DE starts to refine the accuracy.

3.2.3 Advantages and disadvantages of DE

Compared to many other global search algorithms, the implementation of DE is

very straightforward and there are only three hyper-parameters, np, F , and Cr. As

a general global optimization method, DE outstands many other methods in several

aspects. For our purpose, the most important of them are robustness and flexibility.

These advantages also come with some weakness, e.g. slow convergence and weak

local exploitation.

In terms of optimizing neural networks, the most important advantage of DE is

the robustness. An abrupt change on the energy surface does not affect the stability

of the algorithm and it is also much less affected by the presence of sharp, deep local
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minima. As the mutated individual is generated by adding the scaled difference

between two other random individuals, the probability of accidentally falling into a

sharp local minimum is relatively low. Even if one vector occasionally hit a local

minimum, as long as the population is not yet converged, the competition between

detected minima can come to the rescue of the lost individuals.

The flexibility of DE lies in the fact that we are able to choose a balance between

efficiency and accuracy. We expect DE to offer a better result compared to SR based

on the fact that if more than one minimum is found, the competition will decide

which one shall survive. It is also clear that the more area DE can cover and the

more time it has, the better the result. This balance is maintained mainly by the

number of individuals np. The convergence of a large population requires more time

and they will also find more candidates for global minima. With a sparse population,

DE will help us filter out local minima with low quality. Since the energy difference

is large, this can be done fairly efficiently. If an intensive search is required, a

dense population will explore the search area more thoroughly and a minimum with

high resolution can be achieved. The latter, of course, takes much more computing

resources since a lot of effort will be spent on searching the area between minima

before the convergence in one minimum is good enough to outperform the others.

Furthermore, as a population-based search algorithm, DE can be used to analyze

the geometry of the energy surface. The broadness of a minimum can be estimated

by comparing the convergence of minimal energy and the average distance among

the individuals d defined by

d =
distance of all pairs

number of pairs
=

∑np
i<j ‖vi − vj‖

(np−1)np
2

(26)

where vi and vj are two vectors from the current population. If there are two minima

competing with each other, two rough peaks should be observed if the distances

between all the pairs are plotted in a histogram. If the population converges, this

distance, together with the standard deviation of the energy should become very

small. This offers a way to monitor the convergence status.

Although DE has many advantages and is considered to be one of the most

powerful stochastic real-parameter optimization methods, it also has some short-

comings. The most significant drawback of DE is a common one for any global

optimization method: slow convergence. Since in each iteration, the trial vectors

are constructed from all members in the current population, the local exploitation

ability of DE is regarded weak[21]. The convergence is slow even if the minimum is

already well located and the system is exploring the nearby region to refine the re-

sult. Furthermore, the advantage that DE can deal with objective functions without

gradient information is not an advantage in our case since the gradient information
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is available. In the review of Das and Suganthan[21], many variants of DE have been

discussed and some of them can be helpful in terms of optimizing network weights.

In the next section, we are going to adapt DE to our special case of optimizing

RBMs and to build a hybrid method from DE and SR.

3.2.4 Hybrid optimization with DE and SR

The ability to optimize the system without the gradient information is one of the

advantages of DE. In our case, however, it becomes a drawback compared to SR,

which makes use of the gradient in an implicit way. In many occasions, a combination

of those two methods will bring us a lot of benefits. This combination can be very

flexible because an SR process can always be initialized with one of the current

individuals during DE. In this section, we mention some of these combinations useful

in different situations.

Usually, the convergence of DE is slow especially in the last step, where the

minimum is located and only the refinement after several digits is needed. In this

case, it is clear that we no longer need DE and SR can take over. In this sense,

SR can be used to improve the accuracy of the minimum with a small step size and

large sampling number in the gradient determination.

Apart from that, SR can also be used during the DE process. The convergence of

DE to a minimum in a plateau can be difficult since locating the minimum is based

on pure luck. This could cause stagnation of DE. Therefore, if the best individual

exists for a long time without being replaced, an SR with several iterations can be

applied to lead the direction of the convergence.

A more advanced improvement can be applied in the case that high accuracy

needs to be guaranteed. As mentioned before, if a few minima with good quality

are already well located and competing with each other, a lot of computing effort

will be wasted searching the area between them. If those clusters can be identified,

one can adjust the scale factor F according to which cluster the source vectors come

from so that DE only searches within those clusters or jumps between them. Several

SR-branches initialized in each minimum will also be very efficient. These are not

yet implemented in the current algorithm.

3.2.5 Performance of the algorithm

In this section, the performance of DE and the hybrid method is benchmarked by

the task of searching the ground state of the TFIM. To get the accuracy of 10−2,

i.e. filtering the low-quality minima, the computing effort required for DE is usually

comparable to that of 5 to 20 SR runs. The increase of the computing resources

against the system size N for SR and DE are the same if the population of DE

26



0 200 400
generation

10 6

10 5

10 4

10 3

10 2

10 1

100

101
E/

E
h=-1.4

10 1

100

101

d

E/E
d

(a)

0 200 400
generation

10 6

10 5

10 4

10 3

10 2

10 1

100

101

E/
E

h=0.2

10 1

100

101

d

E/E
d

(b)

di, j

g = 2

di, j

g = 20

di, j

g = 40

di, j

g = 60

di, j

g = 80

di, j

g = 100

(c)

Figure 10: The convergence process of DE for a spin chain of length 10 is shown
in the plots with D = np, Cr = 0.9. The RBM has 20 hidden neurons. In (a) and
(b), the lowest energy of the current population is recorded at each generation
and converted into the difference relative to the exact ground state. di,j is the
average distance between all pairs of individuals defined by equation 26. In (a),
the accuracy of energy is limited but the minimum is narrow so that the average
distance shrinks rapidly. (b) is just the opposite, the minimum found by DE
has high quality but the convergence is slow. It is because the minimum is very
shallow or several different minima with similar quality are located at the same
time. (c) shows the competition between minima. There are six histograms
of the distance between all pairs of individuals and g denotes the number of
generations computed. In the beginning, all the individuals are generated around
zero. The population spreads out and detects more than one minimum. During
the convergence, they form two groups, showing as two peaks in the plot, one
for the distance within the group and one for the distance between them. In the
end, individuals in the low-quality peak disappear and the algorithm converges.

is kept constant. So far, in the 1D-TFIM model, we have not find a convincing

situation where the efficiency of the hybrid method can outperform that of SR.

Since we set the population of DE to be equal to the dimension of the search space,

the hybrid method will be more efficient only if the probability of getting a good

convergence of SR drops faster than 1/N . The dependence of the performance of

SR on hyper-parameters makes a systematical analysis of its convergence behavior

more complicated.

For small systems with 10 visible and 20 hidden neurons, the convergence pro-

cess of DE is illustrated in Fig. 10 for 500 generations. In Fig 10a and 10b, The
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Figure 11: The convergence performance for SR and hybrid DE. On the left panel,
SR is repeated 20 times for each h and the average and minimal energy found by
the RBM is depicted. On the right panel, the hybrid method is used for the same
RBM structure. In many cases, SR will eventually find a good representation
of the ground state, but most of them are trapped in a local minimum. In this
number of population (D = np) DE cannot guarantee that it will always find a
better representation than SR. Especially for |h| ≤ 0.5, where the ground state
is close to the |↑〉 and |↓〉 states and the shallow minimum is surrounded by a
plateau.

relative energy difference ∆E/E and the average distance between each pair of the

individuals d are plotted against the generation number. One can see the difference

between a shallow minimum and a sharp minimum from the convergence behavior

of average distance and energy. The competition between the two minima is also

observed and shown in Fig. 10c.

The convergence performance of SR and the hybrid method of DE with SR is

depicted in Fig. 11. For the case with only SR method, it is repeated 20 times and

the minimal and the average ground state energy is recorded. In many cases, SR

can eventually find a good representation of the ground state, but most of them

are trapped in a local minimum. As for the hybrid method, DE is followed by

SR initialized with the first 3 individuals with the lowest energy from DE. The

convergence of DE also shows the symmetry of the accuracy in representing |+〉 and

|−〉 for positive and negative h. This is also an evidence that the misconvergence

is mainly due to the distance between the initial and the final state, not because of

the difficulty in representing the state by the RBM.

Since for small systems, an exact diagonalization is still feasible, one can also

calculate the fidelity given by f = | 〈Ψ|ΨG〉 |2, where |ψG〉 is the exact ground state.

As the Hamiltonian has degenerated ground states at h and the closing energy gap

between the ground state and the second lowest state for h → 0 will significantly

influence the performance of the search, we add a field strength in z direction to lift
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the degeneracy. The Hamiltonian then reads

Ĥb′ = −
∑
i

σzi σ
z
i+1 − h

∑
i

σxi −B
∑
i

σzi (27)

As the fidelity is very close to 1, we show in Fig. 12 the infidelity in logarithmic

scale.
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Figure 12: The infidelity of the ground states found by the RBM with hybrid
DE and SR for the spin chain of 10. The Hamiltonian is modified with a field
B = 0.1 in z direction to lift the degeneracy. The accuracy is comparatively worse
for |h| = 1 where the wave function is more complicated because the interaction
term and the field term are equally important.

4 Summary

The success of using neural networks to represent complex quantum many-body

states has promoted the applications of neural networks in quantum physics. How-

ever, the understanding of how the network works and what else one can learn from

its architecture is hindered by the complexity and non-linearity of the ansatz. In this

thesis, we presented some relationships between the RBM weights and the quantum

many-body states it represents. As a representation of the ground state, the RBM

does not always keep all the properties of the state, but only those contained in

the Hamiltonian and favors the state that is easy to represent in presence of de-

generacy. We showed that the representation is strongly dependent on the choice

of basis and the weight distribution is mainly characterized by the interaction term

in the Hamiltonian. The performance of the learning algorithm depends eventually

on the energy surface in the continuous weight space rather than the discrete spin

configuration.

In addition to these attempts to understand the neural network, we also improved

the optimization method by adopting a global search algorithm DE. The application
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of DE is not restricted to the problem of finding the many-body ground state but

is also suitable for other optimization tasks of neural networks. For a problem

where the ground state is not known a priori, one can first make an estimation

of the difference between the initial state and the target state by, e.g. the energy

difference, and decide if a hybrid method with DE is necessary. Compared to SR, DE

requires, in general, more computation resources, but it can deal with complicated

landscape and bypass low-quality local minima. With high stability and robustness,

its performance relies more on the efficiency and accuracy of the energy estimation.

Apart from the optimization, DE, as a population-based algorithm, also offers a

way to analyze the geometry of the energy surface if a large population is available

to explore the search area. This method could be used for the further analysis

of the neural network. Still, the performance of the RBM representation and the

learning rule need more numerical investigation since the model we used so far for the

benchmarking, the 1D-TFIM, is still relatively simple and also mainly restricted to

small system size. Whether the efficiency of the hybrid method can really outperform

SR in a larger system or a more complicated Hamiltonian also needs further analysis.
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