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Zusammenfassung
In der vorliegenden Arbeit soll die Verbindung zwischen Chaos in klassischen

und quantenmechanischen Systemen theoretisch und numerisch für ein Spin 1

Spinor Bose Einstein Kondensat untersucht werden. Genauer gesagt, werden

wir versuchen, Größen in der quantenmechanischen Theorie zu finden, die zu

entscheiden erlauben, ob die Theorie im klassischen Grenzfall reguläres oder

chaotisches Verhalten aufweist. Ein Hauptaugenmerk wird dabei auf nicht zeitge-

ordneten Korrelationsfunktionen (OTOCs) liegen, da diese einen wohldefinierten

klassischen Grenzwert haben, in dem sie einem bestimmen Lyapunov Exponen-

ten entsprechen, einem Indikator für klassisches Chaos. Um zu sehen, ob OTOCs

als Indikatoren für Quantenchaos dienen können, werden wir zuerst die klassis-

che mean field Theorie konstruieren und mit etablierten Techniken wie Poincaré

Schnitten und Lyapunov Exponenten analysieren, für welche Parameter und An-

fangszustände sie chaotisches Verhalten zeigt. Dann werden wir die quantenmech-

anische Theorie simulieren um zu entscheiden, ob OTOCs oder andere Methoden,

wie die Analyse der Statistik der Eigenwertabstände des Hamiltonian, ähnliche

chaotische Regionen reproduzieren können.

Abstract
In this thesis the connection between chaos in classical and quantum mechanical

systems will be examined theoretically and numerically for a spin 1 spinor Bose

Einstein condensate. More precisely, we will try to find quantities in the quan-

tum theory that allow to decide whether the classical limit of that theory shows

regular or chaotic behaviour. One main focus will be on out-of-time-ordered

correlators (OTOCs) as they have a well-defined classical limit where they can

be associated with a certain (classical) Lyapunov exponent, a quantity known

to indicate classical chaos. To see whether OTOCs can be used as a proxy for

quantum chaos, we will first construct the classical mean field theory and analyse

for what parameters and initial states it shows chaotic behaviour using well es-

tablished techniques such as Poincaré sections and Lyapunov exponents. Then,

we will simulate the quantum theory to decide, whether OTOCs or other tech-

niques such as the analysis of the level spacing statistics of the Hamiltonian can

reproduce similar chaotic regions.
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1 Introduction

1.1 Motivation

Quantum chaos, i.e. the generalization of the well-established concepts concern-

ing classical chaos to quantum systems, is subject to current research [1, 2, 3].

This is because, although classical chaos has been thoroughly studied and is con-

sidered to be a well understood field [4], it is conceptually not clear, what chaos

means in quantum mechanics. A minimal definition of quantum chaos would be

to call a quantum mechanical system chaotic if its corresponding classical limit

is classically chaotic. In this setting, the aim is to find tools or schemes that

can serve as a proxy for quantum chaos, i.e. quantities of the quantum theory

that have well-defined classical limits which allow to decide whether the classical

theory is chaotic. Finding such quantities turns out not to be easy, one reason

being that naïve generalizations of indicators for classical chaos often fail, as will

be discussed in section 2.1. But there are also promising ideas, such as to take

the concept of exponentially diverging classical trajectories measured by the Lya-

punov exponent and going through a quantization procedure eventually arriving

at so-called “out-of-time-order correlators” (OTOCs) [5]. These correlators have

a well-defined classical limit by construction, but are not easy to measure exper-

imentally: Loosely speaking, OTOCs compare the action of two operators acting

on a given state at different times and in different successions, i.e. in order to

measure them one has to be able to evolve states forward and backwards in time1,

see section 2.1. Very precise control of the quantum system is needed to realize

this “time machine” explaining why this work focuses on spinor dynamics in a

Bose Einstein condensate. In this system we can realize the time reversal schemes

necessary to measure OTOCs by changing all parameters of our Hamiltonian to

their exact negative. The evolution under this negative Hamiltonian amounts to

an evolution backwards in time as is shown in the same section. Although this

work is done having in mind the experimental realization, I will only concern my-

self with the theory and its simulations. But even simulating OTOCs on classical
1There are also other ideas for experimental implementations of OTOCs, see e.g. [6], but

they are not easier to realize.
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computers, just as quantum many body systems in general, is a hard task due to

the known exponential dependence of the computational effort on the number of

simulated particles2.

Despite these obstacles, quantum chaos is a very interesting field of research

as knowledge about it would allow us to gain a better understanding of seemingly

unrelated topics such as the dynamics of black holes and the information paradox

[7]. To see that these topics are indeed related, consider the following (adapted

from [7]): The information paradox asks how information about objects that fell

into a black hole can be both trapped inside the event horizon and at the same

time liberated by Hawking radiation. As black holes are thermal objects, this

question is strongly related to how information dynamics lead to thermalisation.

To quantify this process of information scrambling in quantum systems we can

e.g. rely on OTOCs.

1.2 Objectives

Although quantum chaos has already been studied in numerous publications, I

will focus on quantum chaos and its classical limit in spin 1 spinor systems which

- in this form - has not been done yet. This system is particularly suited for these

purposes as it is the lowest dimensional spinor system where one can possibly

observe chaotic behaviour in the corresponding classical system (in the non driven

case): To observe chaotic behaviour in a collective spin system composed of

spin 1/2 particles, one has to drive it periodically, breaking energy conservation

symmetry, see e.g. [2]. If one wants to see chaotic behaviour without modifying

the original Hamiltonian (as it will be done in this work) one has to go to a higher

dimensional system, e.g. a spinor BEC in single mode approximation3 in |F = 2〉,

see [8]. The impact of the phase space dimension on the possibility of chaos will

be discussed in detail in section 3.3. Another reason why the spin 1 spinor BEC

is a nice system to study quantum chaos and especially OTOCs is because it
2In our case, as we restrict to the fully symmetric Fock space, the Hilbert space dimension

only scales quadratically in the number of particles.
3If momentum modes can be excited in the BEC, chaotic behaviour is also observable in

|F = 1〉 BECs. This work focuses entirely on the internal spinor dynamics.
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offers the possibility to implement time reversal schemes experimentally and thus

allows the measurement of OTOCs.

In brief, my objectives can be described as follows: First, I will construct

the classical mean field theory corresponding to the quantum mechanical spinor

system and determine chaotic areas, i.e. regions in parameter space where the

system exhibits classically chaotic behaviour. Then, I will do the "full" quantum

simulations and test, whether quantities such as OTOCs, that have been proposed

as a proxy for quantum chaos, can reproduce similar regions where the system is

"quantum chaotic".

Outline

In the first part of this thesis some information about the theoretical background

of the field is given: Starting with the concept of classical chaos, I will present

some attempts to generalize them to quantum systems also introducing OTOCs

as they will be one major point of interest in my work. After this general in-

troduction I will focus on the system that will be studied (spin 1 spinor BEC)

and why this system was chosen. In this part I will give an overview of the

description of a Bose Einstein condensate (BEC) and the formalism I will use

to describe the spinor dynamics (namely single mode approximation and Fock

basis). The following section of the thesis will present the classical mean field

theory corresponding to the quantum system. After showing how the mean field

equations can be derived, I will focus on finding chaotic behaviour for a region of

parameters (as it will turn out, I have to add an extra term to the Hamiltonian to

be able to observe chaos). The main part of this section will be about quantifying

classical chaos, focussing on Poincaré maps and Lyapunov exponents.

In section 4, I will examine the quantum system itself doing the full quantum

calculations. After having presented the numerical computation schemes, I will

focus on visualisation techniques before finally examining the chaoticity: First

by analysing statistics of the energy level spacings and then by computing some

OTOCs. The last section contains the comparison of the classical and quantum

results and in that way can be seen as the conclusion of my thesis as it answers

the question to what extend OTOCs can be used to diagnose quantum chaos.
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2 Theoretical Background

2.1 Chaos in Classical and Quantum Dynamics

Classical chaos is popularly understood as a system’s sensitivity to initial con-

ditions. As phrased by one of the most famous mathematicians working in this

field, Edward Lorenz, it reads

“Chaos: When the present determines the future, but the approximate

present does not approximately determine the future.”

This notion of high sensitivity to initial conditions is popularly associated with

the butterfly effect [9]: In Lorenz’s version: A tiny disturbance of the system

(here: the flap of a butterfly’s wings in Brazil) can lead to a totally different

evolution of the system (weather) until it eventually has major effects (tornado

in Texas). Bradbury takes this even further [10]: In his story “The sound of

thunder” the fact that a butterfly is killed accidentally, results in a completely

different evolution of mankind’s history.

Returning to a mathematical formulation of chaos, the sensitivity of a dynam-

ical system to initial conditions can be expressed by the Lyapunov exponent (also

called Lyapunov characteristic number) [1]. Given a classical trajectory x(t) and

some initial conditions x0, the sensitivity to initial conditions can be expressed

as the exponential divergence of initially infinitesimally separated trajectories:∣∣∣∣∣∂x(t)
∂x0

∣∣∣∣∣ ∝ eλt (1)

The Lyapunov exponent λ has to be greater than zero for the system to be chaotic.

But although necessary for chaotic behaviour, a positive Lyapunov exponent is

not sufficient: For a dynamical system to be chaotic, it must also be topologically

mixing. This means that every given region in phase space has to overlap with

every other given region after some finite time.

A final remark on this definition of classical chaos: Although classical chaos

has been intensively studied, there is still no universally accepted mathematical

definition. However, the two conditions cited above are normally agreed on when

talking about classical chaos in physical systems. We now want to generalize

the concept of chaos to quantum mechanics. But we run into difficulties when
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we try to find an analogue to the butterfly effect because quantum mechanics

prohibits the infinitesimal shift of trajectories [11]. One might naïvely think that

the overlap of a state |ψ〉 with another, slightly perturbed state |ψ′〉 would decay

over time, but, due to unitarity of time evolution, this is obviously not the case:

〈ψ′|U †(t)U(t) |ψ〉 = 〈ψ′|ψ〉 (2)

Instead, what can be done to construct an object representing the butterfly effect

is the following [1]: Starting with the classical Lyapunov exponent in eq. (1) we

replace the derivative by a Poisson bracket (for details, see section 4.5):
∂x(t)
∂x0

= {x(t), p0}Poisson . (3)

Then we can proceed with canonical quantization, i.e. we get the commutator
1
i~

[x̂(t), p̂] (4)

where x̂(t) is the position operator in the Heisenberg picture. This expression

as an operator might have complex eigenvalues which could lead to cancellations

when calculating its expectation value with respect to some density matrix. To

avoid these cancellations, it is natural to take its norm squared, i.e.
1
i~

[x̂(t), p̂] ·
( 1
i~

[x̂(t), p̂]
)†

(5)

The expression in eq. (5) is an example for an OTOC. It is called out-of-time-

ordered because terms of the form x̂(t)p̂x̂(t)p̂ appear. In general, given two local

operators V̂ and Ŵ in Heisenberg picture, the combined operator[
Ŵ (t), V̂

]
·
[
Ŵ (t), V̂

]†
is referred to as OTOC.

From this definition it is clear that OTOCs cannot be directly measured: We

need some kind of time machine to be able to evolve the system to time t and then

move it backwards in time to t0. One way to accomplish this are so-called time-

reversal schemes: Given the Hamiltonian H of the system, the experimentalist

has to implement the exact negative of the Hamiltonian to mimic the evolution

backwards in time:

U(t0, t1) = e−iH(t1−t0) ↔ e−i(−H)(t1−t0) = e−iH(t0−t1) ≡ U(t1, t0). (6)

In the case of a spin 1 spinor BEC that I study here this can be achieved by

shifting all atoms from the F = 1 to the F = 2 levels, see section 2.3 for details.
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2.2 Technical Framework

To be able to (mathematically) describe our system of interest, i.e. spinor dy-

namics in a Bose Einstein condensate (BEC) of 87Rb, we first need to settle some

basic terms.

A BEC is a state of matter occurring when a dilute gas of bosons is cooled

down to temperatures of typically some tens of nano Kelvin. What makes the

system particularly interesting for studying quantum mechanics, is the fact that

almost all particles are in their motional ground state which allows the observation

of quantum phenomena such as wavefunction interference or - as is the case here

- spinor dynamics.

It is convenient to describe spinor dynamics in a BEC using operators in the

"second quantized form" acting on a Fock basis representation: The theoretical

model presented here is valid for spin 1 atoms, e.g. 87Rb. For most calculations we

consider our atoms to be in one of the hyperfine states |F = 1,mF = −1, 0, 1〉.

For the time reversal scheme it will be necessary to shift all atoms from the

|F = 1〉 components to the corresponding |F = 2〉 components, but it will always

be sufficient to consider only three mF substates. Therefore we write our Fock

states as |N−1, N0, N1〉 where Ni represents the number of atoms in the mF = i

state.

In the theoretical description we will assume that the atoms in each hyperfine

component share a single spatial mode. This so-called "single mode approxima-

tion" (SMA) leaves us only with the internal degrees of freedom of our system,

i.e. the spinor dynamics. How the SMA is carried out in our system is described

in section 2.3.

The "second quantized form" or "occupation number representation" that we

are using here is especially convenient to use for describing quantum many body

systems: In the Fock basis described above we have the following basic operators:

â†i |Ni〉 =
√
Ni + 1 |Ni + 1〉 (7)

is the creation operator whereas ai is the annihilation operator of the mF = i

state:

âi |Ni〉 =
√
Ni |Ni − 1〉 . (8)
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They obey the bosonic commutation relations

[â†i , â
†
j] = 0 = [âi, âj] , [âi, â†j] = δij (9)

From these operators we can now construct the number operators

N̂i ≡ â†i âi , N̂i |Ni〉 = Ni |Ni〉 (10)

A natural basis to represent the state of a spin-1 particle is the "SU(3) cartesian

dipole–quadrupole basis, consisting of the three components of the spin vector, Sa,

and the moments of the rank-2 quadrupole or nematic tensor, Qab (a, b ∈ x, y, z)"

[12]. Using the definitions for Sa and Qab given in [13]

Sa = −i~εabccbc

Qab = −cab − cba + 2
3δabccc

(11)

(summing over repeated indices) where cab = b†abb and (dropping the hats)

b†x = (−a†1 + a†−1)/
√

2

b†y = i(a†1 + a†−1)/
√

2

b†z = a†0

(12)

we find the following explicit form for a su(3) basis (setting ~ = 1):

Sx = 1√
2
{

(a†1 + a†−1)a0 + a†0(a1 + a−1)
}

Sy = i√
2
{

(−a†1 + a†−1)a0 − a†0(−a1 + a−1)
}

Sz = (a†1a1 − a†−1a−1) = N1 −N−1

Qxz = −1√
2
{

(−a†1 + a†−1)a0 + a†0(−a1 + a−1)
}

Qyz = −i√
2
{

(a†1 + a†−1)a0 − a†0(a1 + a−1)
}

Qxy = i(−a†1a−1 + a†−1a1)

Qzz = 2
3(N1 +N−1)− 4

3N0 = 2
3N − 2N0

Qyy = 2
3N − (N1 + a†1a−1 + a†−1a1 +N−1)

Qxx = 2
3N − (N1 − a†1a−1 − a†−1a1 +N−1)

(13)

Note that Qab is traceless which is fulfilled because Qxx +Qyy +Qzz = 0. So we

have 8 (= 32 − 1, as required) independent basis elements spanning su(3).
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2.3 Hamiltonian

For a Bose Einstein condensate in an external magnetic field, the Hamiltonian

takes the form [14, 15]

H =
∫
d~r

F∑
m=−F

ψ†m(~r)
(
−~2

2M ∇
2 + U(r)− pm+ qm2

)
ψm(~r) +Hint (14)

where apart from the kinetic term, there is an external potential U(r) and con-

tributions from the linear (−pm) and quadratic (qm2) Zeeman shift. As we can

consider the dynamics in the rotating frame, see also section 3.3, we can neglect

the contribution from the linear Zeeman shift in the following. The parameter

q = µ2
BB

2
z/(~2EHFS) describes the quadratic Zeeman shift due to the magnetic

field Bz chosen to be along the z-axis. Here, µB is the Bohr magneton and EHFS
is the ground state hyperfine splitting.

For F = 1, considering only s-wave scattering, the interaction part of the Hamil-

tonian reads [16]

Hint = 1
2

∫
d~r

[
(c0 + c1)(ψ†1ψ1)2 + c0(ψ†0ψ0)2 + (c0 + c1)(ψ†−1ψ−1)2

+ 2(c0 + c1)ψ†0ψ0(ψ†1ψ1 + ψ†−1ψ−1) + 2(c0 − c1)ψ†1ψ1ψ
†
−1ψ−1

+ 2c1(ψ†0
2
ψ1ψ−1 + ψ†1ψ

†
−1ψ

2
0)
] (15)

Here, c0 and c1 are the spin-independent and spin-dependent coupling constants,

respectively and all field operators depend on the position, so ψi ≡ ψi(~r).

Now, in the single mode approximation we approximate ψi(~r) ≈ ψ(~r) · ai
where ai is the bosonic Fock state annihilation operator for the mF = i state.

This leads to (dropping constant terms ∝ c0)

Hint =
∫
d~r |ψ(r)|4 2c1

[
N0(N1 +N−1) + 1

2(N1 −N−1)2 + (a†0a†0a1a−1 + h.c.)
]

(16)

where Ni = a†iai and h.c. denotes the hermitian conjugate. That is, using the

single mode approximation in the Fock space representation from above, the

internal dynamics in the BEC can be described by the following Hamiltonian:

H = g
{

(a†0a†0a1a−1 + a†1a
†
−1a0a0) +N0(N1 +N−1) + 1

2(N1 −N−1)2
}

+q(N1+N−1),

(17)
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where g = 2c1
∫
d~r |ψ(~r)|4 with the spin dependent coupling constant c1 (which

is negative for the F = 1 (ferromagnetic) and positive for the F = 2 state (anti-

ferromagnetic) of 87Rb).

Summarizing, the system is described by the two parameters g and q, character-

izing the inter-spin and quadratic Zeeman energies, respectively.

Experimentally, the coupling g can be controlled by the density of the con-

densate and q can be influenced by applying an external magnetic field to-

gether with microwave dressing corresponding to an off-resonant coupling between

|F = 1,mF = 0〉 and |2, 0〉 [17].

Important to note is also that we experimentally have the possibility to apply a

radio-frequency (rf) field coupling themF = 0 mode to the side modes (mF = ±1)

giving an additional term in the Hamiltonian proportional to Sx or Sy respectively.

From the form of the Hamiltonian it is clear that it conserves both the total

number of atoms N = N−1 + N0 + N1 and the "magnetization" or "imbalance"

M = N1 − N−1. This will be of importance later, when we try to find chaotic

behaviour in the classical mean field, see section 3.3.
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3 Classical Mean field

In this part of my thesis I will construct the mean field equations of motion

(e.o.m.) corresponding to the quantum theory described by the Hamiltonian in

eq. (17). The idea is to find chaotic regions in the phase-/parameter space so

that it can be checked whether e.g. OTOCs reproduce the same chaotic regions

as given in the classical limit. To be able to do this, we fist have to derive the

mean field equations of motion.

3.1 Derivation of the Mean Field Equations of Motion

Before we actually perform the mean field approximation, we compute the Heisen-

berg equations of motions for the operators ai:

i~ȧ1 = [a1, H]

= g
{[
a1, a

†
1

]
a†−1a0a0 +N0

[
a1, a

†
1

]
a1 + 1

2
[
a1, N

2
1

]
−
[
a1, a

†
1

]
a1N−1

}
+ q

[
a1, a

†
1

]
a1

= g
{
a†−1a

2
0 +N0a1 + 1

22N1a1 − a1N−1

}
+ qa1

= qa1 + g
{

(N1 +N0 −N−1)a1 + a†−1a
2
0

}
(18)

where we used that [ai, N2
i ] = 2Niai.

Similarly, using
[
a0, a

†
0a
†
0

]
= 2a†0, we get

i~ȧ0 = g
{
a0(N1 +N−1) + 2a†0a1a−1

}
(19)

and

i~ȧ−1 = qa−1 + g
{

(−N1 +N0 +N−1)a−1 + a†1a
2
0

}
(20)

Now, in the mean field approximation we treat the operators as uncorrelated

in the sense that 〈aiaj〉 = 〈ai〉 〈aj〉. Defining ζi ≡ 1√
N
〈ai〉, such that ζi ∈ C, the

Heisenberg equations of motion (eq. (18) to (20)) yield

i~ζ̇1 = q ζ1 + gN
{

(ρ1 + ρ0 − ρ−1)ζ1 + ζ?−1ζ
2
0

}
i~ζ̇0 = gN {(ρ1 + ρ−1)ζ0 + 2ζ?0ζ1ζ−1}

i~ζ̇−1 = q ζ−1 + gN
{

(−ρ1 + ρ0 + ρ−1)ζ−1 + ζ?1ζ
2
0

} (21)
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where ρi ≡ Ni/N = |ζi|2 and a factor of 1/
√
N was cancelled on both sides.

Note that in the following classical calculations we will use g̃ ≡ gN as a parameter

instead of g. This "normalization" is applied to make the mean field equations

independent of the total atom number N .

3.2 Visualizations

As mentioned before (see section 2.2) the system can be described in the SU(3)

space that is spanned by the eight dipole-quadrupole basis operators. Clearly, it

is not possible to visualize / plot the dynamics in all of these eight dimensions

simultaneously. What we can do however is to limit ourselves to SU(2) subspaces

which can be visualized e.g. on Bloch spheres.

SU(2) subspaces

In order to visualise the SU(3) space on (SU(2)-) Bloch spheres, we want to find

SU(2) subspaces of our original SU(3) space. To do so, we have a look at the

commutators of our dipole-quadrupole basis elements and note for example that

[Sx, Qyz] = 2iQzz −Qyy

2[
Qzz −Qyy

2 , Sx

]
= 2iQyz[

Qyz,
Qzz −Qyy

2

]
= 2iSx.

(22)

So, e.g.
{
Sx, Qyz,

Qzz−Qyy
2

}
form a SU(2) subspace of our initial phase space.

To understand the dynamics of the system (and also to check if the numerical

calculations are consistent with [12]) we have a look at the mean field e.o.m. in

eq. (21). Integrating them numerically in python for the initial states

ζinit = exp (−iQyzϕ) |0, 1, 0〉 (23)

for ϕ running from 0 to π in steps of π/20 and plotting the results on the{
Sx, Qyz,

Qzz−Qyy
2

}
-sphere we get the trajectories shown in fig. 1.
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(a) q = 0.0 (b) q = 0.5 (c) q = 5.0

Figure 1: Mean field dynamics: Evolution until t = 6 for different values of

the Zeeman coupling q. The inter-spin coupling constant is set to g̃ = 1,

E0 = 0, E1 = E−1 = q, leaving us with q as the only free parameter

(~ = 1). The axis label denoted as Qzz above is actually −Qzz−Qyy
2 , where

the minus sign has no further significance, except for being consistent with [12].

Note that the dipole-quadrupole operators have been normalised to 1, so e.g.

Sz =
{
ζ?0 (ζ1 + ζ−1) + ζ0(ζ?1 + ζ?−1)

}
/
√

2 such that the e.o.m. do not depend on

the total particle number N .

We note that there are two unstable fixed points at the poles (Qzz = ±1)

and (up to) two additional (stable) fixed points depending on the value of q. To

understand fig. 1 it is useful to write the Hamiltonian as H = g
2 (S2 − 2N)+pSz+

q
2Qzz, see e.g. [12], where in our case p = 0 as we consider the dynamics in the

rotating frame. That means that for large q the Hamiltonian is approx. H ∝ Qzz

which results in a rotation around the Qzz-axis, see fig. 1c. To understand fig. 1a

we note that in the presented subspace Sy and Sz are not shown, i.e. H ∝ S2 ∝ S2
x

for q = 0 (remember N = const and S2 = S2
x + S2

y + S2
z ).

Re-parametrization

Alternatively, to get a simpler visualization of the dynamics, we can again have a

look at eq. (21). First of all, the whole system is described by three complex fields

(the components of ζ), so our phase space actually has "only" six dimensions:

ζj ≡
√
ρj e

iΘj . We further note, that the Hamiltonian in eq. (17) conserves

the particle number N . Additionally, we can transform into a rotating frame,

e.g. by choosing the phase of ζ0 to be zero Θ0 ≡ 0, i.e. making ζ0 real. This

12



amounts to fixing a global phase which we are always allowed to do as a global

phase cannot be measured and does not influence the dynamics. Introducing a

normalized "magnetization" m = (N1−N−1)/N along with the Larmor precession

phase Θm = Θ1 − Θ−1 and the spinor phase (defined such that Θ0 ≡ 0) Θs =

Θ1 +Θ−1 − 2Θ0 we can write ζ as (see also [13])

ζ1 =
√

1− ρ0 +m

2 ei
Θs+Θm

2

ζ0 = √ρ0

ζ−1 =
√

1− ρ0 −m
2 ei

Θs−Θm
2

(24)

With this parametrisation, the mean field time evolution from fig. 1 looks like:

3 2 1 0 1 2 3
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0.4

0.6

0.8
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ρ
0
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t

(a) q = 0.0
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7.2

t

(b) q = 0.5
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0.0
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ρ
0
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3.6
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4.8
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(c) q = 1.0

Figure 2: Mean field dynamics: Time evolution for different values of the Zeeman

coupling q shown in {ρ0, Θs} phase space. The whole phase space includes also

m and Θm but they are not shown as m is conserved and Θs is cyclic, see section

3.3. The inter-spin coupling constant is set to g̃ = 1, E0 = 0, E1 = E−1 = q,

leaving us with q as the only free parameter (~ = 1).

3.3 Modifying the Hamiltonian to find chaos

Until now we examined the dynamics of our system in different representations.

But looking at fig. 1 and fig. 2 we see very regular, i.e. non-chaotic behaviour.

To understand why there are apparently no chaotic regions, we again have a look

at the Hamiltonian in eq. (17). By substituting the mean field approximated

ζi ≡ 1√
N
〈ai〉 we get the classical energy functional

E ≡ E/N = gN
{
ζ∗20 ζ1ζ−1 + ζ∗1ζ

∗
−1ζ

2
0 + |ζ0|2

(
|ζ1|2 + |ζ−1|2

)
+ 1

2m
2
}

+q
(
|ζ1|2 + |ζ−1|2

)
(25)
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where we used that m = (N1 −N−1) /N = ρ1 − ρ−1.

Furthermore, using normalisation, i.e. 1 = ρ1 + ρ0 + ρ−1 ⇔ |ζ1|2 + |ζ−1|2 ≡

ρ1 + ρ−1 = 1− ρ0 and the parametrisation of ζ from eq. (24), we arrive at

E = gN

2 m2 + gNρ0

{
(1− ρ0) + 1

2

√
(1− ρ0)2 −m2 eiΘs + 1

2

√
(1− ρ0)2 −m2 e−iΘs

}
+ q (1− ρ0)

= gN

2 m2 + gNρ0

{
(1− ρ0) +

√
(1− ρ0)2 −m2 cosΘs

}
+ q (1− ρ0)

(26)

The interesting thing about the energy functional (26) is that Θm does not

appear, i.e. it is a cyclic variable. Furthermore, we know that ṁ = 0 because Sz
commutes with the Hamiltonian and thus also in the mean field e.o.m. m has to

be conserved.

Hence we have seen that the phase space in terms of {ρ0, Θs,m,Θm} is only

two dimensional in the sense that non-trivial dynamics only include {ρ0, Θs}.

According to the Poincaré-Bendixson theorem [18] chaos can only arise in contin-

uous dynamical systems if the phase space has three or more dimensions. This

explains why we cannot find chaos in the system described by the Hamiltonian

in eq. (17). In order to observe chaotic behaviour, we have to increase the di-

mensionality of our "effective" phase space. One way to achieve this is to modify

the Hamiltonian such that m is not conserved any more.

We want to do this by adding a time-independent (non driven) term to the

Hamiltonian, such that we do not break energy conservation symmetry. Experi-

mentally, we have the options to apply radio-frequency (rf) pulses resonant with

the transition |1, 0〉 ↔ |1,±1〉 that can be modelled by constant Sx or Sy terms

in the Hamiltonian within a rotating wave approximation (we transform into

a frame rotating with the frequency corresponding to the linear Zeeman shift).

Here, I choose to add a Sx term to the Hamiltonian (Sy works as well):

Hc := H + r · Sx , r ∈ R (27)

Remember that

Sx = 1√
2
{

(a†1 + a†−1)a0 + a†0(a1 + a−1)
}
. (28)
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In order to calculate the new mean field e.o.m. for ζ, we first have a look at the

commutators with Sx:

[a1, Sx] = 1√
2
[
a1, a

†
1

]
a0 = 1√

2
a0

[a0, Sx] = 1√
2
[
a0, a

†
0

]
(a1 + a−1) = 1√

2
(a1 + a−1)

[a−1, Sx] = 1√
2
[
a−1, a

†
−1

]
a0 = 1√

2
a0

(29)

Knowing the new part of the Heisenberg e.o.m. for the annihilation operators ai
we can write down the modified mean field e.o.m. (compare to eq. (21)):

i~ζ̇1 = q ζ1 + gN
{

(ρ1 + ρ0 − ρ−1)ζ1 + ζ?−1ζ
2
0

}
+ r√

2
ζ0

i~ζ̇0 = gN {(ρ1 + ρ−1)ζ0 + 2ζ?0ζ1ζ−1}+ r√
2

(ζ1 + ζ−1)

i~ζ̇−1 = q ζ−1 + gN
{

(−ρ1 + ρ0 + ρ−1)ζ−1 + ζ?1ζ
2
0

}
+ r√

2
ζ0

(30)

Modified Energy Functional

If we want to examine the dynamics in the {ρ0, Θs,m,Θm} space, it is also useful

to calculate the modified energy functional. The energy functional corresponding

to Sx is

ESx = 1√
2


√1− ρ0 +m

2 e−i
Θs+Θm

2 +
√

1− ρ0 −m
2 e−i

Θs−Θm
2

√ρ0

+ √
ρ0

√1− ρ0 +m

2 ei
Θs+Θm

2 +
√

1− ρ0 −m
2 ei

Θs−Θm
2


=
√
ρ0

2
{√

1− ρ0 +m
(
ei
Θs+Θm

2 + e−i
Θs+Θm

2
)

+
√

1− ρ0 −m
(
ei
Θs−Θm

2 + e−i
Θs−Θm

2
)}

= √ρ0

{√
1− ρ0 +m cos

(
Θs +Θm

2

)
+
√

1− ρ0 −m cos
(
Θs −Θm

2

)}
(31)

Thus, the modified energy functional is

Ec = E + r · ESx

= gN

2 m2 + gNρ0

{
(1− ρ0) +

√
(1− ρ0)2 −m2 cosΘs

}
+ q (1− ρ0)

+ r
√
ρ0

{√
1− ρ0 +m cos

(
Θs +Θm

2

)
+
√

1− ρ0 −m cos
(
Θs −Θm

2

)}
(32)
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Simulation of Modified Mean Field Equations

Since the mean field equations of motion for ρ0, Θs, Θm and m will be very bulky,

we keep working in the ζ parametrization for convenience, see eq. (30). But still

we want to visualise the classical trajectories in the {ρ0, Θs,m,Θm} phase space,

therefore we need a mapping between these two representations. One direction

is given by eq. (24) and the other can be found by inverting this equation, but

only after fixing the global phase: ζ has the general form ζi ≡
√
ρi e

iΘi . We now

transform to ζ̃i = ζi · e−iΘ0 such that Arg ζ̃0 = 0, i.e. ζ̃0 ∈ R. Now we can get

back ρ0, Θs, m and Θm as follows:

ρ0 = ζ̃0
2

m = |ζ̃1|2 − |ζ̃−1|2

Θs = Arg ζ̃1 + Arg ζ̃−1

Θm = Arg ζ̃1 − Arg ζ̃−1

(33)

To see whether the numerical integration of the modified classical e.o.m. work,

we check that the norm (|ζ| = 1) and the total energy (eq. 32) are conserved, see

fig. 3.

0 10 20 30 40 50 60

time

0.0

0.2

0.4

0.6

0.8

1.0

P
o
p
u
la

ti
o
n
 ρ
i

Populations over time

ρ0

ρ1

ρ−1

norm

Figure 3: Populations of the different mF states over time for g̃ = q = 1, r =

0.7. The norm is calculated as the sum of all populations. The total energy is

conserved up to a relative error ∆E < 10−4.
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3.4 Poincaré Maps

In order to visualize the dynamics produced by the modified (still classical) Hamil-

tonian (see previous section 3.3) we have to employ some new techniques: Because

of the broken m symmetry, the system does not stay on the surface of the SU(2)

Bloch spheres any more, that have been used before to visualize the dynamics.

Although this is still a valid visualization, it can not be easily interpreted any

more. But even if we use the parametrization of ζ in terms of ρ0,m,Θs and Θm,

we run into problems: Due to the fact that m is not conserved any more, the

dynamics now take place in an effectively four dimensional phase space.

To "reduce" the dimensionality of the visualization we will proceed as follows:

First, we use the fact that our perturbation term is constant in time (in contrast

to e.g. the periodically driven system in ref. [2]) so that the total energy is

conserved. I.e., after fixing a total energy, the system will stay on a three dimen-

sional "surface", subset to the original four dimensional phase space. Although

it is in principle possible to plot three dimensional trajectories, it is not easy to

distinguish between chaotic and regular behaviour in such a representation. To

reduce the dimensionality once again, we use a technique called Poincaré maps

or Poincaré sections:

In general, a Poincaré section of a dynamical system in N dimensional phase

space is defined as a (N−1) dimensional surface of section. I.e. instead of looking

at the N dimensional trajectories directly, we only record the points where the

trajectories pierce through a (N − 1) dimensional (hyper-) surface. For simpler

systems these maps can be analytically calculated but in most cases (as in ours)

they have to be computed numerically, i.e. they are really rather sections than

maps.

In our case we have a 4-dimensional phase space and we define our 3-dimensional

section by the equationΘm = 0. Instead of representing the solutions to the e.o.m.

as trajectories in 4-dim. phase space (which is pretty hard to visualise), we look

at consecutive intersections with our 3-dim. subset defined by Θm = 0.

There is a very nice scheme how to find these points of intersections exactly

[19]: After each integration step the section defining equation (here: Θm = 0) is

evaluated. For this scheme, we require the plane of section to be perpendicular
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to one of the coordinate axes xN , (which is given in our case, xN = Θm). This

can always be achieved by rotating the coordinate system. When a change of

sign is detected, we change our equations of motion such that xN becomes the

independent variable by dividing all equations fi(y, x) by fN . Now the formerly

independent variable (time) becomes a dependent one. As xN is now independent,

we can exactly integrate back to the surface of section be choosing the step size

as Θm. Once we found our point of intersection, we change back to the original

system of equations and proceed with the integration.

When implementing this procedure, I ran into a lot of numerical instabilities.

That is why I used a much simpler and slightly more imprecise scheme: First, I

integrate the system and record the four dimensional coordinates at every time

step. Then, I check for (smooth) zero crossings of Θm and simply linearly interpo-

late between the two adjacent points. By making the integration steps sufficiently

small (what I have to do anyway to ensure energy conservation up to a relative

error of the order 1e−4), the points of intersection can be determined arbitrarily

precisely.

We are now left with three dimensions. But as mentioned above, the total

energy is conserved, so that we can project the 3d plot onto two dimensions.

We choose ρ0 and Θs here to directly see how the Poincaré sections change from

the unperturbed phase space picture when we slowly turn up the disturbance

parameter r.

It is certainly true that we loose information by only looking at the Poincaré

sections compared to the four dimensional trajectories. But as our aim is to

determine for what parameters and initial states the system exhibits chaotic be-

haviour, it is enough to look at Poincaré sections: When the intersection points

are strictly confined in a (one dimensional) subspace of the section, dynamics

are regular. When the points of intersection are instead spread over a larger area

(only limited by conservation of energy and norm) then the system is topologically

mixing and very likely to be chaotic.
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Implementation

A few words concerning the actual implementation: For a given set of initial values

{ρ0,m,Θs, Θm} we convert them to ζ according to eq. (24). Then the equations

of motion for ζ are numerically integrated to calculate its time evolution. After

that, at each recorded point in time, ζ is converted back to {ρ0,m,Θs, Θm} and

in this representation we check for (smooth) zero crossings in Θm. We can now

record the interpolation between the points where the zero crossing happened as

described above. In the end we want to plot a raster of different initial values

matching a given total energy E. In order to achieve this, we sample ρ0 and Θs

and try to find a value of Θm such that the initial states match the energy E for

m = 0.1. If this is not successful, we vary m from −ρ0 to ρ0 and try to find Θm

corresponding to E. In order to find a value of Θm = Θm(ρ0,m,Θs, E, g, q, r) we

have to invert the energy functional given in eq. (32). To do so, we first write it

as

E = f(ρ0,m,Θs) + r
√
ρ0

{
A cos

(
Θs −Θm

2

)
+B cos

(
Θs +Θm

2

)}
(34)

where A =
√

1− ρ0 −m, B =
√

1− ρ0 +m such that A,B and f do not depend

on Θm. Solving this equation for Θm gives

Θm = ±2 arccos

±
√

(A+B)2(A2 +B2 − C2 + 2AB cosΘs) sin2 Θs
2 + (A−B)C sin Θs

2

A2 +B2 + 2AB cosΘs


(35)

where C = E−f(ρ0,m,Θs)
r
√
ρ0

.

It is obvious that this expression is not well defined for r = 0 or ρ0 = 0. But this

is not surprising because in these cases E does not depend on Θm, i.e. for some

energy E, all values of Θm are valid solutions to the problem. If this happens,

the subroutine implementing eq. (35) returns a set of several values between −π

and π.
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Results

Our aim is to find chaotic regions depending on a set of parameters, most impor-

tantly on the disturbance r. To produce the plots in fig. 4, we set g̃ = q = 1, vary

r and plot the Poincaré sections with the surface defined by Θm = 0 for different

initial states.

We see that in the case of r = 0 the points belonging to each Poincaré section

form closed contours, indicating regular behaviour, see fig. 4a. Note that in this

figure we plotted Poincaré sections for initial states corresponding to different

energies to be able to show dynamics in a larger region of the phase space. As

we expect, fig. 4a resembles the phase space picture for the unperturbed system

shown above in fig. 2c.

If we now increase the disturbance to r = 0.15, see fig. 4b and 4c, we see that

there are regular regions as well as regions where no closed contours can be seen.

In these latter regions the classical mean field e.o.m. produce chaotic behaviour.

In the left picture it is shown that the Poincaré sections corresponding to initial

states with small ρ0 become chaotic sooner than those starting at larger values of

ρ0. This is expected because ρ0 = 0 is an unstable fixed point of the unperturbed

dynamics. Further increasing r, we see that all energetically accessible regions

in phase space show chaotic behaviour. If we increase r even more, new regular

patterns emerge. This is because for large r, the Hamiltonian is approximately

proportional to Sx which results again in a regular phase space.

This is what we hoped to find: Starting with the unperturbed Hamiltonian,

we get regular behaviour. Turning up r results first in a mixed phase space where

only parts of it show chaotic behaviour. Increasing the perturbation even more

results in a completely chaotic phase space where no more regular regions are

visible. Only for higher values of r regular patterns re-emerge.
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Figure 4: Poincaré maps of mean field dynamics defined by Θm = 0. (a) ini-

tial conditions corresponding to different energies. (b) and (d) initial conditions

corresponding to the same energy, each initial condition in a different colour, (c)

and (e) same as (b) and (d) but the values of m at each point of intersection are

colour encoded. Initial values of ρ0 and Θs are marked by red crosses. All of

these maps have been calculated for g̃ = q = 1.
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3.5 Lyapunov exponent

As already mentioned in section 2.1, Lyapunov exponents describe how fast two

infinitesimally close trajectories diverge. A positive Lyapunov exponent implies

that phase space trajectories diverge exponentially fast, i.e. in that case the

system is very likely to exhibit chaotic behaviour. If ~z1(t) is a trajectory and

~z2(t) ≡ ~z1(t) + ~ξ(t) is another, infinitesimally close trajectory, then the largest

Lyapunov exponent λ can be obtained (see e.g. [20]) as

λ = lim
t→∞

1
t

log

∣∣∣~ξ(t)∣∣∣∣∣∣~ξ0

∣∣∣ . (36)

To numerically evaluate this limit we use a method documented in [20]: Given

a starting point in phase space ~z1(t0) we choose a random point ~z2(t0) with

initial separation d0. We then calculate the time evolution for both trajectories

simultaneously by numerical integration. After each time step log(d1(t)/d0) is

evaluated and recorded, where d1(t) = |~z1(t)− ~z2(t)|. Then, a new point z2 is

chosen such that it lies in the direction of the former ~z2(t) but at a distance d0

from ~z1(t). Then the integration is resumed and carried out, here until t = 500.

In the end, the average is taken over the recorded values omitting all values

up to t = 100. We omit the first values to ensure that we have reached the

basin of attraction which is important to get a sensible estimate of the Lyapunov

exponent.

Implementation

We want to calculate the Lyapunov exponents for a set of initial values such that

we can compare the results to the Poincaré sections from section 3.4. That is

why we choose Θm = 0, raster over all values of ρ0 and Θs and calculate the

Lyapunov exponent for all {ρ0, Θs} where we find a value of m corresponding to

a given total energy E. To find m = m(ρ0, Θs, Θm, E, r, ...) we numerically invert

eq. (32) and take only one possible value of m resulting in an energy E. We

have to invert the energy functional numerically because there (probably) is no

analytical way to determine m.
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Figure 5: Lyapunov exponents λ for a raster of 80 × 80 values of ρ0 and Θs,

Θm = 0. The value of m has been calculated to match a given energy E = 1.005.

This energy mainly influences the allowed compatible regions in phase space.

Again, g̃ = q = 1.

For r = 0, see fig. 5a, all points have a Lyapunov exponent close to zero

(coloured in green) corresponding to regular behaviour except the points where

ρ0 = 0. Classically, these points correspond to an unstable fixed point [3] which

would explain why in the short time evolution these points show rapidly diverging

trajectories when slightly perturbed. As we increase r we see in figures 5b and

5c that the chaotic regions, i.e. regions in phase space where the Lyapunov

exponents λ > 0, grow (coloured in red). At first, we have a mixed phase space

as in fig. 5b until eventually all allowed initial states lead to chaotic dynamics,

see fig. 5c. Only for much larger values of r regular regions dominate again, as

can be seen in fig. 5d and 5e.

Discussion of Classical Results

Setting g̃ = q = 1, we saw that for r . 0.15 regular regions dominate, for r ≈

0.15 . . . 0.30 we have a mixed phase space, for r ≈ 0.30 . . . 0.85 chaos dominates

and for r & 0.90 the system becomes regular again. This is the result that we

obtained from the classical theory, clearly visible in both Poincaré maps and
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Lyapunov exponents. The next step will be to consider the full quantum theory

and see, whether we can find analogues of quantum mechanical measures that

reproduce the same chaotic regions.

4 Quantum Calculations

4.1 Concept and Limitations

The Hamiltonian system we are interested in is far too complicated to be solved

analytically. But as we still want to do the quantum calculations, we have to use

numerical methods to solve the equations. To do so, we first compute a complete

set of basis states for our Fock space: B = {|0, N, 0〉 , |0, N − 1, 1〉 , . . . , |N, 0, 0〉}

where N is the total number of atoms. That means that we have

|B| = (N + 1)(N + 2)
2 = o(N2)

basis states.

In a next step, we have to construct our operators with respect to this ba-

sis. As the total number of atoms is always conserved, we have to break the

Hamiltonian down into pairs of creation / annihilation operators that conserve

N (all operators which do not conserve N would have a representation matrix

containing only zeros). As a set of basic operators we choose

{
a†0a1, a

†
0a−1, a

†
1a−1, Ni ≡ a†iai, i ∈ {−1, 0, 1}

}
. (37)

What we mean by constructing the operators with respect to the basis B is the

following: Let |bn〉 , |bm〉 ∈ B be two basis states. Then the (m,n)-element of the

matrix O representing the operator O is given by

On,m = 〈bn| O |bm〉 . (38)

Once we have the representation of our basic operators, we can construct the

Hamiltonian and other combinations of operators (observables) from these. If we

now want to compute the time evolution of a given state |ψ〉 we have two possi-

bilities: We can solve the system by numerically diagonalising the Hamiltonian or

we can solve the differential equations for the coefficients that represent |ψ〉 with
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respect to the basis B. In the first case, we numerically compute the eigenvectors

~vi and the corresponding eigenvalues λi of the Hamiltonian matrix H defined by

H · ~vi = λi~vi, i = 1, . . . , n where H is a n× n matrix. Bundling all eigenvectors

in a matrix V = (~v1, . . . , ~vn) containing them as column vectors, we can compute

the state |ψ(t)〉 at different times t as

|ψ(t)〉 = V diag
(
e−itλ1 , . . . , e−itλn

)
V † |ψ(t = 0)〉 . (39)

For the other possibility we write |ψ(t)〉 = ∑
k ck(t) |bk〉 for |bk〉 ∈ B. To

get the time evolution of |ψ〉 we have to calculate the time dependence of the

coefficients ck. To see how we can compute them, we start with the Schrödinger

equation

i∂t |ψ〉 = H |ψ〉 (40)

where ∂t denotes the time derivative. Multiplying both sides with 〈bl| we get

ċl = ∂t
∑
k

ck(t) 〈bl|bk〉 = −i
∑
k

ck(t) 〈bl|H|bk〉 (41)

where we used that basis states are orthonormal, i.e. 〈bl|bk〉 = δkl. We can bring

these equations in a simpler form by combining the ck’s into a coefficient vector

~c:

~̇c = −iH~c (42)

where H denotes the matrix representation of H in the above sense. Equation

(42) is a system of coupled ordinary differential equations and can be integrated

numerically for a given initial state.

I implemented both methods and compared their performance, i.e. how long

they take to compute the time evolution of a state given the total number of

atoms and the number of time steps. It turned out that both methods are more

or less equally efficient. This is not what we expected but it can probably be

explained by the sparseness of H: If H was a dense n×n matrix, diagonalization

should scale as n3 whereas the matrix vector multiplication used in the numerical

integration should scale only as n2 making the latter method potentially much

more efficient.

Once we have the time evolution of |ψ(t)〉 we can compute observables simply

by evaluating 〈ψ(t)|O|ψ(t)〉.
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4.2 Coherent States

So far, I have not talked about the initial state whose time evolution I want to

compute. In theory, we could pick any possible state but it makes sense to pick

a state that has a well defined classical limit (as in the end, we want to compare

the quantum calculations with the mean field results). A sensible choice for such

states are so-called coherent states: These are states that can be expressed as

product states in the following way:
ζ1

ζ0

ζ−1


⊗N

= (ζ1 |1〉+ ζ0 |0〉+ ζ−1 |−1〉)1 ⊗ (. . . )2 ⊗ · · · ⊗ (. . . )N (43)

where the coefficients are the same in each bracket.

Initially, I computed such states by rotating the polar state |0, N, 0〉 e.g. by

an angle φ around Sx but this turns out to be numerically inefficient as it contains

a matrix exponential:

|ψ0〉 = eiSxφ |0, N, 0〉 (44)

If one observes that (Sx)n+2 = (Sx)n for n ∈ N, one can show that

eiSxφ = 1 + iSx sinφ+ S2
x (cosφ− 1) (45)

which amounts to the vector Rodrigues’ rotation formula [21] and hence

eiSxφ |0〉 = cosφ |0〉+ i√
2

sinφ (|1〉+ |−1〉) . (46)

This is a useful result because we can write |0, N, 0〉 = |0〉1⊗· · ·⊗ |0〉N and hence

eiSxφ |0, N, 0〉 = eiSxφ |0〉1 ⊗ · · · ⊗ |0〉N

=
N⊗
i=1

(
cosφ |0〉i + i√

2
sinφ |1〉i + i√

2
sinφ |−1〉i

)

=
∑

N−1,N0,N1

(cosφ)N0( i√
2

sinφ)N1( i√
2

sinφ)N−1
∑
perm
|. . .〉1 ⊗ · · · ⊗ |. . .〉N

=
∑

N0+N1≤N
(cosφ)N0( i√

2
sinφ)N−N0

√
k |N −N0 −N1, N0, N1〉

(47)

The sum over N−1, N0, N1 in the third line runs such that N−1 + N0 + N1 = N

so that N−1 can be expressed by N0 and N1 in the next line. At the end of the
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third line, the sum runs over all permutations of the tensor product of the single

states such that each state |i〉 appears Ni times in total for i ∈ {−1, 0, 1}. The

normalisation of the Fock states k is given as follows: There are

k =
(
N

N0

)(
N −N0

N1

)
= N !
N−1!N0!N1! = N !

(N −N0 −N1)!N0!N1! (48)

possibilities for permutations of |. . .〉1⊗· · ·⊗|. . .〉N such that |i〉 appears Ni times.

Hence
1√
k

∑
perm
|. . .〉1 ⊗ · · · ⊗ |. . .〉N = |N−1, N0, N1〉 . (49)

We can generalize this concept in the following way: A more general method to

numerically prepare any coherent state corresponding to a set of {ρ0, Θs,m,Θm},

is to first convert these parameters to {ζ−1, ζ0, ζ1} using the mapping from eq.

(24) from section 3.2 and then compute the coherent state via
ζ1

ζ0

ζ−1


⊗N

= (ζ1 |1〉+ ζ0 |0〉+ ζ−1 |−1〉)1 ⊗ (. . . )2 ⊗ · · · ⊗ (. . . )N

=
∑

N−1,N0,N1

(ζ−1)N−1(ζ0)N0(ζ1)N1
√
k |N−1, N0, N1〉

(50)

where ∑N−1,N0,N1 is such that N−1 + N0 + N1 = N and with the multinomial

coefficient k defined in eq. (48).

Experimentally, coherent states can still be prepared by e.g. rotating the

polar state but for the simulations, the numerical computation of coherent states

as presented above is far more efficient.

4.3 Visualisation

To check whether the quantum calculations work and actually produce dynamics

corresponding to the classical mean field evolution of the system, we want to vi-

sualize the time evolution of some initial state. In the previous section I described

how to construct a coherent state corresponding to a point in classical phase space

defined by {ρ0, Θs,m,Θm}. I also explained how to calculate the time evolution

of any given state. What is still needed is a way to visualise a "state" or more

precisely a probability distribution in such a way that we can easily compare it

to the phase space representation that we used for the classical states. One way
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to go - conceptually straight forward but computationally rather expensive - is

to project the state of interest at each time step onto a grid of coherent states.

Because the classical limit of the coherent states is well defined, the overlap with

these states can be interpreted as the probability to measure {ρ0, Θs,m,Θm}.

Note that such a measurement is of course not possible in quantum mechanics.

As already noted, this procedure is computationally rather expensive: Even if

we project only on coherent states corresponding to Θm = 0 to be able to compare

with the Poincaré sections (see sec. 3.4), our grid still consists ofM3 points. Here,

M is the resolution in ρ0, Θs and m, i.e. the number of points that is sampled

for each of these variables. If we then want to calculate the time evolution for

MT time steps, we have to construct M3 coherent states and calculate M3 ·MT

overlaps. For realistic parameters of M = 40 and MT = 300 this corresponds to

roughly 2× 107 projections. Note, that there are actually fewer than M3 allowed

states because of the normalization |ζ| = 1: Only states with |m| ≤ 1 − ρ0 are

physical states.

I did the calculations for a total atom number ofN = 10, 30 and 60 particles to

see whether the distributions get more and more peaked with increasing particle

number as we would expect: For N → ∞ the system should be classical in the

sense that a state is specified by a point (corresponding to a Dirac distribution)

in phase space.

The plots are shown in section 5.1.

4.4 Level Statistics

A well established tool to check for chaos - or to be more precise, for randomness -

in quantum mechanical systems is the analysis of the level statistic of the energy

eigenvalue spacings of the system [22]. A motivation, why level statistics say

something about the amount of order or randomness in a system can be given as

follows: If a system is regular it normally features some symmetries and conserved

quantities, in our case e.g. the Hamiltonian conserves Sz (i.e. m in the mean field

picture) and is also symmetric under the transformationm 7→ −m for r = 0. This

leads to degeneracies, energy levels (as a function of some other parameter, e.g.

q) cross. If we now turn on a disturbance (in our case ∝ rSx), the conservation
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of Sz is broken, thus also m is not conserved any more. Formerly allowed level

crossings are now avoided, see fig. 6.

This level repulsion changes the distribution of energy level spacings: In the

unperturbed case, as level crossings are allowed, the distribution is peaked at

zero and follows a Poisson distribution P (s) = e−s. Now with level repulsion,

small spacings are suppressed and the distribution of energy level spacings, as

follows from random matrix theory, is best approximated by a Wigner distribu-

tion P (s) = π/2 s e−πs2/4. [23]
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Figure 6: Detail of the eigenvalue spectrum as a function of the Zeeman parameter

q for different values of r. For r = 0 the Hamiltonian exhibits symmetries,

level crossings are allowed. For r 6= 0 these symmetries are broken, formerly

allowed level crossings are now avoided. Spectra calculated for N = 2 atoms,

g = 1/N , corresponding to g̃ = 1 in the classical case. This is due to the different

normalizations in the classical and quantum Hamiltonians, see note after eq. (21).

In our case, the Hamiltonian (even in the perturbed case) is still invariant

under the "spin flip" symmetry m 7→ −m which can be equivalently expressed

as the transformation |N1, N0, N−1〉 7→ |N−1, N0, N1〉. So in order to see some

interesting changes in the level statistics, we first have to write our Hamiltonian

with respect to an eigenbasis of this transformation such that the Hamiltonian

becomes block diagonal and then do the level spacing analysis in each block sepa-

rately. A convenient eigenbasis representation b′ (given the representation b of the

Fock state basis B) is given by the elements 1√
2 (|N1, N0, N−1〉 ± |N−1, N0, N1〉)

having eigenvalues ±1 respectively.
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A · b ≡ A ·



|0, N, 0〉

|0, N − 1, 1〉

|1, N − 1, 0〉
...

|N−1, N0, N1〉
...

|N, 0, 0〉



=



|0, N, 0〉
1√
2(|0, N − 1, 1〉+ |1, N − 1, 0〉)

...

1√
2(|0, N − 1, 1〉 − |1, N − 1, 0〉)

...



= b′ (51)

Computationally, the basis transformation matrix A has been computed, then,

after applying the transformation H ′ = A H AT, the eigenvalues for each block

of the Hamiltonian have been individually calculated.

In a next step, the spectra are unfolded in the following way, described in [24]:

Each spectrum is divided into several (in our case 10) regions. Then, in each

region the level spacings are calculated as the difference between neighbouring

eigenvalues and normalized (divided) by the mean level spacing in that region.

This procedure ensures that the mean of all level spacings is equal to 1 and hence

also that the (local) density of states is unity.

After this, the level spacings s are visualised in a single histogram where also

the Poisson (green) and Wigner (red) distributions are plotted, see fig. 7. To

get a quantitative estimate "how chaotic" the Hamiltonian is, the so-called Brody

distribution Pb(s) was fitted to the data (blue). This distribution interpolates

between the Poisson (b = 0) and the Wigner distribution (b = 1) and is given by

Pb(s) = α(b+ 1)sb exp
[
−αsb+1

]
, α =

[
Γ
(
b+ 2
b+ 1

)]b+1

(52)

We see, that for r = 0.00 in fig. 7a the distribution almost perfectly follows

a Poisson distribution. We expect this result as the classical theory is regular in

the unperturbed case. Even though the distribution in fig. 7b is not perfectly

described by the Wigner distribution, the Brody interpolation parameter b ≈ 0.6

shows that the system is chaotic just as we expect from the classical theory. In

fig. 7c we see, that for large disturbances r the Hamiltonian is again regular. As
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Figure 7: Histograms of the level spacing distributions for different disturbances

r. Combined distributions of the subspaces defined by the spin flip symmetry,

see text. N = 100 atoms (leading to 5091 energy eigenvalues) have been used to

calculate these distributions with g = 1/N , q = 1.

already mentioned this is because in for large r the Hamiltonian is dominated by

the Sx term and thus not chaotic any more.

All in all, we see that the level statistics of the Hamiltonian for as few as

N = 100 atoms already nicely reflect the chaotic and regular parameter regions

of the classical limit of the theory. But as we want to find a quantum mechan-

ical quantity that implies that the classical theory is chaotic, the analysis of

level spacings is not helpful: A quantum mechanical Hamiltonian with energy

spacings following a Wigner distribution does not imply classically chaotic be-

haviour. Rather, both the Wigner distributed level spacings on one hand and

classical chaos on the other hand are consequences of broken symmetries as pa-

rameters in the Hamiltonian are changed. Furthermore, the analysis of level

statistics makes only global statements and hence does not allow to draw con-

clusions about the structure of regular and chaotic regions: E.g. a mixed phase

space has no correspondence in terms of the level statistics. Nevertheless, the

analysis of level spacings provides a necessary, though not sufficient condition for

chaotic behaviour.

Finally, we note that experimentally it is very complicated to measure the

whole energy spectrum of a Hamiltonian. That is why we turn to OTOCs at last,

as they promise to be a quantity having a well-defined classical limit and are (not

easily, but still) measurable experimentally.
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4.5 OTOCs

As already mentioned in section 2.1, OTOCs have been introduced as a quan-

tum measure corresponding to classical Lyapunov exponents. So if we want to

construct a meaningful OTOC in the sense that we want it to correspond to a

Lyapunov exponent in the classical limit, we have to consider the following:

An OTOC of the form |[A(t), B]|2 includes the commutator [A(t), B] thus cor-

responds to the (classical) Poisson bracket {A(t), B}Poisson. The Poisson bracket

is defined as

{A,B}Poisson =
N∑
i=1

(
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
(53)

where (pi, qi) are pairs of canonical conjugate variables, i.e. they satisfy the

Hamilton equations

ṗi = −∂H
∂qi

, q̇i = ∂H
∂pi

(54)

I.e. to be able to evaluate the Poisson bracket above, we first have to find canon-

ical variables. It can be shown that in our case (ρ0, Θs) and (m,Θm) are such

canonical variables by using energy conservation and writing the time derivative

of the energy functional in terms of the differentials of the phase space variables.

Having in mind that we want to choose OTOCs that can be (rather easily)

implemented experimentally, we notice that ρ0 and m can be easily measured

and also have simple representations in terms of the dipole-quadrupole opera-

tors, whereas representing Θs and Θm in these operators is not so easy. Thus

we see that the Poisson bracket takes the form of a Lyapunov exponent (i.e.

the derivative of some quantity to some initial condition of (possibly) another

quantity) if we take B = Sz or B = ρ0. Because then we have e.g.

{A(t), Sz}Poisson = ∂A(t)
∂ρ0

∂Sz
∂Θs

− ∂A(t)
∂Θs

∂Sz
∂ρ0

+ ∂A(t)
∂m

∂Sz
∂Θm

− ∂A(t)
∂Θm

∂Sz
∂m

∝ ∂A(t)
∂Θm

(55)

Note that only the last term survives as in the classical limit Sz = m. Similarly,

we get

{A(t), ρ0}Poisson ∝
∂A(t)
∂Θs

. (56)

Here, A(t) can be the time evolution of any operator. But again having in mind

the experimental realization and the fact that Θs and Θm have no (simple) rep-
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resentation in terms of the dipole quadruple operators, it is sensible to choose A

as one of these latter, i.e. A ∈ {Si, Qij, (i, j) ∈ {x, y, z}}.

For the quantummechanical calculations, the time reversal to calculate OTOCs

has been implemented as follows: As OTOCs generally take the form

〈ψ0| |[A(t), B(0)]|2 |ψ0〉 (57)

for two (hermitian) operators A and B, we have two possibilities to calculate

them: One would be to expand the expression above and calculate each of the

four resulting terms by evolving the states forward and backward in time by

numerical integration as explained in section 4.1. Alternatively, we could nu-

merically diagonalize the Hamiltonian and compute the matrix representation of

the time evolution operator U(t) ≡ e−iHt. Although the diagonalization takes

in principle longer than the numerical integration, the second way of calculating

OTOCs is much more efficient, as the diagonalization has to be performed only

once for each time: Having the matrix representation of U(t), we can directly

calculate A(t) = U †(t)AU(t). From here it is straight forward to calculate the

commutator and its expectation value with respect to some initial state |ψ0〉.

Whereas, if we want to use numerical integration, we have to perform 14 differ-

ent time evolutions (there are four time evolutions in each of the four terms of

the expanded OTOC but two of them cancel).

To compute the representation of U(t) we numerically calculate the eigenvec-

tors and eigenvalues of the Hamiltonian matrix. Let V =
(
~Φ1, . . . , ~Φn

)
be the

matrix containing the eigenvectors of H as columns and Λ = diag(λ1, . . . , λn)

the diagonal matrix containing the eigenvalues of H as diagonal elements. Then

H = V ΛV −1 and

U(t) = e−iHt = V e−iΛtV −1 = V diag
(
e−itλ1 , . . . , e−itλn

)
V −1 . (58)

With this method, we can compute the time evolution of OTOCs for 100 points

in time for up to N = 75 atoms (corresponding to a n = 2926 dimensional

Hilbert space). Technically, we could go to much higher numbers of atoms, but

in that case calculations take a lot of time already because of the numerous

multiplications of high dimensional matrices.
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5 Results: Comparison between Classical and

Quantum Chaos

5.1 Classical Poincaré map vs. Visualisation of Quantum

Calculations

In this section we want to check whether the visualization of simulated quantum

states via projections onto a grid of coherent states (section 4.3) produces a

picture consistent with the notion of a point in classical phase space moving

with time. In a first step, we want to see that the probability distribution gets

more and more peaked with increasing number of particles as we expect that in

the limit of N → ∞ it should be described by a delta distribution. This can be

understood as follows: The mean field approximation in section 3.1 corresponds to

a first order expansion in 1/~ or the so-called "truncated Wigner approximation"

[25]. I.e., in the classical limit N → ∞, the quantum mechanical probability

distribution should converge to a single point in classical phase space whose time

evolution is governed by the mean field equation of motion. In my simulations on

an ordinary computer I cannot go to very high particle numbers, but to get an

idea, I compared the visualisation of some state for N = 10, 30, 60 particles, see

fig. 8. As we can see, the distributions indeed get more and more peaked, just as

Θ
S

6
4

2
0

2
4

6

ρ 0

0.0

0.2

0.4

0.6

0.8

1.0

O
v
e
rl

a
p

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10-3

10-2

10-1

(a) N = 10

Θ
S

6
4

2
0

2
4

6

ρ 0

0.0

0.2

0.4

0.6

0.8

1.0

O
v
e
rl

a
p

0.1

0.0

0.1

0.2

0.3

0.4

10-3

10-2

10-1

(b) N = 30

Θ
S

6
4

2
0

2
4

6

ρ 0

0.0

0.2

0.4

0.6

0.8

1.0

O
v
e
rl

a
p

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

10-3

10-2

10-1

(c) N = 60

Figure 8: Projections onto a grid of coherent states for different numbers of

particlesN . The state that is shown is the coherent state classically corresponding

to ρ0 = 0.4, m = 0.1, Θs = 0 = Θm.

expected.

When plotting the probability distributions for a series of points in time,
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one can clearly see that it disperses but also that it moves along one of the

classical trajectories that can be seen e.g. in fig. 4a (for r = 0). If we increase

the disturbance r such that we have a mixed phase space and start with an

initial point near the border between a classically regular and classically chaotic

region, we notice the following behaviour: At first, most of the distribution follows

the classical trajectory but then, as the packet disperses until parts of it reach

classically chaotic regions, it separates and stretches out until it eventually covers

all of the energetically allowed phase space.
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Figure 9: (a) and (b) Time evolution of projections onto a grid of coherent states

at different times t for r = 0.15, N = 60, g = 1/N , q = 1. The initial state

is the coherent state classically corresponding to ρ0 = 0.1, m = 0.1, Θs = π,

Θm = 0, thus lies close the border between a classically chaotic and a classically

regular region of the phase space: (c) shows the Poincaré map for the classically

corresponding parameters, r = 0.15, g̃ = q = 1.

5.2 OTOCs vs. Classical Lyapunov Exponents

According to the derivation of OTOCs given in sections 2.1 and 4.5 their time

evolution should correspond to that of (the square of) the derivative of some op-

erator with respect to some initial value in the classical limit, i.e. N →∞. Here,

we exemplify our observations with the help of the OTOC 〈ψ0| |[Sx(t), Sz]|2 |ψ0〉.

As already mentioned above, the simulations of OTOCs are computationally ex-

pensive such that we can only go to particles numbers N ≤ 75 for reasonable

times of the simulation. As we can never come close to the limit N → ∞, we

want to check how the functional form the time evolution of OTOCs changes

with the number of particles: In fig. 10 we see that for small N there are larger
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Figure 10: Comparison of the time evolution of the OTOC 〈ψ0| |[Sx(t), Sz]|2 |ψ0〉

for different particle numbers N . The initial state |ψ0〉 = |ψ(r)
0 〉 is the coherent

state corresponding to ρ0 = 0.2, Θs = π, Θm = 0 and m calculated such that the

total (mean field) energy is E = 1.005. The Hamilton parameters are g = 1/N ,

q = 1, r = 0.15 such that the settings correspond to those in fig. 5b with an

initial state in the classically regular region.

fluctuations and for larger N the curves become smoother. We also note that

for shorter times the functional form of the curves corresponding to N = 50 and

N = 75 do not differ very much, indicating that even if we are far from N →∞,

the functional form of the OTOCs should not deviate too much from that in the

desired limit, at least for short times.

In a next step, we want to see qualitative differences for initial states and

parameters that show regular and chaotic behaviour in the corresponding classical

theory, respectively. For this purpose we pick two different initial states, one,

denoted |ψ(r)
0 〉, lying in a classically regular and the other, denoted |ψ(c)

0 〉, in a

classically chaotic region of phase space for r = 0.15, see e.g. figures 4b and 5b. If

the OTOC reflects whether the system is regular or chaotic in the classical limit,

there should be a significant difference between the time evolutions for r = 0.0,

r = 2.5 and r = 0.15 for |ψ(r)
0 〉 on the one hand and r = 0.15 for |ψ(c)

0 〉 and both

initial states with r = 0.5 on the other hand.

As we see in fig. 11 this is almost perfectly the case: In the classically regular

cases, the OTOCs grow extremely slowly compared to the classically chaotic ones,

except for the classically regular initial state for r = 0.15: We do not see a striking
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Figure 11: Functional form of the time evolution of the OTOC

〈ψ0| |[Sx(t), Sz]|2 |ψ0〉 for different disturbances r. The OTOCs have been cal-

culated for N = 75 atoms, g = 1/N , q = 1. In (a) the initial state |ψ(r)
0 〉 is

the same as in fig. 10 and in (b) it is the coherent state |ψ(c)
0 〉 corresponding to

ρ0 = 0.0, Θs = π, Θm = 0 and m calculated again such that the total (mean field)

energy is E = 1.005. Thus the main difference between the initial states is that

for r = 0.15 the state in (a) corresponds to a classically regular state and the one

in (b) to a classically chaotic one, see also fig. 12. Note, that this difference is

only given for r = 0.15, for r = 0.5 they both correspond to classically chaotic

initial states and for r = 0.0 and r = 2.5 both correspond to classically regular

ones.

difference depending on the different initial states for r = 0.15 as we hoped. To

investigate this further, we directly compare their time evolution in fig. 12.

In fig. 12 we indeed see a qualitative difference between the time evolutions

of the OTOC with respect to the different initial states |ψ(r)
0 〉 and |ψ

(c)
0 〉 although

they look similar at first:

Both evolutions start at the same value, remain almost constant for some

time and eventually saturate at later times showing oscillatory behaviour. This

is partly what we expected: It is clear that OTOCs should start at a well defined

value, in this case given by 〈ψ0| |[Sx, Sz]|2 |ψ0〉 = 〈ψ0| |Sy|2 |ψ0〉 and it is also clear

that they cannot grow indefinitely, i.e. they have to saturate at some point due

to the finite Hilbert space.

The qualitative differences between the OTOCs corresponding to the different
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Figure 12: Comparison between the time evolution of the OTOC

〈ψ0| |[Sx(t), Sz]|2 |ψ0〉 for different initial states: One corresponding to a state

in a classically regular region (blue dotted line) and one corresponding to a clas-

sically chaotic one (red dotted line). The latter has been fitted using f(x) = Aeλx

(solid red line).The initial states are the same as in fig. 11. The OTOCs have

been calculated for N = 75 atoms and g = 1/N , q = 1, r = 0.15 such that the

settings correspond to those in fig. 5b.

initial states are visible between these two time-regimes: The OTOC correspond-

ing to the classically chaotic initial state |ψ(c)
0 〉 grows monotonously while the

other oscillates while growing. These oscillations could be a sign of regular be-

haviour as they could indicate that the state "comes back" to a similar state as

before which hints at closed orbits in the corresponding classical phase space. The

fact that also the OTOC with respect to |ψ(r)
0 〉 grows after some time and does

not just oscillate around a low value could be explained as follows: The coherent

initial state corresponds to a distribution of states in classical phase space with

non-zero width. All included states evolve regularly but also independently from

the others, i.e. the wave packet disperses along the classical trajectory which

leads to the growth of the OTOC. Another reason could also be that the wave

packet describing the coherent state disperses such that it overlaps with classi-

cally chaotic regions. This is possible because the initial state |ψ(c)
0 〉 lies close to

a chaotic region in classical phase space. In this case we would also expect the

OTOC to grow.

Also, almost certainly the semi-classical picture that we invoke here, breaks
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down at late times. This is equivalent to the fact that semi-classical (phase space)

methods like the truncated Wigner approximations are inherently short time

methods, and at long times (for any finite particle number) quantum fluctuations

become dominant. The challenge of finding meaningful OTOCs in the sense that

they can be used as a proxy for classical chaos, will be to reach a regime where

the expected semi-classical behaviour (exponential growth or regular, periodic

dynamics) occurs before the semi-classical description breaks down.

Theoretically, by construction, OTOCs should grow exponentially up to some

time if the corresponding classical Lyapunov exponent is larger than zero. It is

indeed possible to fit an exponential function to the simulated data, see fig. 12.

The exponent we obtain from the fit is of the same order as the exponent we

get from fitting an exponential function to the numerically calculated derivative∣∣∣∂Sx(t)
∂Θm,0

∣∣∣2 ∝ e2λt, but it is approximately twice as large as expected. We would

need much more simulation data to decide whether the exponential growth of

the OTOC converges to (twice) the corresponding Lyapunov exponent. Another

problem is, that for some OTOCs the exponent we get for a classically regular

initial state is greater than the one corresponding to a classically chaotic one.

It is not clear if this is due to the rather small particle numbers that we can

simulate or if OTOCs truly fail in some cases to distinguish between classically

regular and chaotic behaviour.
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6 Summary

In this thesis the connections between quantum and classical chaos in a spinor

Bose Einstein condensate have been investigated theoretically and numerically.

In the first part, the corresponding classical theory has been derived and probed

for classical chaos using well established concepts: Poincaré sections and Lya-

punov exponents. Then, in the quantum theory, chaos has been investigated by

analysing the level statistics of the Hamiltonian and finally OTOCs. Examples

have been given for meaningful OTOCs in the theory of spinor BECs: Correlators

that correspond to the derivative of a classical quantity with respect to the initial

value of some phase space coordinate, i.e. those OTOCs that are characterized

by some well defined Lyapunov exponent in the classical limit.

Some examples of these OTOCs have been analysed with respect to the ques-

tion whether they can be used to decide if the classical limit of the quantum

system is regular or chaotic. We found that there are qualitative differences

between OTOCs in these two cases but we could not find a quantitative and

definitive criterion for unambiguously deciding between a regular and a chaotic

classical limit. Because our simulations are strongly limited regarding the number

of simulated atoms, this does not mean that there is no such criterion. Larger

simulations or experimental measurements could lead to further insights.
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7 Outlook

This work is focused on the possibility to detect quantum chaos using OTOCs.

But these special correlators have also other applications: It has been shown

recently that certain OTOCs can be used to quantify entanglement [26]. It has

also been shown that the (second) Rényi entropy after a quench can be related

to OTOCs [27]. If one could gain a better understanding of how OTOCs are

related to entanglement measures such as the entanglement entropy or the quan-

tum Fisher information, one could maybe use OTOCs to experimentally measure

these quantities that are normally not directly accessible. Being able to measure

entropy and entanglement would open a way to further investigate how these

quantities relate e.g. to the thermalisation of quantum mechanical systems and

could lead to new insights regarding quantum information theory.

Furthermore, OTOCs in spinor BECs offer the chance to understand what

scrambling means in a non-local system: In general, scrambling can be interpreted

as the process of distributing the information contained in the initial state over

the system’s degrees of freedom [26]. For example in spin chains, where local

operators can be defined, an initial impurity on one site will eventually spread out

and involve more and more spins with increasing time. In such a system, OTOCs

measure the support of a given operator, i.e. the amount of spins involved. It is

clear that in our system, where we have collective spinor dynamics, we have to

find an alternative notion of such a "support" if we want to probe the scrambling

rate in the spinor BEC.

Another aspect that has not been discussed in this work is the experimental

measurement of OTOCs. Although it has been explained how one can in principle

measure them by tuning the Hamiltonian parameters such that one can realize

the time reversal schemes needed, a complete measurement scheme has yet to

be developed. Being able to experimentally measure OTOCs would not only be

helpful with regard to the detection of entanglement but would also answer some

open questions of this work: As it would allow us to measure OTOCs in a BEC

of tens of thousands of atoms, it would bring us closer to the classical limit than

any simulation.
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