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Zusammenfassung

Für viele hochdimensionale Probleme bietet maschinelles Lernen sehr erfolgreiche

Ansätze. Wir wollen das nutzen um die Lindblad-Gleichung für viele Teilchen zu

lösen. Die Gleichung berücksichtigt neben dem eigentlichen System noch die

Interaktionen mit der Umgebung, weßhalb sie bestens geeignet ist, realistische

experimentelle Szenarien zu simulieren. Wir werden in dieser Arbeit einen Variationsansatz

mit einem neuronalen Netzwerk präsentieren und untersuchen. Das Netzwerk

wird mit maschinellem Lernen optimiert, wobei wir testen werden wie effizient

diese Methode ist.

Abstract

For many high dimensionality problems, machine learning has shown great success.

We will use this to solve the many-body Lindblad equation. This equation

includes coupling with an environment and is therefore well suited to simulate

realistic experimental scenarios. We present and investigate a variational neural

network ansatz, to represent mixed states. Lastly we show how to use machine

learning techniques to train the neural network and test the efficiency of those

schemes.
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1 Introduction

It goes without saying, that machine learning is rapidly growing in importance in

nearly all fields of science. Machine learning has been used extensively to handle

big amounts of data, e.g. for the incredible amount of data in modern particle

physics experiments [1]. One of the most prominent topics in machine learning

is artificial neural networks (ANN).

Neural networks seem to be omnipresent in fields like image processing [2, 3],

speech recognition[4], self-driving cars [5] and so on. All of those problems have

in common, that the input is very high dimensional while the output is low

dimensional. The neural network is supposed to find low-dimensional patterns in

a high dimensional data set[6].

Recently ANN’s have been shown to solve many-body problems[7]. In many-

body physics, the curse of dimensionality (the exponential growth of the system’s

Hilbert space with particle number) stops exact computation of solutions even

for a small number of particles. Luckily, for most problems, only a small physical

portion of the Hilbert space has to be considered. Conceptually, the neural

network has to find the low dimensional subspace in the huge Hilbert space.

If we want to simulate realistic experimental scenarios we cannot assume

perfect isolation. Therefore involvement of the environment has to be considered.

To approach this problem we cannot rely on the system to be a pure state and have

to consider mixed states. Compared to a pure state the number of parameters

grows quadratically. The problem is therefore conceptually harder.

The dynamics of open quantum systems are often well captured by the Lindblad

master equation. The time evolution converges to some stationary solution called

steady state.

To represent states with area law entanglement, DMRG and MPS states have

been the state of the art since 1992 [8, 9] and remain mostly unchallenged. Tensor

networks are also used to solve the Lindblad master equation[10]. Those methods
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showed great success, but are only feasible for one dimensional problems[11] and

collapse with volume law entanglement.

The focus of this work will be the calculation and representation of steady

state solutions of the Lindblad master equation. We concrete ourselves with

simulating a Rydberg system[12].

Central in this work will be to exceed the small entanglement limit of Tensor

networks. The objectives is to find an efficient neural network representation of

steady states and study its properties.

As a brief outline of this thesis, we will quickly introduce the necessary

theoretical framework. Then the thought process of constructing the variational

neural density operator will be presented. After establishing the methods used,

we will start testing if the neural density operator is capable of representing the

steady state with reasonable precision. We study the representative power of the

network and the number of parameters necessary. In the last chapter we will

investigate the efficiency of the network’s learning capabilities by applying active

learning techniques.

The neural network approach to open systems has been of high interest lately

[13–16]. Other groups showed that one can use Monte Carlo methods to do time

evolution and find steady states. We will instead try to frame the limits of the

neural network approach. Additionally, active learning is not used in any of the

other publications, which is why we want to test the efficiency of this approach.
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2 Theory

Here we want to introduce the theoretical framework necessary for the neural

network approach to open systems. We will start with the Lindblad master

equation (§2.1) and talk about its steady state solutions (§2.2). Then we continue

with the Rydberg model (§2.3) and finish this chapter by introducing the restricted

Boltzmann machine and the neural network state ansatz (§2.4).

2.1 Lindblad Master Equation

A correct description of an open system must feature incoherent processes, e.g.

the spontaneous emission of a photon [17].

A master equation formalism is used in Quantum optics since 1965 and

has since shown great success[18, 19]. The formal derivation includes several

approximations[20].

• Born approximation: the bath and the system couples weak s.t. the bath

is not affected by the systems dynamics.

• Markovian approximation: neglect memory effects in the system

• Markovian environment : the timescale of the bath is much smaller than

the system’s

After those approximations, we can trace out the environment’s degrees of

freedom and end with an equation for a mixed state, describing the systems

dynamics. For a full derivation, we refer to The Theory of Open Quantum Systems

by H. Breuer and F. Petruccione[17].

We will look at small laser driven systems. The bath aka the laser is therefore

mostly unaffected by the system, thus we can assume the approximations to hold.

The Lindblad master equation consists of the von Neumann term

−i[H , ρ]
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describing the system’s internal dynamics and the incoherent Lindblad terms

Lk(ρ) = γk(ΓkρΓ†k −
1

2
Γ†kΓkρ−

1

2
ρΓ†kΓk),

where {Γk} is a diagonal operator basis and γk its coefficients. The Lindblad

terms will enact the interaction with the environment.

The full Lindblad master equation is:

dρ

dt
= −i[H , ρ] +

∑
k

Lk(ρ) = L (ρ) (2.1)

2.2 Steady State

Most dissipative systems will evolve to a steady state for t→∞. In terms of the

master equation this means
dρsteady

dt
= 0.

Often L is called superoperator, as it is an operator acting on another

operator. Formally the steady state is the eigenstate of the superoperator with

eigenvalue λ0 = 0. It is shown that for the Lindblad master equation (with time-

independent Hamiltonian and finite Hilbert space) there exists at least one steady

state ρS [21].

The other eigenvalues of the superoperator have negative real parts, as they

are responsible for the relaxation to the steady state [22]. We can identify a time

scale of the system by calculating ∆L = −Re(λ1), where λ1 is the highest non-

zero eigenvalue. This quantity is called the Liouvillian gap. A small gap results

in slow relaxation to the steady state [22].

2.3 Many-body-Rydberg Ensemble

The ensemble we want to describe consists of N Rydberg-atoms able to be in

either their ground state |g〉 or their excited Rydberg state |r〉. We will couple

the two states with a laser.

The Hamiltonian we will look at is the following:

H =
N∑
i=1

σxΩ +
∑
<ij>

|ri〉 〈rj|
J

r6
ij

+
N∑
i=1

|ri〉 〈rj|∆ (2.2)
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Figure 2.1: The Rydberg system with Interaction strength J , level coupling Ω,

laser detuning ∆ and spontaneous emission Γ.

The first term describes the laser coupling between the states with strength

Ω. The next term describes the strong short ranged van der Waals interactions

scaling with r6. One could also think of the longer ranged dipole-dipole interaction

with r3 or ionic coupling with r1. The interaction term is only active between

two excited atoms. Additionally, we add a simple detuning ∆, shifting the energy

of the excited state.

Finally, there will be a spontaneous decay to the ground state.

Li(ρ) = γ |gi〉 〈ri| ρ |ri〉 〈gi| − 1/2{|gi〉 〈gi| , ρ}, (2.3)

where γ is the decay rate.

This system model can be realised experimentally by Rydberg atoms in a

Bose-Einstein condensate[23].

2.4 Neural Network Quantum State

One of the most studied network structure is the restricted Boltzmann machine

architecture. It is a probabilistic model, well known for its application in dimensionality

reduction [24] and feature learning [25].

The network consists of two layers which are connected to each other but have

no connections in between one layer (this is the reason why the architecture is

called restricted). The first layer will consist of N visible nodes and get the input

5



Figure 2.2: Fully connected Restricted Boltzmann machine with 5 visible units

σ and 5 hidden units h. Each node has its unique bias (either bi or ck) and σi is

connected to hk via the matrix element W k
i .

σ. Each visible node will be connected to the hidden layer h which consists of αN

nodes where α is the density of hidden nodes per visible ones. The connection

will have a strength W = (Wij)
i=1...N
j=1...αN . At the same time, all nodes will have

a bias (b = (bi)i=1...N) (for the visible) and c = (cj)j=1...αN (for hidden nodes)

(compare Figure 2.2).

The name Boltzmann machine originates from the concept of using the network’s

“energy”for the configuration (σ, h)

E(σ, h,W ) =
N∑
i=1

aiσi +
αN∑
j=1

bjhj +
∑
i,j

W ijσihj (2.4)

to calculate a pseudo probability with the Boltzmann distribution for some configuration

of σ (integrating over h)

p(σ) =
∑
h

exp(E(σ, h,W )). (2.5)

We can now use this distribution to approximate a many-body Quantum state

[7] of N particles σi

|Ψ〉 =
1

Z

∑
σ

p(σ) |σ〉 , (2.6)

where Z is the normalisation Z =
∑
|p(σ)|2

This ansatz is called the Neural Network Quantum State (NQS).

In the following, we will look at binary systems dim(σi) = 2. We will choose

the arbitrary values σi ∈ {−1, 1}, hj ∈ {−1, 1}. For this choice we can calculate

the sum over all configurations of h explicitly:
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p(σ,W ) = exp

( N∑
i

aiσi

)
·
αN∏
j

2 cosh

(
bj +

N∑
i

W i
jσi

)
. (2.7)

The NQS is known to represent the ground states of interacting systems [7] and

is used for state tomography [26]. We know that states exist, where the efficient

representation collapses [27]. We can extend the power of a Neural Network by

stacking additional hidden layers [27] to make the network deep. But, this keeps

us from efficiently calculating the sum over the hidden configurations to get p(σ).

The RBM architecture features volume law entanglement entropy and even

an analytic expression for a fully entangled state [28].
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3 Neural Density Operator

For an open system, we will generally have a mixed state, thus we cannot use the

pure state ansatz by Carleo [7] anymore. Here we will introduce a neural network

to represent a density operator. We will start with a trivial ansatz (§3.2) and

show its limits. We then continue with the concept of space purification (§3.3)

and how we can use this for an efficient representation (§3.4).

3.1 Density Operator

THe density operator is the quantum version of a statistical ensemble of states.

The basic properties are:

• ρ is hermitian

• tr(ρ) = 1 which is essentially a normalizing factor

• ρ is semi-positive which means all eigenvalues λi ≥ 0

As an ensemble of quantum states, the most general form is

ρ =
∑
i

pi |Ψi〉 〈Ψi| (3.1)

with the probabilities pi ∈ R and the normalisation
∑

i pi = 1.

Eq.(3.1) represents all possible density operators if and only if {Ψi} is a basis

of the whole Hilbert space H.

3.2 Trivial Ansatz

With the Neural Network Quantum State (NQS) and the general form of (3.1)

we can simply represent all Ψi as individual networks with the probabilities pi as

additional parameters.

For n = dim(H), we would need n individual networks to represent ρ over

a full basis. If we choose a smaller amount of networks, we essentially limit the
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Figure 3.1: n individual networks representing the density matrix ρ as a classical

ensemble of NQS states |Ψi〉

Schmidt rank of the density operator by the number of networks. A quantity

closely related is the von Neumann entropy S = −
∑

i tr(ρ log(ρ)) of the mixed

state. The entropy S is limited by the Schmidt rank Sn

S ≤ log(Sn). (3.2)

In the derivation of the Lindblad master equation, we see that the mixing

of our state originates from tracing out the environment. The entropy of ρ is

therefore a measure of entanglement of our system with the environment.

There are cases of steady states being pure (eg. electromagnetically induced

transparency [29]). Naturally however, the entanglement with the environment is

increasing in time. The steady state being ρ(t → ∞) means that for most cases

large von Neumann entropy is expected.

3.3 Space Purification

Purification of a Quantum State is the property that all density operators ρ

living in HS can be expressed as the partial trace of some pure state |Ψ〉 〈Ψ| in an

extended Hilbert space H = HS ⊗HE. The mathematical proof is rather simple

[30]:

Consider a general mixed state ρ =
∑

i pi |iA〉 〈iA|, with |iA〉 being a state in

HA. Let |ΨAB〉 be a pure state living in H = HA ⊗HB, where HB is a copy of
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HA. By defining |ΨAB〉 =
∑

i

√
pi |iA〉 ⊗ |iB〉 we can calculate:

trB(|ΨAB〉 〈ΨAB|) = trB

[∑
i

(
√
pi |iA〉 ⊗ |iB〉)

∑
j

(
√
pj 〈jA| ⊗ 〈jB|)

]
= trB

[∑
ij

√
pipj |iA〉 〈jA| ⊗ |iB〉 〈jB|

]
(3.3)

=
∑
ij

δij
√
pipj |iA〉 〈jA| =

∑
i

pi |iA〉 〈iA|

which is again our general ρ.

We can conclude that for a general mixed state we can trace over a simple

copy of the systems Hilbert space. One has to note that neither the pure state

nor the additional Hilbert space is unique.

3.4 Constructing the Neural Density Operator

The method of space purification to construct a mixed state with a neural network

was first published by Torlai [31]. The network consists of N visible nodes σ

representing the particles of the system with connections to αN hidden nodes

h. Additionally, we will add another βN nodes for the auxiliary system a with

connections only to the visible layer.

The network architecture is still a restricted Boltzmann machine with additional

nodes along the hidden layer. The energy of the network is

E(σ, h, a,W ) =
N∑
i=1

biσi +

βN∑
j=1

djaj +
αN∑
k=1

ckhk +
∑
i,j

ajU i
jσi +

∑
i,k

hkW i
kσi, (3.4)

with bi being the bias for the visible spin σi and ck, dj being the biases for the

auxiliary and hidden spins. W i
k denotes the weight of the connection from the

visible spin σi to the hidden spin hk and U i
j the connection’s weight between the

visible spin σi and the auxiliary spin aj. All weights are assumed to be complex.

Similar to the NQS ansatz eq.(2.6) we calculate the pure state by summing

over the hidden layer

Ψ(σ, a) = 〈σ, a|Ψ〉 =
1

Z

∑
{h}

exp(E(σ, h, a)). (3.5)
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Figure 3.2: Two input layers both connected to the same environment layer. The

system’s hidden layer gets contracted to build Ψ(σ, a). The environment is traced

over afterwards.

Following the construction (3.3) we have to trace out the auxiliary system

with a sum over all configurations of a,

trA(|Ψ〉 〈Ψ|) =
∑
{a}

〈a| |Ψ〉 〈Ψ| |a〉 . (3.6)

An element of the density matrix ρ(σ, σ′) is then

ρ(σ, σ′) =
∑
{a}

Ψ(σ, a)Ψ(σ′, a). (3.7)

If we again concretize the system as binary, σ, h, a ∈ {−1, 1}, we can calculate

the sums over all configurations explicitly

ρ(σ, σ′) =
1

C
Ψ̃(σ) Ψ̃(σ′) Λ(σ, σ′), (3.8)

where Ψ̃(σ) is given by the original NQS ansatz

Ψ̃(σ) = exp

( N∑
i

aiσi

)
·
αN∏
j

2 cosh

(
bj +

N∑
i

W i
jσi

)
,

Λ is a matrix given by

Λ(σ, σ′) =

βN∏
j=1

2cosh
(
dj + d̄j +

∑
i

(
U i
jσi + U

i

jσ
′))

and C is the normalisation factor, which we will not want to calculate explicitly,

C = tr(ρ) =
∑
{σ}

ρ(σ, σ).
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We want to note some immediate properties of this approach:

• The calculation of a matrix element (dropping the normalisation) takes

only products and sums over the number of nodes into account and not

their configurations. Therefore the computing time grows polynomially in

network size.

• There is a scheme given by Torlai [31] to Monte Carlo sample the expectancy

value of some sparse operator Ô.

• The mixing of the system depends solely on the matrix Λ.

The reason to introduce the purification ansatz was the entropy limit (Schmidt

rank) of the trivial one. We can make a neural network learn to optimise

for maximal entropy. For this result, we only need N auxiliary spins and no

additional hidden nodes. We can prove this by constructing an explicit neural

density operator:

Choosing all biases to be zero (bi = 0, cj = 0) and the weight matrix U = i π
4
1,

we can calculate:

ρ(σ, σ′) = Λ(σ, σ′) =
Na∏
j=1

2cosh
(
i
π

4
(σj − σ′j)

)

=


1 if σ = σ′

0 if ∃j s.t. σj 6= σ′j

(3.9)

The Schmidt rank of unity being maximal concludes the proof.
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4 Implementation

In this chapter we want to specify the implementation and methods for the neural

network. We start with the importance of the loss function and specify the one

we use (§4.1). After introducing a scheme for the time evolution (§4.2) we close

this chapter with the machine learning techniques used (§4.3).

4.1 Loss Function

The loss function is a measure of how good the neural network performs. In

unsupervised learning (no labelled training data available) we want to directly

minimize the loss function to obtain the optimal weights.

Solving the steady state problem, we want the loss function to satisfy the

following properties:

• The loss function has to be a real, bounded function of the network’s

weights.

• The loss function obtains its global minimum only if the weights represent

the desired state.

Some norm of dρ
dt

is certainly capable to satisfy these properties. The norm

chosen was the Euclidean norm

||A||2F = tr(A†A) =
∑
ij

|Aij|2. (4.1)

The gradient needed for optimisation can then be written down as the sum

over the individual gradient of the matrix elements.

∇W

∥∥∥∥dρdt
∥∥∥∥2

F

=
∑
σσ′

∇W

∣∣∣∣dρ(σ, σ′)

dt

∣∣∣∣2 (4.2)

This enables a procedure called mini-batch learning as explained in §4.3.
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4.2 Time Evolution

Another way of obtaining the steady state would be a time evolution of some

initial state ρ0
1. For a finite Liouvillian gap ∆L (highest non-zero eigenvalue),

every state not orthogonal to the steady states will evolve into a steady state.

Following the Lindblad master equation we know the time evolution of a given

initial density operator

dρ

dt
= L (ρ). (4.3)

The time evolution for our system corresponds to the time evolution of our

weights. Therefore we have to introduce time-dependent weights W (t) and their

time derivatives Ẇ (t).

With the chain rule we can calculate

d

dt
ρ(W ) =

∂ρ

∂W
· dW
dt

. (4.4)

We can evaluate the inner product from eq.(4.4)

∂ρ

∂W
· dW
dt

=
∑
i

∂ρ

∂Wi

Ẇi. (4.5)

Tuning the time derivatives of the weights, we want to minimize some distance

dist(dρ
dt
, [L](ρ)). In general, dist(·, ·) function needs the property of non-negativity

(dist(x, y) ≥ 0 , ∀x, y) and the identity of indiscernibles (dist(x, y) = 0⇔ x = y).

We use the Euclidean norm as the measure of distance,

dist(ρ, ρ′) = ‖ρ− σ‖ =
∑
σσ′

∣∣〈σ|ρ− ρ′|σ′)〉∣∣2 . (4.6)

Plugging in eq.(4.3) and eq.(4.5) we can now write the problem down as

δ =
∑
σσ′

∣∣∣∣∣∣
∑
i

∂ρσσ′

∂Wi

Ẇi −L (ρ)σσ′

∣∣∣∣∣∣
2

. (4.7)

To find the minima of such a problem one can simply find the gradient of the

function and set it to zero. The function is real, therefore we could calculate

1During work in progress, we became aware that Carleo and Hartmann already discussed

time evolution of the Lindblad master equation with the same neural network ansatz [14].

14



either ∇W or the complex conjugate ∇W [32] to find the minimum. To calculate

the non-conjugated weight derivatives, we choose ∇W .

For the gradient of eq.(4.7) we can calculate

∂

∂Ẇj

∑
σσ′

∣∣∣∣∣∣
∑
i

∂ρσσ′

∂Wi

Ẇi −L (ρ)σσ′

∣∣∣∣∣∣
2

=
∑
σσ′

∑
i

∂ρσσ′

∂Wi

Ẇi −L (ρ)σσ′

(∂ρσσ′

∂Wj

)
(4.8)

If we set the gradient to zero we can formulate this as a linear equation,

AẆ = b (4.9)

with

(Aji ) =
∑
σσ′

((
∂ρσσ′

∂Wi

)
∂ρσσ′

∂Wj

)
and (b)i =

∑
σσ′

L (ρ)σσ′

(
∂ρσσ′

∂Wi

)
. (4.10)

We can now take the Moore-Penrose inverse [33] (a generalized inverse for matrices)

of A to solve the equation and calculate

Ẇ = A−1b. (4.11)

We can integrate this differential equation via some of the usual algorithms like

Runge-Kutta method [34].

This scheme tends to be unstable for large time steps, as the high non-linearity

of the network induces large deviations for small parameter changes.

4.3 Mini Batch Learning

For large data sets - like the huge basis of our many body Hilbert space - it is

more efficient to optimise the neural network with only chunks of the data set at

once [35]. In machine learning this procedure is called mini-batch learning.

In general, we would like to choose a mini-batch with the most impact on the

learning process. Choosing the samples and not taking them randomly is called

active learning. We will sample from the probability distribution given by the

diagonal elements of the density matrix ρ(σ, σ). The intuition behind this method

is that small populations should have only small effects in our Liouvillian time

evolution. We use the samples to calculate all off-diagonal combinations as well.
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Meaning that if we draw the set {σ}, we use it to calculate both sums
∑

σ,σ′ in

(4.2). With M samples drawn, we will calculate the gradient with M2 elements.

With this procedure we do not attempt to approximate the gradient. Instead,

we approximate the direction of the gradient.

To choose samples we apply the Metropolis-Hastings algorithm[36]. We will

use a simple spin flip - alternating through all particles - to choose candidates.

To improve the algorithm we include a burn-in phase of 2N2 candidates to reduce

finite chain size effects and use only every N2th sample afterwards to reduce the

correlations in between the samples (N is the particle number).

With Metropolis-Hastings, we only need the fraction ρ(σ′,σ′)
ρ(σ,σ)

. The ratio can be

calculated very efficiently for a simple spin flip. We only need to consider terms

which get changed due to the flip.

4.4 Learning Algorithms

In order to minimize the loss function we need some kind of optimisation algorithm

(often called learning).

Complex Gradient Descent

In general we will look at complex weights while our loss function is real. Instead

of the usual complex derivative, we have to take the real gradient, considering

the real and imaginary part as individual subspaces. This is equivalent to the

complex conjugated Wirtinger derivative ∂
∂z̄

= 1
2

(
∂
∂x

+ i ∂
∂y

)
[32] where x is the

real part of z and y the imaginary. This derivative will act on z like a constant

∂
∂z̄
z = 0.

With this complex gradient we can use standard gradient descent to reach the

local minima. One update step will then be

W i+1 = W i − η ∇W , L(W ), (4.12)

where η is the step size or learning rate.
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Resilient Back Propagation (Rprop) [37]

For highly non-linear functions the gradient may vary widely in magnitudes.

Therefore it is hard to find a single learning rate for the global problem.

This method takes only the sign of the gradient into account and acts individually

on each weight. Each weight has its own learning rate which increases if the sign

of the gradient has the same sign as the one before and decreases otherwise.

Algorithm 1 Rprop Algorithm
1:

2: for all Wi do

3:

4: if (∇Wi
Ln+1 · ∇Wi

Ln) > 0 then . gradients have the same sign

5: ∆W n+1
i = min{∆W n

i · γ+,∆Wmax}

6: W n+1 = W n + sign{∇Wi
Ln+1}∆W n+1 . update weights

7:

8: else if (∇Wi
Ln+1 · ∇Wi

Ln) < 0 then . gradient changed sign

9: ∆W n+1
i = max{∆W n

i · γ−,∆Wmin}

10: W n+1 = W n + sign{∇Wi
Ln+1}∆W n+1

11: else . if either one of the gradients are zero

12: ∆W n+1
i = ∆W n

i

13: W n+1 = W n + sign{∇Wi
Ln+1}∆W n+1 . sign{0}=0

In the algorithm we have ∆Wmax and ∆Wmin which are the maximal and

minimal step. We also have to choose the increase and decrease factors γ+ and

γ−. Good choices for those parameters are (∆Wmax = 10,∆Wmin = 10−6, γ+ =

1.2, γ− = 0.5) [38].

With this learning method, we can cross flat potential landscapes and saddle

points quickly. This algorithm can be extended to complex numbers, simply by

separating the real and complex update step (split complex BP algorithm [39]).

We will use this method to test the representative power. However, this

method does not work well for mini-batches. The statistical fluctuations tend to

decrease the learning rate to its minimum which results in the learning process

getting stuck.
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5 Testing the Representative Power of

the Neural Network

As a toy model for the network we use the many-body Rydberg system introduced

in §2.3. The Hamiltonian we will consider is

H =
N∑
i=1

Ωσix +
N∑
i=1

|ri〉 〈ri|∆ +
∑
<ij>

|ri〉 〈rj|
J

r6
ij

(5.1)

together with a spontaneous decay with rate γ, induced by the environment.

For further calculations we will fix Ω = 1 as an energy scale, as well as the

distance r = 1 between the particles. Further, we will not use sampling in this

chapter, but the whole Hilbert space, to probe only the networks capabilities and

dismiss the efficiency. We will use Rprop to learn the network and will not limit

the learning time of the neural network to find the local minima. The efficiency

of the learning process is only considered in the next chapter. If not stated

otherwise, we remain with the same number of hidden and auxiliary nodes as

particles.

For easier implementation, we will only consider the one-dimensional case

with open boundary conditions. In principle, the geometry of the system is not

encoded in the structure of the neural network. Therefore the dimensionality of

our problem should be arbitrary.

5.1 Fidelity and Loss

While we can be sure to have found a steady state for L(W ) = 0 one cannot

immediately make a statement for finite loss. Instead one uses the fidelity for

mixed states as a measure of how close two states are.

For two pure states the fidelity is F (|Ψ〉 , |Φ〉) =
∣∣〈Ψ|Φ〉∣∣2. The generalisation

for mixed states becomes

F (ρ, σ) = tr
(√√

ρσ
√
ρ
)2

, (5.2)
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Figure 5.1: The value of our loss function |L(ρ)|2 against the fidelity to the

steady state. Various parameter with different learning times were chosen to get

an overview.

where
√
ρ is uniquely defined for hermitian matrices by diagonalisation [42]. For

this chapter we will continue to look at the fidelity to benchmark the network.

The exact steady state will be calculated with exact diagonalisation (Lanczos

method) of the Liouvillian superoperator.

We scan through various values of ∆, J and γ, and compare the neural network

results with the exact diagonalisation. We can observe that for most parameters,

a small loss results in fidelity close to one. There is an exception for small γ

where the fidelity drops. On the other hand, there are many points which show

the opposite behaviour. The loss function is not very small while the fidelity is

close to one. In §5.2 we want to explain both phenomenon in more detail.
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Figure 5.3: The network is not

capable to capture the steady state

for vanishing Liouvillian gap. Other

parameters were J = −1.0, ∆ = 1.0

and N = 5

5.2 Liouvillian gap analysis

The Liouvillian gap ∆L is the time scale to reach a steady state. By tweaking

the decay rate γ, we can choose any gap size ∆L (Figure 5.2).

For small γ we observed the special case of small loss with low fidelities

(Figure 5.1). We can explain this phenomenon by examining our loss function.

If we picture ρ as a vector in the operator space HOp = HS ⊗ HS, then the

Liouvillian superoperator is simply a matrix. We can write the loss function as a

matrix vector product,

‖L ρ‖2 = ~ρ †
(
L †L

)
~ρ. (5.3)

L †L is hermitian and diagonalisable. We can rewrite the loss function the

following way

‖L ρ‖2 =
4N∑
i=0

|λi|2 |〈~σi†, ~ρ〉|2, (5.4)

where ~σi are the eigenstates of L . We sort the eigenvalues such that |λi| < |λi+1|.

Therefore λ0 = 0 and σ0 is the steady state. The first non-zero eigenstate is then

σL corresponding to the Liouvillian gap eigenvalue.

The learning process tries to reduce the overlap of ρ(W ) with the eigenstates

belonging to non-zero eigenvalues. For small ∆L the overlap with σL will be
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for increasing Interaction strength.

Other parameters were ∆ = 0.0 and

γ = 1.0
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Figure 5.5: The relative correlation

function is well captured, even

though the fidelity decreases.

ignored in favour of reducing the overlap with other states. This also explains

the opposite behaviour, we could observe in Figure 5.1. The loss function can be

high even though the fidelity is close to one. The finite overlap then corresponds

to very high eigenvalues.

We conclude, that a small Liouvillian gap does not only determines a long

relaxation time but also stops the neural network from learning the steady state

with our loss function. In our case the fidelity went under 90 % for γ ≈ 0.1Ω.

5.3 Van Der Waals Interaction

Now we scan through the strong but short ranged van der Waals interaction. The

next to nearest neighbour interaction will be 1
64

weaker. Even though the next

to nearest neighbour term is often approximated as zero, we want to especially

look into regimes, where this approximation does not hold.

We can observe a decline of fidelity for high interaction strength (Figure 5.4).

We see, that strong particle coupling seems to exceed the limits of our representation.

First of all, the Liouvillian gap does not close for high interaction. It was

also explicitly shown, that for the NQS ansatz, the entanglement entropy is not

a limiting factor [28] and we constructed a network, fully entangled with the

environment(§3.4).
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Figure 5.6: The fidelity reached for different particle numbers. The parameters

were J = 1, ∆ = −1 and γ = 1. The deviations can be explained due to finite

precision of the learning process.

For strong interaction, the network starts a blocking mechanism. One excited

atom stops its neighbours from getting excited. To test if the network reproduces

this behaviour, we calculate the relative correlation functions for the Rydberg

populations:

Corrijr =
〈rirj〉
〈ri〉〈rj〉

− 1 (5.5)

We can observe the effect of the blocking mechanism. Even though the

network does not show great fidelity the correlation function is well captured

()Figure 5.5).
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5.4 Particle scaling

One of the most interesting questions is the fidelity scaling with the particle

number. For the hidden density and the auxiliary density

α =
hidden nodes

particle
, β =

auxiliary nodes

particle
(5.6)

the parameters in the network consists of:

• N biases bi for the visibles

• αN biases ck for the hiddens

• αN2 weights W i
k for the connections between the hiddens and visibles

• βN biases and βN2 weights for the biases and connection to the auxiliary

system

In total we get

dim(W ) = N(1 + α + β + αN + βN) = O(N2). (5.7)

In comparison, the number of matrix elements scales with O(4N), e.g. for 6

particles we already have 4096 matrix elements, while for α = 1 and β = 1 we

use only 90 weights.

We test the representative power for the non-trivial case of facilitated excitations

[40]. Figure 5.6 shows the fidelity of the network representation for up to seven

particles. The network shows good consistency in fidelity.

5.5 Effect of Network Density

At this point, we only considered a fully connected network with the same number

of hidden and auxiliary nodes per particles. We examine the impact of more

hidden units by raising the hidden density α = hidden nodes
particle

. We are especially

interested in the case of strong interaction, where we showed that the network is

struggling to represent the steady state.
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For more hidden units, the higher dimensional manifold should be able to

capture more features of our Quantum problem. For example, the network should

be able to approximate more correlations[43].

The network is trained with the trick published by A.Borin et al. [43], to

reduce the risk of getting stuck in a suboptimal minima. We observe that the

fidelity is exponentially approaching some maximal value Figure 5.7. Especially

for interaction dominated systems, we can improve the fidelity a lot. However,

the exponential fit we obtained does not converge to 100%. Reason for this can

be either, that the network is not capable of representing certain states at all or

that the learning process is not capable of mapping the states to the network.

Gao and Duan showed, RBMs are not capable to represent all pure states with

a polynomial number of weights [27]. If all states can be represented with an

exponential number of weights remains unclear.

On the other hand we looked at the case of too many weights given. We

investigated the case of no interaction between the particles. In this trivial

case, the problem gets reduced to a one body problem. Given a fully connected

network, the network was often not capable to find the steady state. We had

too many redundant local minima our network was able to get trapped in. We

conclude that we can improve the network’s capability by adding more hidden

nodes but have to be careful not to overparameterise.
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Figure 5.7: The fidelity to the exact steady state over the hidden density α. We

fitted an exponential to the data points. We observed convergence to a maximal

fidelity F (α → ∞) = 99.5% for J = 10 and F (α → ∞) = 94.5% for the

dominating coupling J = 600. The calculation was made for five particles and

∆ = 0, γ = 1.
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6 Efficiency of the Learning Process

In this chapter, we start to test the efficiency of the learning process. First, we

look at the effect of different mini-batch sizes. After choosing an appropriate

batch size, we investigate the computing time necessary to approximate steady

states.

We will work again with the Rydberg toy model. The energy scale and

distance stay fixed to one. We use van der Waals coupling with interaction

strength J = 1, a detuning ∆ = −1 and a decay rate γ = 1. For those parameters,

we get non-trivial behaviour but we know from the previous work that our network

can express the steady state.

6.1 Choosing the Mini-Batch Size

We will start emphasizing the difference between active learning and the Monte-

Carlo approximation. In the approach of Yoshioka et al.[13], they use the sampling

to approximate the complete gradient. They use Metropole-Hastings to approximate

the distribution

p(σ, σ′) =
1

Z
|ρ(σ, σ′)|2 (6.1)

Instead of calculating the whole gradient, we are only interested in a direction,

which brings us closer to the optimal minima. We want the network to focus on

minimizing the time derivatives of big populations. Very small sample sizes can

be chosen.

If we choose the batch size too small for our problem, stochastic fluctuations

will hinder the learning progress until it stops. On the other hand, we want to

choose a small batch size to make the process as efficient as possible.

In Figure 6.1 we show an example for loss curves with different batch sizes

nB. We can observe the typical stop in learning for nB = 1. Surprisingly we are

able to get good results even for very small batch sizes like nB = 2.

We will continue to look at the very small batch sizes nB ∈ {2, 4}. Keep in
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Figure 6.1: Exemplary loss curve over computation time for different batch sizes.

The calculation was for seven particles.

mind, that we use the samples to calculate not only the diagonal elements but

the corresponding off-diagonal ones as well. Therefore the computation time for

each update increases quadratically in batch size.

6.2 Scaling with the particle number

The learning process with the mini-batches is very stochastic. We will continue

to present the mean values of the computation time together with their statistical

error. We have to mention that the learning process often got stuck and we had

to restart the measurement1. We exclude those runs from the data but will use

them later to estimate the reliability.

We took 25 runs for both batch sizes and the different particle numbers

(Figure 6.2,6.3). With the finite amount of data available, we assume an scaling

1We restart the calculation after four hours, assuming that the learning process got stuck.
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Figure 6.3: nB = 4

with number of parameter. For the densities α, β = 1, equation (5.7) gives a

scaling for the computation time tC with

tC(N) ∝ 3

2
N +N2. (6.2)

With the stochastic data available, we cannot exclude the possibility of an

exponential scaling. We can observe a steeper ascent for a bigger batch size,

supporting the argument that the smallest batch size possible will also yield the

most efficient learning process.

6.3 Stochastics of the learning process

One could already observe the huge variations in computing time for the individual

runs. Here we examine if different batch size have an effect of limiting the

stochastic behaviour and produce more reliable results.

First off, for the batch size nB = 4 we had to restart the learning process

even more often than for nB = 2, so we could not observe an improvement in this

regard. The smaller batch size was more capable to retrieve the process out of a

suboptimal learning process. Probably the stochastic fluctuations helped to move

the process out of an local minima. Another reason for this behaviour could also

be the smaller computation time for the small mini-batch in general.

To quantify the statistical behaviour, we calculate the relative statistical error

for the individual particle number.

28



Particle number 3 4 5 6 7 8

nB = 2
restarts 0% 12% 28% 16% 12% 8%

rel. error 0.832 0.892 0.741 0.795 0.603 0.426

nB = 4
restarts 20% 28% 20% 24% 4% 20%

rel. error 0.505 0.616 0.538 0.560 0.339 0.362

We see that for nB = 4, the statistical error is getting smaller. We also observe

smaller relative errors for higher particle numbers. More data points with more

particles are needed to verify this behaviour.
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7 Summary and Conclusion

We presented a variational neural network ansatz to solve the Lindblad master

equation. This ansatz is hermitian and semi-positive. We proved with an explicit

network, that the ansatz is capable of representing a maximally entangled state.

Therefore the approach is not limited by area law as compared to tensor networks.

We were able to show that the variational neural network ansatz is capable

to represent the experimentally interesting weak or medium interacting Rydberg

system. Analogue to regular time evolution we found that a small Liouvillian

gap limits us in finding the steady state. We observed that strong coupling is

hindering the representation from working efficiently. We showed that one can

improve the network’s performance by adding additional hidden nodes. At the

same time a bigger parameter space increases the danger of getting stuck in a

suboptimal minimum. In the investigated non-trivial regime parameter space

grows only quadratically with the particle number.

The learning process with active learning is very stochastic. Quite often

the process gets stuck and has to be abandoned. Raising the mini-batch size

does not limit this risk, but helps decreasing the stochastic fluctuations. The

sampling process will be harder for more particles, as the Hilbert space still

grows exponentially. We could not detect a need to raise the number of samples

drawn. Nevertheless, the challenge to find the best-suited samples for learning

will get harder which could lead to more samples necessary. The data available

points to a scaling with the number of weights. This would mean that as long as

the steady state can be represented efficiently we can also find it efficiently.

In this thesis we showed that the machine learning approach is limited. Inside

those limits, however, the results are promising.
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8 Outlook

The structure of our network is not dependent on the geometry of the system.

While tensor networks are only feasible for one dimension, the neural network

approach should not be troubled by higher dimensions. At the same time, the

fully connected network is highly non-local. The network is therefore not limited

to short ranged interactions either. Further work has to be done, to prove these

predictions.

This thesis was very limited in particle numbers. Following the reasoning ”the

more, the better”, one wants to observe the behaviour of the network for more

particles. At this moment, the data available is not capable of showing if the

scaling is as efficient as we hope or not.

One of the biggest problems we see is the reliability of the learning process.

Following the idea of adaptive learning rates, changing the batch size during the

learning process could increase efficiency and stability.

To reduce the risk of getting stuck in suboptimal minima, we could adaptively

increase the parameter space. In this way we would not overparameterize but still

get the necessary amount of weights to represent the state.

The active learning approach works best if the samples drawn are the most

suitable for reducing the loss. In this thesis we just worked with the basic idea

that big populations contribute the most to the time evolution. We do not think

that the sampling process is optimal for active learning. In many-body physics,

active learning is widely unexplored. The presented approach offers a rich field

of study, worth looking into more thoroughly.
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