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The near-critical unitary dynamics of quantum Ising spin chains in transversal and longitudinal
magnetic fields is studied using an artificial neural network representation of the wave function. A
focus is set on strong spatial correlations which build up in the system following a quench into the
vicinity of the quantum critical point. We compare correlations observed following reinforcement
learning of the network states with analytical solutions in integrable cases and tDMRG simulations,
as well as with predictions from a semi-classical discrete Truncated Wigner analysis. While the
semi-classical approach excells mainly at short times and for small transverse fields, the neural-
network representation provides accurate results for a much wider range of parameters. Where
long-range spin-spin correlations build up in the long-time dynamics we find qualitative agreement
with exact results while quantitative deviations are of similar size as for the semi-classically predicted
correlations, and slow convergence is observed when increasing the number of hidden neurons.

Introduction. Simulating the dynamics of interacting
quantum many-body systems out of equilibrium is, in
general, a hard problem for classical computers due to
the exponential scaling of the Hilbert space dimension
with the number of particles. Only in a limited number of
cases, the quantum dynamics can be solved analytically.
Such exact solutions exist mostly in one spatial dimen-
sion, such as for the transverse-field Ising model (TFIM)
[1–3]. For one-dimensional (1D) systems, also matrix-
product-state (MPS) representations of quantum states
have proven most useful, including the time-dependent
density-matrix renormalization-group (tDMRG) and re-
lated methods [4–9]. The tDMRG approach makes use
of the fact that, for short-range interactions, an initially
unentangled state develops entanglement only gradually
and can thus be represented in an efficient way. How-
ever, for long times or spatial dimensions larger than one
(d > 1), efficient and widely applicable numerical meth-
ods for calculating the dynamics are essentially absent.

A key to devising such methods is to know how to
efficiently represent the quantum states under consider-
ation. A novel idea is to make use of the capabilities of
machine learning algorithms and artificial neural network
(ANN) representations to efficiently exploit the structure
of quantum states in a way similar to pattern recogni-
tion in image processing [10, 11]. Such approaches have
been applied successfully in various areas of science such
as computer vision, natural language processing, as well
as in the natural sciences. Examples include quantum
control [12, 13], phase classification and recognition in
statistical physics [14, 15], gravitational wave analysis
[16] and black hole detection [17] in astronomy, and error
correction [18, 19] in quantum information science. Re-
cently, it has been proposed to represent quantum states
by means of neural networks, providing new ways to com-
pute ground states as well as unitary time evolution [20–
22], see also [23–30], directly related to certain types of
tensor network states [31–34].

Here we provide a study of the regimes of validity of
the ANN representation of a 1D quantum Ising chain in
transverse and longitudinal fields and their relation to

FIG. 1. (a) Setup of the ANN consisting of one visible and one
hidden layer connected via weights Wi,j between each pair of
variables from different layers and bias ai (visible) or bj (hid-
den) for each variable. (b) Quench protocol in the TFIM for
sudden quenches from the deep paramagnetic regime (large
hx,i) to different distances from the QCP within the param-
agnetic and into the ferromagnetic phase, where the ground
state configurations are depicted by the spins at the top.

the extent of spatial correlations and many-body entan-
glement, focusing on time evolution after a quench into
the vicinity of a quantum critical point. We furthermore
compare capabilities of the ANN method to the results
obtained with a discrete truncated Wigner approxima-
tion (dTWA) approach recently proposed for quantum
spin systems. In order to assess the power and weak-
nesses of these approaches, we make use of analytical
solutions for the TFIM, and of numerical simulations by
means of exact diagonalization and tDMRG in the case
where a longitudinal field breaks the integrability.

The TFIM features a quantum phase transition where
volume-law growth of entanglement is expected at long
times, making it inaccessible to MPS based methods. We
find that, while the semi-classical method fails to accu-
rately capture the unitary dynamics except at very short
times and near zero transverse field, the ANN approach
reproduces the exact results for a wide range of parame-
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ters. We show that in cases where strong long-range spin-
spin correlations build up, when the system is quenched
into the vicinity of a quantum critical point, the two-
layer ANN representation requires a strongly increased
number of network parameters. Interestingly, the ANN
approach yields qualitatively correct results even where
the entanglement entropy increases indefinitely, only lim-
ited by the finite system size. Quantitative deviations,
however, are of similar size as in semi-classical predic-
tions and highlight the challenge for the employed ANN
approach.

1D Ising model in longitudinal and transverse fields.
We consider the dynamics of a periodic chain of N spins
governed by the quantum Ising model in a longitudinal
field hz and transverse field hx, with Hamiltonian

H = −
N∑
i=1

σzi σ
z
(i+1)modN − hx

N∑
i=1

σxi − hz
N∑
i=1

σzi , (1)

defined in terms of the Pauli matrices σαi . For hz =
0 this model reduces to the transverse-field Ising model
(TFIM). The TFIM is integrable as it can be mapped
to free fermions and thus allows for comparisons with
exact analytical solutions both, for ground states and
unitary time evolution after a parameter quench [1–3, 35].
The spin system undergoes a quantum phase transition
at hx,c = ±1, from a ferromagnetic (0 < |hx| < 1) to a
paramagnetic (|hx| > 1) phase, as depicted in Fig. 1(b).
For hz 6= 0 the model is no longer integrable and does not
show a quantum phase transition as the Z2 symmetry is
broken explicitly [36].

Artificial-Neural-Network approach. The quantum
state of N Ising spins can be expressed in terms of
the 2N complex coefficients cv, specifying the ampli-
tudes with respect to the basis states |v〉 = |v1, . . . , vN 〉
(vi ∈ {−1,+1}), i.e. |Ψ〉 =

∑
v cv|v〉. In Ref. [20], the

representation

cv =
∑
{h}

e
∑

i,j viWi,jhj+
∑

i aivi+
∑

j bjhj (2)

of these coefficients in terms of a set of complex parame-
ters Wi,j , ai, bj , with i = 1, ..., N , j = 1, ...,M has been
proposed, which is reminiscent of the ANN structure of
a restricted Boltzmann machine [37]. This involves an
exponential bilinear form of the N visible, i.e., physical
spins or neurons vi and of the M hidden or auxiliary
classical spin variables (neurons) hj ∈ {−1,+1} [not to
be confused with the magnetic fields hx, hz appearing
in Eq. (1)]. The exponential is summed over the hidden
spin configurations. In the following we choose M = αN
with integer α. In the two-layer neural network, only
connections between the visible and the hidden but not
within the layers are allowed, cf. Fig. 1(a).

To find representations of the form (2) for ground and
unitarily evolving states of the model (1) a variational
determination of the complex synaptic weights Wi,j and
biases ai and bj has been proposed in [20]. This can

be interpreted as reinforcement learning of the ANN and
is accomplished by means of a stochastic reconfiguration
procedure. This can be achieved in a numerically effi-
cient way as the sum in the representation (2) can be
performed analytically and the configurations {v} of the
visible spins can be sampled using Markov-chain Monte
Carlo methods. For further details of the ANN approach
see App. B and Ref. [20].

Note that the number of network parameters M+N+
MN scales linearly in the system size N and reduces to
1+α+M if translationally invariant solutions are consid-
ered [20, 38]. Hence, the representation scales polynomi-
ally in the size of the system. In this respect the method
is efficient and similar in spirit to variational Monte Carlo
and MPS-based methods [5, 39, 40]. It has been dis-
cussed in the context of complexity theory [28] and ex-
act ANN representations of specific classes of states have
been found, including topological cluster and 2D toric-
code states [24, 26, 28], as well as tensor network and
chiral states [31–34, 41].

Discrete truncated Wigner approximation. The dTWA
is a semi-classical simulation method for the dynamics of
systems defined on a discrete phase space, such as the
Ising model defined in Eq. (1) [42–45]. It allows calculat-
ing the dynamics by sampling initial states from a posi-
tive definite discrete Wigner function evolved by means
of classical equations of motion for the spins. By aver-
aging the resulting observables at a given evolution time
over a large set of initial-state samples, one finds a semi-
classical approximation to the exact unitary evolution
(see App. A for further details).

Quenches in the TFIM. In our analysis we assume the
system to be initially in the ground state deep in the
paramagnetic phase, hx,i = 100 and hz,i = 0, and quench
to a range of points (hx,f , hz,f ) in the parameter space
of (1), cf. Fig. 1(b). At a given evolution time after the
quench we evaluate the spin-spin correlation function

Czzd (t) = 〈σz0σzd〉 . (3)

The absolute value of the correlation function typically
shows an exponential decay for short distances d be-
tween the spins. We extract a correlation length ξ by
fitting |Czzd (t)| with an exponential function exp (−d/ξ)
at small d < 3.

We begin by choosing a zero longitudinal field hz,f and
compare the results of the ANN and dTWA methods to
exact analytical results for Czzd (t). Restricting ourselves
first to small systems of N = 10 spins, Monte Carlo sam-
pling of v is not necessary in the ANN weight updat-
ing step which ensures that effects arising from a finite
sample size do not constrain the performance. For such
small systems, we can furthermore increase the number
M = αN of hidden spins up to a size where the number
of network parameters exceeds the dimension of Hilbert
space and thus an exact ANN representation of the state
should be possible. In this way we can explore the de-
gree to which the full set of basis states is necessary in
representing the system’s state.
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FIG. 2. (a) Correlation length ξ (t) at a fixed time t = 1 as a function of the transverse field hx,f after a sudden quench
from (hx,i = 100, hz,i = 0) with hz,f = 0 within the paramagnetic and into the ferromagnetic phase. The results of the ANN
approach for different α are compared with the dTWA calculations and the exact solutions. (b) Time dependence of the
correlation function Czzd (t) after quenches from the deep paramagnetic phase to several hx,f . The correlation length in (a) is
calculated by fitting an exponential function to the short distance decay of the absolute value of Czzd . (c) Time evolution of
the correlation function Czzd (t) after a sudden quench to (hx,f = 1, hz,f = 0) for a spin chain with N = 10 sites (upper plot)
and to (hx,f = 2, hz,f = 0) for a spin chain with N = 42 sites (lower plot).

Our results are presented in Fig. 2. Panel (a) shows the
correlation length at a fixed time t = 1 as a function of
hx,f . Fig. 2(b) illustrates the d-dependence of Czzd (t) for
a selection of hx,f and times t, and panel (c) shows the
correlation function at two different distances d and final
fields hx,f as functions of time after the quench. Note
that the results for hx,f = 2 in Fig. 2(c) are for a larger
system of N = 42 spins.

As can be seen in Fig. 2(a), for quenches into the vicin-
ity of the quantum critical points (QCPs), hx,f ' ±1,
we observe the buildup of long-range correlations, re-
sulting in strongly increased correlation lengths ξ [2, 3].
While the system possesses a quantum critical point at
hx = ±1, i.e., undergoes a quantum phase transition
in the ground state, ξ (t) is not expected to diverge
there. The saturation of the dynamically evolving cor-
relation length is closely related to the fact that the one-
dimensional system does not dispose of phase transitions
at non-zero temperatures [35].

In the vicinity of hx,f = ±1 the ANN approach, when
choosing a small number of hidden spins (α = 1), yields
correlations which deviate clearly from the exact result
shown as a black solid line. Away from these critical
values, the obtained results, however, match well with
the exact correlations. Increasing the number of hid-
den spins, we find that the accuracy improves, whereas
perfect agreement is only obtained for α > 6. Note that
then, the number of network parameters is 1+α+M > 67
and thus of the order of the Hilbert space dimension af-
ter symmetrization, dH = 108. Around hx,f = 0, the
ANN representation is well controlled as can be shown
by means of a perturbative expansion in terms of classi-
cal spin networks [46].

The time evolution of Czzd (t) shown in Figure 2(c), for
a quench to hx,f = 1 and d = 1, 2, corroborates the above
findings concerning the dependence on α. At very short

times (t . 0.5), the ANN method gives accurate results
already for α = 1, even for quenches to criticality. For
large spin chains (N = 42), α = 1 is still sufficient to
capture the exact dynamics in regimes of small corre-
lation lengths (hx,f = 2 is shown). For such large sys-
tems sizes, the weight updating procedure requires Monte
Carlo sampling of the visible neurons. This turns out to
have no effect other than adding statistical noise to the
numerical result, which can be controlled by increasing
the size of the Monte Carlo samples. By increasing the
number of weights up to α = 6 in the regime of large cor-
relation length, i.e. close to the QCPs, we cannot obtain
converged results, which in fact hints to an exponential
scaling of the number of required network parameters
with N . Hence, in these cases, the method appears to
be of no advantage as compared to exact diagonalization
(see App. E).

Turning to the dTWA method we find that it quali-
tatively reproduces the exact results while, in general, it
shows rather large deviations except at short times (t .
0.5) and around hx,f = 0. This is due to the fact that
quantum effects are not captured by the semi-classical
approximation. Note, however, that for quenches very
close to the QCPs at hx,f = ±1, the dTWA provides in
general a better estimate of the short-range correlation
length than efficient ANN representations (see App. C).

TFIM in a longitudinal field. Having considered
only the integrable TFIM so far, we now turn to
the non-integrable case by adding a longitudinal field
hz,f > 0. The initial fields are the same as above,
(hx,i = 100, hz,i = 0). Since no analytical solutions are
available in this case, we resort to exact numerical diag-
onalization for small systems and to the tDMRG.

Fig. 3(a) shows the exact time evolution of the cor-
relation length after a sudden quench to hz,f = 2 and
different values of hx,f (N = 10). The same dynamics is
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FIG. 3. (a) Exact correlation length ξe (t) forN = 10 spins as a function of time after a sudden quench from (hx,i = 100, hz,i = 0)
to hz,f = 2 and different values of hx,f . (b),(c),(d) Deviations ∆ξ (t) = |ξs − ξe| of simulation results ξs (t) from the exact
result. The ANN calculation is not limited by Monte Carlo sampling errors. See also App. D for more final values hz,f .

FIG. 4. (a) Time evolution of the correlation function
Czzd (t) after a sudden quench from (hx,i = 100, hz,i = 0) to
(hx,f = 0.5, hz,f = 1) in a system with N = 42 sites. The
ANN approach for α = 1 and α = 2 is compared to tDMRG
calculations with bond dimensions D = 128 and D = 5. (b)
von-Neumann entanglement entropy SvN as a function of time
after the same quench as in (a). The entanglement entropy
is calculated using tDMRG with different bond dimensions.
The deviations at late times show that in this regime tDMRG
breaks down after long times due to the growing entangle-
ment.

evaluated using the ANN approach with α = 1, α = 10
and the dTWA, where the deviation ∆ξ (t) = |ξs − ξe| of
the correlation length ξs (t) resulting from the different
approaches as compared to the exact result ξe (t) is shown
in Fig. 3(b), (c), and (d), respectively. The ANN results
are close to the exact calculations already for α = 1 in
regimes of small correlation length, namely for |hx,f | � 1
and |hx,f | � 1. Only for quenches to intermediate hx,f ,
where the correlation length becomes large, deviations
can be found for times t > 0.5, while the first oscilla-
tion in the correlation length is captured perfectly even
here. For α = 10 only small deviations can be found
anywhere. In this case, the 111 weight parameters ex-
ceed the Hilbert space dimension dH = 108, indicating
that in certain parameter regimes the number of network
parameters needed to achieve full convergence scales ex-
ponentially with the system size. The dTWA [Fig. 3(d)]
shows similiar deviations ∆ξ (t) in a wider regime, coin-
ciding with the exact results mainly at short times.

An important question concerns the predictive power
of the ANN approach in regimes where MPS-based ap-

proaches such as tDMRG are limited to short times due
to an extensively growing entanglement entropy. As a
representative case, we show, in Fig. 4(a), the correla-
tion function after a quench to (hx,f = 0.5, hz,f = 1) for
a spin chain with N = 42 sites, where the ANN ap-
proach for α = 1 and α = 2 is compared to converged
tDMRG results for bond dimension D = 128 and ap-
proximate data for D = 5. Clearly, deviations appear
for times t ≥ 1, while the qualitative behavior is cap-
tured for longer times. Increasing α from 1 (44 network
parameters) to 2 (87 parameters) does not improve the
convergence significantly. We note that, for D = 128,
the number of variational parameters (2D2) in the MPS
vastly exceeds the number of parameters in the ANN ap-
proach (1 + α + M). For bond dimension D = 5, the
tDMRG variational ansatz has 50 parameters, resulting
in a similar quality as the ANN. Fig. 4(b) shows the von
Neumann entanglement entropy [SvN = −Tr (ρAlogρA),
with half-chain reduced density matrix ρA] obtained by
means of tDMRG with different bond dimensions D, as
a function of time after the same quench as before. De-
viations appear at late times, showing that also tDMRG
struggles due to the linearly growing entanglement en-
tropy, which in turn requires an exponentially growing
bond dimension.

Conclusions. Considering sudden quenches in the inte-
grable transverse-field Ising model as well as in the non-
integrable Ising model in a transverse and a longitudinal
field, we compare the dynamics obtained within the dis-
crete truncated Wigner approximation (dTWA) [42, 44]
and a variational approach based on artificial neural net-
works (ANN) [20] with analytical and exact numerical
results. Both the dTWA and the ANN methods repro-
duce the short-time dynamics correctly and perform well
for small transverse fields. The ANN approach agrees
with exact calculations in a much wider parameter regime
than dTWA. Near criticality and at the presently attain-
able level of accuracy, it shows similar deviations as the
semi-classical approach.
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FIG. 5. Discrete quantum phase space for a spin- 1
2

system spanned by two variables a1, a2. The colored lines denote the
three sets of parallel lines in the 2× 2 dimensional finite mathematical field. With each set a spin operator σα, α ∈ {x, y, z} is
associated and each line is identified with one eigenvalue of the corresponding operator.

Appendix

Appendix A: The discrete truncated Wigner approximation

The discrete truncated Wigner approximation (dTWA) is based on sampling an initial spin state from a Wigner
function on a discrete phase space and classically evolving it in time. By repeating this, one can create lots of
trajectories and by averaging the outcoming observables, their time evolution can be approximated semi-classically
[42, 44].

A discrete phase space of a quantum spin- 12 system is based on a 2× 2 dimensional finite mathematical field, which
consists of three sets of parallel lines. As in a continuous phase space, with each set of parallel lines one operator is
associated and each line is identified with an eigenvalue of the corresponding operator [47]. For a spin- 12 system we
associate the spin operators, which are the Pauli operators σx, σy and σz, with the sets of parallel lines and each line
is identified with either the +1 or −1 eigenvalue, as illustrated in Fig. 5. For each point α = (a1, a2) in the phase
space, a phase point operator Aα can be defined, which maps each point in the Hilbert space onto a point in phase
space. Here, a convenient choice for the phase point operators is [42, 47]

Aα =
1

2

[
(−1)

a1 σx + (−1)
a1+a2 σy + (−1)

a2 σz + 1
]
, (A1)

which is consistent with the association of the spin operator eigenvalues in Fig. 5.
By mapping the density operator ρ onto the phase space, the Wigner function is defined as

Wα =
1

2
Tr (ρAα) , (A2)

which is a quasi-probability distribution over the phase space. This means it gives a probability for each point in phase
space and shows properties of a probability distribution, but it might have negative values [47–49]. By combining two
phase spaces with different phase point operators, all eight possible orientations of the discrete spin can be captured
and a quasi-probability for each orientation is given [42, 44].

From the Wigner function on the discrete phase space, initial spin states can be sampled by creating one phase
space for each site and sampling the orientation of the corresponding spin. This is only possible if the Wigner function
is non-negative, which limits the flexibility of the simulation method. The time evolution of the sampled spin state
can then be approximated by treating the quantum spins as classical spins si and evolving them in time individually
using classical equations of motion [42],

ṡαi = {sαi ,H} , (A3)

with α ∈ {x, y, z} and i ∈ {1, . . . , N} for an N-site spin system. The brackets denote the Poisson bracket, which for
two classical spins is defined as {

sαi , s
β
j

}
=2δij

∑
γ

εαβγsγi . (A4)
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In the dTWA, R classical trajectories are calculated, where the initial state is sampled from the Wigner function
for each trajectory individually. The observables resulting from the trajectories are then averaged to approximate
quantum dynamics in a semi-classical way, since a classical time evolution is used, but quantum fluctuations come
into the system by sampling the initial states.

In the main text, sudden quenches in the transverse field Ising model are considered. The quenches are chosen to
start from a large initial transverse field hx,i = 100, which is sufficiently large to create a fully x-polarized ground
state, for which the Wigner function is non-negative, making it possible to calculate the dTWA for the considered
quenches. To reach more accurate results, we improved the method by trying higher orders in the approximation of
the equations of motion [44]. For this we observed that taking only the next order into account leads to numerical
instabilities, so that even higher orders would be necessary.

Appendix B: The artificial neural network approach

The recently introduced artificial neural network (ANN) approach is based on representing a quantum state in
terms of the weights in a restricted Boltzmann machine [20]. Using the setup introduced in the main text with M×N
complex connecting weights Wi,j between the N visible and M hidden neurons, as well as N visible biases ai and M
hidden biases bj , the wave function |Ψ〉 of a quantum spin state can be written as

|Ψ〉 =
∑
v

cv (W) |v〉 , (B1)

with cv (W) =
∑

hj∈{±1}
exp

 N∑
i=1

M∑
j=1

viWi,jhj +

N∑
i=1

aivi +

M∑
j=1

bjhj

 (B2)

=exp

(
N∑
i=1

aivi

)
M∏
j=1

2cosh

(
bj +

N∑
i=1

viWi,j

)
, (B3)

with the vector W = (a1, . . . , aN , b1, . . . , bM ,W1,1, . . . ,WN,M ) of all weight variables.
In a general restricted Boltzmann machine with real weights, the expression for cv (W) would correspond to the

probability assigned to a configuration of visible variables [37], but since we have complex weights here, also cv (W)
is complex and does not describe a probability. Instead its square corresponds to the probability of the configuration
v, as cv (W) is the prefactor of the product state |v〉 in the wave function.

With this representation, the ground state wave function of a quantum spin- 12 system can be found using an iterative
scheme based on a Stochastic Reconfiguration method [50, 51]. The weight parameters W at iteration step p+ 1 can
be calculated using the vector of forces F and the covariance matrix S [20],

W (p+ 1) =W (p)− γS−1 (p)F (p) , (B4)

with Skk′ = 〈O∗kOk′〉 − 〈O∗k〉 〈Ok′〉 , (B5)

Fk (p) = 〈ElocO∗k〉 − 〈Eloc〉 〈O∗k〉 , (B6)

with an iteration step size γ and the star denoting complex conjugation. To calculate the inverse of S in a stable way,
a regularization method is used [20]. The local energy Eloc and the variational derivative Ok are defined as

Eloc (v) =
〈v|H |Ψ〉

cv
, (B7)

Ok (v) =
1

cv
∂Wk

cv. (B8)

Here, the Hamiltonian H of the quantum spin system under consideration enters into the algorithm. The expectation
values are generally calculated as

〈O〉 = 〈Ψ| O |Ψ〉 (B9)

=
∑
v,ṽ

〈v| O |ṽ〉 cṽcv, (B10)

where the summations run over all states in the Hilbert space, which are 2N states for an N -site spin system.



3

Since such a large number of states can not be taken into account for large spin systems, it is more convenient to
use only a subset of states, which is generated by a Markov chain set up by sampling |cv|2 using a Metropolis-Hastings
algorithm [20]. The Markov chain is created starting from a random initial state vk by flipping a random spin to

get a new configuration ṽ. The new configuration is accepted with probability A
(
vk → ṽ

)
= min

(
1, |cṽ/cvk |2

)
. If

accepted, the configuration is updated, vk+1 = ṽ, if rejected, the state stays the same, vk+1 = vk. This way, the
Markov chain is set up in an iterative scheme and in the end creates a subset of states with large coefficients |cv|2.
Since these states have high contributions to the expectation values, this gives a reasonable approximation, since
states with smaller contributions can be neglected. This technique is used routinely in variational Monte Carlo and
is known to be stable and efficient.

For small system sizes, as considered in the main text, this sampling procedure is not necessary, since the expectation
values can be calculated exactly due to the small dimension of the Hilbert space.

The iteration scheme to find the ground state can be interpreted as an effective imaginary time evolution and in
an analogous way an iteration scheme to approximate the real time evolution of the quantum spin system can be
derived using a time-dependent variational Monte Carlo approach [20, 52, 53]. The equations of motion for the weight
parameters W again depend on the vector of forces F and the covariance matrix S, which are defined in the same
way as above and give

Ẇ (t) =− iS−1 (t)F (t) . (B11)

These can be easily integrated numerically. Here, S−1 denotes the Moore-Penrose pseudo-inverse of S, which is not
necessarily invertible since it is not guaranteed to have full rank. To get stable results even for large spin systems
and in the vicinity of a quantum critical point, we found that the pseudo-inverse needs to be combined with the
regularization method used in the ground state calculation.

Given this, the simulations of the dynamics after sudden quenches as considered in the main text can be calculated
by starting with random weights, converging to the initial ground state and calculating the time evolution starting
from the ground state weights using the parameters after the quench.

By introducing symmetries into the ANN setup, the number of weight parameters can be reduced. In the case
of spin chains with periodic boundary conditions, as discussed in the main text, we find translation invariance. To
include this into the ANN approach, we shift all visible variables by a factor d around the ring and force the new
configuration to have the same weight parameters as the old configuration. Doing so reduces the number of weight
parameters from M +N +MN to M + M

N + 1 [20, 38].

Appendix C: Transverse Field Ising Model

The one-dimensional transverse field Ising model (TFIM) with N spin- 12 sites is described by the Hamiltonian

H =− J
N∑
i=1

σzi σ
z
(i+1)modN − hx

N∑
i=1

σxi , (C1)

with the Pauli matrices σαi , and we choose J = 1 without loss of generality. This model is integrable, since it can be
mapped onto non-interacting fermions, from which spectrum and energy eigenstates can be calculated analytically [1–
3]. The model shows a quantum phase transition at hc = ±1 between a paramagnetic (|hx| > 1) and a ferromagnetic
(|hx| < 1) phase. This quantum phase transition is quantified by a gapless dispersion relation [2, 3, 35]. It has been
shown that for sudden quenches from a large transverse field into the vicinity of the quantum critical point, as we are
considering them in the main text, the correlation length shows the behavior of a generalized Gibbs ensemble (GGE),
so it increases for smaller distances from the quantum critical point [2, 3, 35].

Fig. 6(a) shows this behavior of the correlation length at a fixed time t = 1 after quenches within the paramagnetic
phase for a spin chain with N = 10 sites, where the distance ε = (hx,f − hc) /hc from the quantum critical point is
plotted on a logarithmic scale. The different simulation methods are compared with the exact solution of the model.
The correlation length is here extracted from the equal-time correlation function Czzd (t) by fitting an exponential
function to the short distance decay of Czzd ∝ exp

(
−dξ−1

)
for small d. The solid line shows the GGE behavior, which

is given by [2, 3]

ξGGE (ε) =
1

ln (2 (εhc + hc))
. (C2)

The exact solution describes the GGE behavior well except for the region around ε = 10−1. Here, the exact solution
is not yet saturated and a longer evolution time is needed until it is converged onto the GGE curve. Since we are
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FIG. 6. Correlation length at a fixed time (a), time evolution of the von-Neumann entanglement entropy (b) after a sudden
quench from (hx,i = 100, hz,i = 0) to different distances ε from the quantum critical point in the TFIM with hz,f = 0. In the
region of large correlation lengths, large α are needed in the ANN approach to capture the exact solution. In the same region
also volume-law entanglement is found.

only considering systems with N = 10 sites here, the correlation length does not saturate before finite size effects
appear, so the GGE curve is never reached completely. As already discussed in the main text, the ANN approach
needs larger α to capture the exact solution in the regime of large correlation lengths, while it works very well even
for α = 1 at small correlation lengths. This behavior can also be observed in Fig. 6(a). It can also be seen that the
dTWA is closer to the exact solution in the vicinity of the QCP, but gets worse when the transverse field increases,
as discussed in the main text.

Fig. 6(b) shows the time evolution of the von-Neumann entanglement entropy, which we calculate using tDMRG.
There one can see that for hx,f < 2 the entropy grows linearly with time, while it stays constant for hx,f ≥ 2. To
better see this linear growth, the tDMRG calculations are done for a chain with N = 40 sites, so that finite size effects
do not appear on this time scale. Here one can directly see that in the regime where large α are necessary in the
ANN approach, not only the correlation length is large, but also volume law entanglement is found. This volume law
entanglement also limits tDMRG calculations in this regime for large spin chains and longer times, so that the ANN
approach is limited in the same regime as the tDMRG calculations in the TFIM.

If we quench the transverse field to hx,f < 0, we again find a gapless dispersion relation at hc,2 = −1, where the gap
now closes at the edge of the Brioullin zone, while it closes in the middle for hc = 1. Hence, we find another quantum
phase transition between a paramagnetic (hx,f < −1) and a ferromagnetic (hx,f > −1) phase. In this regime, the
nearest-neighbor correlation function gets negative. The correlation length can then be extracted from the absolute
value of the correlation function in the same way as before, which results in the symmetric curve around hx,f = 0
plotted in the main text in Fig. 2(a).

Appendix D: Ising Model in Transverse and Longitudinal Field

If a longitudinal field hz is added to the TFIM, the Hamiltonian becomes

H =− J
N∑
i=1

σzi σ
z
(i+1)modN − hx

N∑
i=1

σxi − hz
N∑
i=1

σzi , (D1)

and the model is not integrable any more. Again we can choose J = 1 without loss of generality and we again find a
paramagnetic phase for large hx and small hz and a ferromagnetic phase for small hx. The difference to the TFIM
is now that there is no quantum phase transition between the phases, since the ground state in the ferromagnetic
regime is not degenerate anymore due to the longitudinal field and hence there is no spontaneous symmetry breaking
between the phases [36].

Considering now quenches from (hx,i = 100, hz,i = 0) to different hx,f and hz,f , the spin dynamics show Rabi
oscillations due to the interaction of hx and hz. These oscillations can also be found in the correlation length
extracted from the equal-time correlation function Czzd (t) in the same way as discussed earlier. The time evolution
of the correlation length is plotted in Fig. 7 for quenches to different hx,f with hz,f = 0 (a), hz,f = 1 (b), hz,f = 2
(c) and hz,f = 3 (d). We compare the simulation results with exact diagonalization calculations, since the model is
not analytically solvable anymore. We can observe in all plots that the ANN approach shows fluctuations for α = 1
at times t > 0.5 in the regime where the correlation lengths get large at shorter times. For α = 10, the method can
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FIG. 7. Time evolution of correlation length and von-Neumann entropy after sudden quenches from (hx,i = 100, hz,i = 0) to
different values of hx,f with hz,f = 0 (a), hz,f = 1 (b), hz,f = 2 (c) and hz,f = 3 (d). The ANN approach with α = 1 and
α = 10 as well as the dTWA are compared with exact results. (e) shows the time evolution of the von-Neumann entanglement
entropy extracted from the tDMRG calculations for hz,f = 1, hz,f = 2 and hz,f = 3. The entanglement entropy is also plotted
as contours in the color plot of the exact correlation length in (a), (b), (c) and (d). There one can directly see that large
entanglement entropy and volume-law entanglement can be found in the same regimes as large correlatin lengths.



6

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
z

z
d

(t
)

N = 12

ANN, ↵ = 1

ANN, ↵ = 2

ANN, ↵ = 8

ANN, ↵ = 12

ANN, ↵ = 15

DTWA

exact, d = 1

d = 2

d = 3

(a)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
z

z
d

(t
)

N = 42

ANN, ↵ = 1

ANN, ↵ = 2

ANN, ↵ = 4

ANN, ↵ = 6

DTWA

exact, d = 1

d = 2

d = 3

(b)

FIG. 8. Time evolution of the correlation function Czzd (t) after a sudden quench from (hx,i = 100, hz,i = 0) to
(hx,f = 1, hz,f = 0) in a spin chain with N = 12 (a) and N = 42 (b) sites. The correlation function is shown for distances d = 1
(solid lines), d = 2 (dashed lines) and d = 3 (dotted lines) between the considered spins. The number of weight parameters in
the ANN approach is increased to see that α = 15 is necessary to capture the exact dynamics for N = 12, while full convergence
can not be reached for N = 42 within suitable computation time.

capture the exact solution quite well, only small deviations appear at very late times. It is interesting to see that
even for α = 1 the first oscillation is always captured perfectly, it only breaks down at later oscillations. For hz,f = 0
deviations in the α = 1 calculations only appear in the regime of large correlation length, where the simulations reach
too large values. This is directly at the quantum phase transition at hx,f = 1, where also volume-law entanglement
can be found.

In Fig. 7(e) the time evolution of the von-Neumann entanglement entropy is shown for hz,f = 1, hz,f = 2 and
hz,f = 3, which is calculated using tDMRG. Here we can see that the entanglement entropy gets large approximately
in the same regime as the correlation length, which is also where deviations in the ANN approach for small α can be
found.

The dTWA also captures the oscillations in the correlation length, but at later times deviations can be found for all
hx,f . The maximum values of the correlation length are never reached in these calculations and deviations are found
even at shorter times than in the ANN approach.

Appendix E: Artificial Neural Network Approach for Large Spin Systems

In the main text we mostly considered small spin chains with N = 10 sites. For these systems we found that in
the ANN approach the number of weight parameters needs to be as large as the dimension of the Hilbert space to
represent the exact dynamics in regimes of large correlations. To see how the necessary number of weight parameters
depends on the system size, we consider the quench from (hx,i = 100, hz,i = 0) to (hx,f = 1, hz,f = 0) and compare
the ANN and dTWA simulations to exact solutions for spin chains with N = 12 and N = 42 sites. For N = 12,
the number of weight parameters can still be increased until the Hilbert space dimension is reached, while this is not
possible anymore for N = 42. Also the Monte Carlo sampling needs to be used for the N = 42 calculations, since a
summation over all configurations is not possible.

We have already shown in the main text that even for N = 42, α = 1 is sufficient for quenches into regimes of
small correlations, but larger α is needed in regimes of larger correlations even if a longitudinal field is added. For
the quench we are considering here, we found in the main text that α = 6 is necessary for N = 10 sites. Fig. 8 shows
the time evolution of the correlation function for N = 12 (a) and N = 42 (b). There we find that for N = 12, α = 15
is necessary to capture the exact dynamics, which corresponds to 1 + α+M = 196 weight parameters. This is again
of the order of the Hilbert space dimension after symmetrization (dH = 352), as we also found it for N = 10 sites.
This suggests that the necessary number of weight parameters scales exponentially with the system size.

In Fig. 8(b), we increase α as far as possible within suitable computation time for N = 42 sites. One can see the
convergence to the exact dynamics with increasing α, but for α = 6 the result is still far away from the exact solution.
The small fluctuations in the ANN calculations are caused by the finite Monte Carlo sampling. A much larger α
would be necessary here. This directly shows the limitations of the ANN approach for large spin systems in regimes
of large correlations due to the exponential scaling of α with system size, while we have shown in the main text that
the method works perfectly fine for large spin systems and small α in regimes of small correlations.
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