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Abstract
In this work we numerically simulate the propagation of a single spin excitation placed
in a two dimensional plane of a dipolar gas. The physical spread of this initially localized
excitation is illustrated and its transport properties are investigated. The main empha-
sis is laid on observing Anderson localization and demonstrating the relation between
Anderson localization and disorder. In order to distinguish Anderson localization from
finite system effects, all propagations are simulated for different system sizes. As results
we present a comparison between a localized and a delocalized expansion, caused by a
different amount of disorder, as well as a connection between localization and the degree
of randomness. Subsequently we will devote our attention to the energy eigenstates and
their statistical properties. As before, we are interested in the localization behavior and
investigate the extent of the eigenstates in different parts of the spectrum, as well as for
different disorder.

Zusammenfassung
In dieser Bachelorarbeit simulieren wir die Ausbreitung einer einzelnen Spinanregung in
einem zweidimensionalen, dipolaren Gas. Wir illustrieren die räumliche Ausdehnung der
Anregung und untersuchen die Transporteigenschaften. Der Schwerpunkt dieser Arbeit
liegt jedoch auf dem Aspekt der Anderson Lokalisierung. Vor allem möchten wir auf den
Einfluss der Unordnung des Systems eingehen. Wir demonstrieren das Lokalisierungsver-
halten, indem wir zunächst eine lokalisierte und eine delokalisierte Ausdehnung ver-
gleichen. Dabei untersuchen wir die Expansion jeweils für verschiedene Systemgrößen,
um Anderson Lokalisierung von möglichen Randeffekten, hervorgerufen durch unsere be-
grenzte Systemgröße, zu unterscheiden. Als Ergebnis präsentieren wir eine quantitative
Verbindung zwischen Unordnung und Lokalisierung. Als letztes widmen wir uns den
Energieeigenzuständen. Auch hier sind wir an dem Lokalisierungsverhalten interessiert
und analysieren die räumliche Ausdehnung der Eigenzustände für verschiedene Bereiche
des Spektrums, wie auch für verschiedene Unordnungen.
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1 Introduction
In this thesis we are going to explore the interplay between disorder and quantum trans-
port.
The concept of quantum transport is relevant and interesting, not only from a purely
academic standpoint, but also due to its direct applications in technological endeavors.
For example, employing single molecules as active functional components in electronic
devices constitutes a promising new technological concept of fast growing interest [1, 2].
Due to recent progress in the domain of electronic devices, we have reached the limits
where quantum effects cannot be ignored anymore. This is not the only field, in which a
better comprehension of the motion of quantum particles is crucial.
In particular, we are interested in quantum transport in a disordered network. In physics,
as in everyday life, disorder describes some lack of regularity and often its inhomogeneities
increase the complexity. Due to phenomena like Brownian motion, it appears that ran-
domness is especially anchored in the microscopic world.
In this thesis we want to address a problem, which also only occurs in the microcosm:
Anderson localization, which describes the absence of diffusion in a disordered quantum
network. Caused by interference effects, this phenomenon depends on the degree of ran-
domness and cannot be explained classically.

In order to investigate localization effects, a numerical simulation was developed, which
allows the description of spin dynamics based on dipole-dipole interaction. This is moti-
vated by the possibility to experimentally realize our setting in a Rydberg gas. Among
others, we will explain specific behaviors on a microscopic level (< 10 atoms), as well as
the diffusion of the excitation through a network at larger scale (10000 atoms).
We will examine the propagation through a disordered sample and discuss how this ex-
pansion depends on the magnitude of disorder. To generate the disorder most numerical
approaches to the localization problem use a random distribution of on-site energies.
Nevertheless, our disorder arises only through a random placement of the atoms. We will
point out, why this results in a connection between the magnitude of the randomness and
the density of the system.
On the one hand we will demonstrate with numerical results, how a different density (i.e.
a different degree of randomness) can either lead to a localized or delocalized expansion.
On the other hand we will try to find a quantitative dependency between the impact of
the density and the extent of localization.

The goal of this thesis is to shed some light on the concepts of spin transport, and how
simulations for such behavior can be treated numerically. As already mentioned, there will
also be a focus on explaining the properties related to Anderson localization, especially
its dependence on the degree of disorder.
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1.1 Contents of this thesis

This thesis is intended to provide an insight into spin dynamics based on dipolar interac-
tion V (r) ∝ 1

r3 , resulting in quite interesting phenomena like Anderson localization. The
fundamental questions we address concerning the character of a single spin excitation
are: Does the propagation behave like a random walk? Does the excitation move further
and further away or does it remain close to its initial position?
We especially focus on the latter. In this thesis we wish to explain localization effects
and possible influences on the localization length. In particular the density ρ attracts our
attention and becomes an important quantity representing the degree of randomness and
affecting the localization.

We start in chapter 2 with describing the physical setting of our dipolar gas and its prop-
erties. Both the dipole-dipole interaction and the Rydberg blockade radius is introduced.
A brief review of Anderson localization is given in chapter 3. The simplest toy model
for this kind of phenomenon, the Anderson tight binding model, is used to familiarize
ourselves with the localization behavior and its criteria.
Chapter 4 is supposed to give an insight into how the numerical simulation was produced.
First we start by giving an overview about our Hilbert space, followed by the dipolar XY
spin Hamiltonian and the numerical solution of the Schrödinger equation. Main aspect
of this chapter is to get to know the procedure of the time evolution and the calculation
of the probability to find the excitation.
In chapter 5 important observables, that quantify spin transport are introduced.
First results are shown in chapter 6. By using a network with a small number of atoms
(<10), which was manually created in a specific arrangement, the physical behavior of the
spin interaction is illustrated. We point out and explain unexpected dynamics in order
to prepare ourselves for systems with many more atoms.
In chapter 7 we use systems with up to 10.000 atoms to investigate the propagation of
a single excitation placed in the center of our network. Measures like the mean square
displacement help us to quantify the transport and to determine differences in the spread
caused by varying Rydberg blockade radii.
The emphasis of this thesis is on detecting and explaining Anderson localization in our
system as well as finding reasons for its appearance. Therefore we illustrate in chapter
8 basic differences between a localized and a delocalized excitation caused by a different
density ρ. Subsequently we try to quantify this impact by establishing a link between the
extent of localization and the density.
Last but not least I want to give a brief overview of the properties of the energy eigen-
states in chapter 9. Quantities like the participation ratio are used to decide, whether a
state is localized or not and how the extent of localization scales with the density.
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2 Rydberg Gas
Rydberg atoms are one of the major platforms for realizing dipolar quantum gases [3].
Rydberg atoms are atoms with a single electron having a high principal quantum number
[4]. Advantages are on the one hand the very high degree of experimental controllability
due to advancements in laser cooling and on the other hand the enhanced polarizability
and strong dipole-dipole coupling, caused by the far outside bounded electron [4, 5, 6].
Along with almost no radiative losses in Rydberg atoms, they can interact with each
other for relatively long times and transport of excitations between many atoms becomes
possible, even for extended time scales [5, 6, 7].
As one can see, especially due to the strong dipole-dipole coupling and the extended life-
time, a gas of Rydberg atoms offers an incredibly rich physical environment to observe
excitation transport arising through dipole-dipole-interaction [5, 7]

In the following the details and simplifications of our framework are discussed.

2.1 Physical setup and assumptions

For the comprehension of this thesis it is not absolutely necessary to know the experi-
mental details and realization of the spin transport. We rather use simplifications, which
facilitate our work. Nevertheless we want to orientate ourselves as closely as possible to
the experimental feasibilities. For that reason this work is inspired by the experimental
results from the group of Matthias Weidemüller at the Physikalisches Institut. In their
work [3], they investigated the relaxation of an isolated dipolar-interacting Rydberg quan-
tum spin system by realizing a dipolar XY spin-1/2 model in an external field. We will
make use of their theoretical description of spin dynamics as well as adapting experimen-
tal values.

We start from the assumption of dealing with a two dimensional gas of frozen Rydberg
atoms. Frozen means, that we neglect any kind of movements, both thermal motion and
motion caused by interaction of the particles. As a consequence the atoms are totally
fixed at a certain position for the whole time.
The atoms’ positions are randomly distributed within a circle of radius R, which we call
the system size from now on. Despite of the randomness we still consider a constant radial
density.
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Figure 1: Rydberg gas with a single ex-
citation

Rydberg blockade
In the experiment one works with laser excita-
tion to generate the Rydberg atoms. As a result
the Rydberg blockade effect arises. This effect
becomes important, when two Rydberg atoms
are close enough. Due to their high polarization,
they interact strongly, which leads to symmetric
energy shifts [4, 5]. When the interaction is suf-
ficiently large, the laser is out of resonance and
only one atom at a time can be transferred to
the Rydberg state [4, 7]. As a consequence each
Rydberg-excited atom blocks further excitations
within the blockade radius rb [8]. The strength
of the dipole blockade effect is externally tunable by using lasers with different linewidth
[5]. That’s why we will investigate, among others, the impact of different Rydberg block-
ade radii on the transport behavior. We will work with a Rydberg blockade radius in the
region of rb = 2− 10µm.

Interaction term
Because of the absent movements the only way the atoms can interact with each other
is trough long range effects. We introduce the interaction term Vij, which gives the in-
teraction between two atoms i and j. Depending on the kind of interaction, one wants
to investigate, Vij can vary. First, one differentiates between isotropic and anisotropic in-
teraction. The main difference here is that the properties of isotropic interactions are the
same in all directions, whereas in the anisotropic case quantities are direction dependent
[9].
For isotropic hopping we define [9]:

V Iso
ij = C

|ri − rj|α
(2.1)

And for anisotropic hopping [9]:

V Aniso
ij = C(1− 3 cos2(θij))

|ri − rj|α
(2.2)

where θij is the angle between |ri − rj| and the z-axis.
Because working in a two dimensional plane we assume that θij = π

2 and perform our
calculations in case of isotropic hopping (2.1).
For α ≤ d with dimension d, Vij defines long-range hopping, otherwise one speaks about
short-range hopping [9]. In particular we are interested in spin transport with its spin-
spin-couplings based on the dipole-dipole-interaction. Due to its potential, which scales
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with ∼ 1
|r|3 we will investigate the case of α = 3 [3].

In total we work with an isotropic short-range hopping interaction [3]:

Vij = C

|ri − rj|3
(2.3)

Single excitation
We are interested in the process of how an excitation travels through a system by jumping
from site to site with considering only a single excitation. The setup can be illustrated
by taking two different states into account [5, 3]:

|↓〉 =
∣∣∣nS 1

2
,mj = +1/2

〉
|↑〉 =

∣∣∣nP 3
2
,mj = +3/2

〉
(2.4)

The letter n labels the principal quantum number, S and P indicate the angular momen-
tum and mj denotes the atoms’ fine structure. In the following we work with |↑〉 and |↓〉.
The required interactions originate from the dipole-dipole interactions between pairs of
atoms involving different combinations of |↑〉 and |↓〉 [3]. Note that we neglect any kind
of relaxation processes (e.g. due to spontaneous decay). Therefore the total number of
excitations is conserved and equals one throughout the experiment.

Figure (2) shows the initial situation of the
experiment with N atoms in an unexcited
state |↓〉 for t = 0. Now our basic procedure
is to place a single excitation |↑〉 in the
center of the 2D plane, illustrated in figure
(3) and to study the behavior of the wave
function for t > 0. For this, a simulation was
implemented describing the propagation of
such a single spin excitation under dipole-
dipole interactions. In chapter 4, we will
give insights in the simulation by presenting
the calculation of the population, i.e. the
probability of meeting the excitation on the
particular atoms, for arbitrary time t as well
as for t→∞.

Figure 2: Initial configuration with N
unexcited states

Figure 3: Start of the experiment by
placing a single excitation in
the center of the ensemble
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3 Concept of Anderson Localization
When speaking about transport, we think about a movement from a point x to a point
x′ induced by an external force. In a classical transport setting, a particle moves. In
quantum transport one propagates amplitudes, allowing for interference phenomena. An-
derson localization is one of those effects caused by quantum interference.

Anderson localization describes the absence of diffusion of waves in a disordered medium
[10]. It has its origin in the wave character of quantum particle propagation and results
from interference of various components of the wave function scattered by randomly dis-
tributed fluctuations of the potential [11]. This phenomenon was first found by P.W.
Anderson in 1958 and can be illustrated by considering a propagation of a quantum par-
ticle (e.g. electron) in a random potential [10]:
At the beginning t = 0 the electron is located in a certain small area of the sample. For
increasing time, the electron wave function scatters off spatial inhomogeneities (spatial
fluctuations of the potential) resulting in interference of multiple reflected components of
the wave function [11]. As Anderson proved, this interference can restrict the propagation
and its transport [10, 11]. It happens without interaction of particles and is therefore a
one-particle phenomenon.
In the end one obtains (due to the randomness of the potential) a localized wave function,
being zero outside of a certain area and decaying as a function of the distance from the
center of the localization [11]. Consequently the probability to find the particle in its
initial position is non-zero, even for t→∞ [11].
Based on the finite spatial extent similarities to the quantum bound state are recogniz-
able. Note however, that the physical origin of the localization differs: a bounded particle
is trapped in the potential well, whereas localization is caused by the interference of var-
ious components of the wave function scattered by randomly distributed fluctuations of
the potential [11].
Due to the fact that Anderson localization arises from the wave description, this phe-
nomenon can be applied to every kind of wave transport, like electromagnetic waves,
acoustic waves, quantum waves, spin waves, etc [11].

In the following we introduce the original Anderson tight-binding model that represents
the most simple toy model for studying localization effects. Primarily Anderson used it to
present the electron propagation in the two-dimensional system with a random potential
[10]. We use it to give a brief understanding of important impacts on transport behavior.
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Based on the Schrödinger equation i~ ∂
∂t

Ψ = HΨ the model describes the evolution of a
wave function Ψ on a d-dimensional lattice with N lattice sites. The Hamiltonian is given
by:

(Hψ)(j̄) = Ej̄ψ(j̄) +
∑
k̄ 6=j̄

V (| k̄ − j̄ |)ψ(k̄) (3.1)

For simplicity we assume nearest neighbor hopping with constant V (r) = V . Ej̄ ∈
[−W,W ] are randomly distributed on-site energies. W represents the strength of the
disorder and V determines the hopping amplitude. Since V defines only the energy scale,
our model can be characterized by only one parameter: the ratio W/V, which serves as
a measure for the strength of the disorder [11].

We start by assuming a localized quantum particle at time t = 0 in the position r̄0 with
the initial wave function Ψ(r̄0, t = 0) = δ(r̄− r̄0). The propagation of this particle differs
now quite a lot depending on the magnitude of disorder:

Without random disorder W = 0
Without disorder the electron will leave its specific place by diffusing to the neighboring
sites and will occupy all sites of the lattice for t → ∞. As a result the probability of
meeting the electron in its original position equals almost 0 (∼ 1

V olume
) [11].

With random disorder W 6= 0
Considering now disorder, one would intuitively think that the propagation depends on
the strength of the disorder. Whereas sufficiently strong disorder should stop the prop-
agation, very weak disorder is expected to not affect the diffusion [11]. In his original
paper Anderson succeeded in deriving a dependency for a critical disorder strength Wc:

Wc

V
= 2eK ln(eK) (3.2)

Accordingly the critical disorderWc depends only on the lattice connectivity K (the num-
ber of nearest neighbor sites) [10, 11]. Anderson was not wrong, but it became apparent
that the dimension d of the lattice is a more important parameter [12, 13, 11]. It could
be shown that all states are localized in disordered systems with dimension d ≤ dc = 2
[13, 14, 15].

Summarized:
The diffusion is abolished and the particle/excitation remains localized, if:

• d ≤ 2 and W is arbitrary
• d ≥ 3 and W is sufficiently large
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Note, that this is only valid, if the couplings Vij at large distances R decay faster than
R−d, then (for d ≤ 2) all states are localized and diffusive transport does not occur [10,
9, 7]. As a consequence there has to be localization effects observable in terms of our
setting, since we assume a 2D ensemble of atoms with a dipole-dipole interaction ≈ R−3.

Nevertheless we still need a criterion whether a particle is localized or not. In order
to speak of localization the mean displacement has to stay below a certain constant C
uniformly in time [16, 11]: ∑

n≤N

|Ψ(t, n)|2 · |r̄n| < C ∀t > t′ (3.3)

As requirement for eq. (3.3) the wave function has to decay sufficiently fast, meaning an
exponential decrease (or at least polynomial with |Ψ| < rα and α < −d

2) as a function of
distance from its center x̄0 [17, 18, 13, 14, 19]. In case of the exponential decay rate the
wave function scales like:

Ψ(x̄) ∝ exp
(
−|x̄− x̄0|

ξ

)
(3.4)

ξ is called the localization length [18].

3.1 Generate randomness

As should be evident now, localization is caused by the randomness of the potential
[10]. Using the standard tight-binding Anderson Hamiltonian (3.1) with on-site potential
disorder, is one of the easiest and most used numerical approaches to the localization
problem.
Nevertheless we won’t follow this approach. We won’t consider a lattice, with randomness
arising through the on-site disorder. This was already done in different researches [20,
19], where mostly the impact of the magnitude of on-site disorder or of the vacancy
concentration in a lattice were investigated.
We consider the case in which the on-site potential is for every atom the same, i.e.
we can drop it. The needed randomness occurs only from the randomness of the atom
placement. While low densities corresponds to highly random arrangements, high densities
form a more ordered system. A lattice would result in a perfectly ordered system with 0
randomness. Therefore by identifying randomness with the density, one would intuitively
expect localization effects rather for low densities than for high densities. Answering
this question of the relation between appearance of localization and the density of the
ensemble is one of the goals of this thesis.
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3.2 Proving Anderson Localization

The theory states, that there has to be localization in 2D regardless of the randomness
[11]. Numerically this is hard to prove.
By definition, Anderson localization occurs if the mean displacement (3.3) doesn’t increase
above a certain threshold C. Unfortunately this case appears as well, when the expansion
of the excitation reaches the boundaries due to finite size effects. The problem is, once the
excitation reaches the boundaries, there could be no localization, or the localization length
is larger than the system size. For being able to certainly claim whether an excitation
is localized, the expansion has to stop before the boundaries. To distinguish those two
scenarios we calculate the mean displacement for increasing number of atoms and system
size at a fixed density.

(a)

Enlarge−−−−→

(b)

(c)

Enlarge−−−−→

(d)

Figure 4: Illustrating final size effects by showing a fictional probability distribution of an excitation
for t→∞ in a lattice. Wheras the system size in (a) is sufficently large to detect localization,
the extent of the expansion in (c) is too widespread. Increasing the system size isn’t needed
in case of a & b, but for c it is required.

If the mean displacement for t→∞ doesn’t increase with the system size, the excitation
is considered as localized!
Unfortunately there is a limit. At some certain point we won’t be able to increase the
system size further, due to restricted computing capacities. Therefore a localized excita-
tion with a significantly large localization length can’t be detected. The finite size effect
prevails over a numerical proof for every localization length.
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4 How to simulate spin transport
The simulation should provide an efficient time evolution of a single excitation placed in
a gas of Rydberg atoms.
We start with generating a random configuration of N atoms in a two dimensional plane,
while paying attention to the constraint of our Rydberg blockade radius rb. The atoms
are placed within a circle of radius R being at least separated by rb. An important
system parameter is the scaled density ρ, which quantifies the packing density of Rydberg
blockade spheres. It is calculated with ρ = Nπr2

b

πR2 . Note, that one can’t generate samples
with arbitrarily high density. Although the densest packing density of circles in a two
dimensional plain is the hexagonal arrangement with ρ = 0.9069, those high densities are
not possible to achieve by random placements. By numerical testing we found out that
the highest possible density, we can generate, lies around ρ ∼ 0.52.
Additionally every atom receives a number for identification. The order of the numbers
doesn’t matter.

4.1 Hilbert space

The state of an single atom can either be the ground state |↓〉 or the excited state
|↑〉. To describe the whole system for a specific moment in time a N-dimensional vector
|↑〉1⊗|↓〉2⊗ ...⊗|↓〉N = |↑↓↓ ... ↓〉 is needed. This state would describe a system in which
the excitation sits on the site labeled by 1.
By knowing that we only have a single preserved excitation, it is possible to shorten this
notation to |i〉, which means that the site with label i is excited and every other atom is
in the ground state.

All possible states are contained in the Hilbertspace:

H = {|↑↓↓ ... ↓〉 , |↓↑↓ ... ↓〉 , ... |↓↓↓ ... ↑〉}

= {|100 ... 0〉 , |010 ... 0〉 , ... |000 ... 1〉}

= {|1〉 , |2〉 , ... |n〉} (4.1)

4.2 Hamiltonian

In order to provide the spin dynamics, we use a spin Hamiltonian. This kind of Hamilto-
nian has (almost always) a sum of one-spin and two-spin terms comparable to a Hamil-
tonian (4.3) of a particle system, where one has one-body terms (external potential) and
two-body terms (particle-particle interactions).
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For investigating spin dynamics based on dipolar interaction, the dipolar XY spin Hamil-
tonian is suitable [3]:

H =
∑
ij

Vij(S+
i S
−
j + S−i S

+
j ) +

∑
i

EiS
z
i (4.2)

This kind of Hamiltonian describes a spin transfer between different sites i and j, where
S± are the spin raising and lowering operators, Ei are the on-site energies and Vij is the
matrix element of the dipole-dipole interaction.
It is possible to generalize this concept of spin transfer to a universal form of particle
transport by rewriting this Hamiltonian [9].

H =
∑
i

∑
j 6=i

tijc
†
icj +

∑
i

Eic
†
ici (4.3)

The operator c†i removes a particle from site i, Ei is again the on-site energy and tij is
the amplitude for particle tunneling from site i to site j.
To keep the option open to go to higher numbers of excitations, we will stick to the XY
spin Hamiltonian in (4.2), because in case of multiple excitations the mapping to the
particle picture becomes more complicated.

4.2.1 Spin operators

Sk are the spin-1
2 angular momentum operators and arise through the Pauli matrices

Sk = 1
2σk with k = {x, y, z}. Note, that ~ = 1. In matrix notation:

Sx = 1
2

(
0 1
1 0

)
Sy = 1

2

(
0 −i
i 0

)
Sz = 1

2

(
1 0
0 −1

)
(4.4)

S+ and S− are the spin raising and lowering operators defined as S± = Sx ± iSy.

S+ =
(

0 1
0 0

)
S− =

(
0 0
1 0

)
(4.5)

The properties of the spin raising and lowering operators are the following:

S+ |↓〉 =
(

0 1
0 0

)(
0
1

)
= |↑〉 S+ |↑〉 = 0 (4.6)

S− |↑〉 =
(

0 0
1 0

)(
1
0

)
= |↓〉 S− |↓〉 = 0 (4.7)
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The operators S±i act on the atom with label i. The product of S+
i S
−
j , acting on an

arbitrary state of the Hilbert space, describes a spin exchange. S+
i raises the spin on site

i and S−j lowers the spin on site j.

S+
i S
−
j

∣∣↓ ... ↓i ... ↑j ... ↓〉 =
∣∣↓ ... ↑i ... ↓j ... ↓〉 (4.8)

This means the excitation moves from site j to site i.
Due to the single excitation we actually don’t need the other term S−i S

+
j . Nevertheless

we leave it for the completeness.
In our notation a spin exchange can now be expressed by:

(
S+
i S
−
j + S−i S

+
j

)
|i〉 = |j〉 (4.9)

4.2.2 Hopping Hamiltonian

Working with a single excitation makes our life even easier, as we can simplify the XY
spin Hamiltonian (4.2) to a standard hopping Hamiltonian:

H =
N∑
i=1

Ei |i〉 〈i|+
N∑
i 6=j

Vij |i〉 〈j| (4.10)

The hopping from site i to j is determined by the transition amplitude Vij, while Ei are
the on-site potentials:

Hij = 〈i|H |j〉 =

Ei, i = j

Vij, i 6= j
(4.11)

As already said, we investigate spin dynamics based on the dipole-dipole interaction
Vij = C

|ri−rj |3 . Consequently we will work with the following Hamiltonian:

H =
N∑
i=1

Ei |i〉 〈i|+
N∑
i 6=j

C

|ri − rj|3
|i〉 〈j| (4.12)

The coupling strength C determines the timescale of the transport and could be set to 1,
which just rescales the time. Nevertheless we try to simulate the dynamics as realistic as
possible. That’s why we stick to SI-units and use C/2π = 0.434 GHz µm3 with reference
to [3].
Additionally we will work without on-site energies, meaning Ei = 0 ∀i. Randomness of
the on-site energies is probably the most common and easiest approach to numerically
simulate Anderson localization. Usually a lattice is taken and impact of the randomness
on the localization behavior is investigated. A number of studies using this partially
filled lattice geometry exists [20, 19, 9]. In contrast, our ansatz is based on generating
randomness only by the random placement of the atoms.
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4.3 Time evolution

The time evolution is generated by the method of exact diagonalization. Once the Hamil-
tonian is built only a few steps remain.
The Hamiltonian generates the time evolution of quantum states. If |Ψ(t)〉 is the state of
the system at time t, then the time evolution is described by the Schrödinger equation:

H |Ψ(t)〉 = i~
∂

∂t
|Ψ(t)〉 (4.13)

Given an initial state |Ψ(t0)〉 (in our case |i〉), one can solve it to obtain the state at any
subsequent time. If H is time independent, the time evolution can be written as

|Ψ(t)〉 = e−i
Ht
~ |Ψ(t0)〉 (4.14)

At ultra cold temperatures and for the evolution times typically considered, positions
can be assumed as frozen. This leads to a time-independent Hamiltonian. Since H is
just determined by the distances of the different atom pairs, one can write (4.12) as a
time-independent matrix:

H =


E1 V12 V13

V21 E2 V23 . . .

V31 V32 E3
... . . .

 (4.15)

Exact diagonalization gives us the energy eigenvalues {λi} and energy eigenvectors {Ei}.
For the time evolution one starts by breaking the state |i〉 down in components of the
eigenvectors by inserting unity 1:

|i〉 =
∑
k

|Ek〉 〈Ek|i〉 (4.16)

The time evolution of the state |i〉 results from the time evolution of the energy eigen-
states:

|Ψi(t)〉 =
∑
k

e−iλkt |Ek〉 〈Ek|i〉 (4.17)

=
∑
n

|n〉
∑
k

e−iλkt 〈n|Ek〉 〈Ek|i〉︸ ︷︷ ︸
cin(t)

In the second line another 1 =
∑

n |n〉 〈n| was inserted. Equation (4.17) describes the
time evolution of a single excitation initially sitting on atom i.
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4.3.1 Probability

For describing a transport behavior we are interested in knowing the population of all
sites, i.e. the probability Pi→j(t) ∀j. It describes, how likely it is to find the excitation
after an arbitrary time t on atom j, with the initial condition that the excitation started
out on atom i.
In general, the transition probability from one quantum state |ψi〉 to another |ψj〉 is
defined as the absolute square | 〈ψi|ψj〉 |2. In our case, one needs to calculate the absolute
square between the state of interest |j〉, i.e. where we wish to measure, and the time
evolved initial state |Ψi(t)〉. The probability Pi→j(t) is given by:

Pi→j(t) =
∣∣〈j|Ψi(t)〉

∣∣2 =
∣∣〈j| ∑

n

|n〉
∑
k

e−iλkt 〈n|Ek〉 〈Ek|i〉
∣∣2 (4.18)

=
∣∣δjn∑

k

e−iλkt 〈n|Ek〉 〈Ek|i〉
∣∣2

=
∣∣∑
k

e−iλkt 〈j|Ek〉 〈Ek|i〉
∣∣2

=
∣∣cij(t)∣∣2

Infinite time average
Besides the spread of the excitation for finite times, it is quite interesting to know the
probability distribution for t → ∞. This can help, calculating properties of the trans-
ports (e.g. localization length) at infinite time or deciding whether the timeframe of the
simulation is sufficiently large.

Therefor the probability Pi→j(t) from equation (4.18) can be partitioned further:

Pi→j(t) =
∣∣cij(t)∣∣2 =

∣∣∣∣∑
k

e−iλkt 〈j|Ek〉 〈Ek|i〉
∣∣∣∣2 (4.19)

=
(∑

k

e−iλkt 〈j|Ek〉 〈Ek|i〉
)
·
(∑

k′

eiλk′ t 〈i|Ek′〉 〈Ek′|j〉
)

=
∑
k

∣∣〈j|Ek〉∣∣2∣∣〈Ek|i〉∣∣2 +
∑
k 6=k′

e−i(λk−λk′ )t 〈j|Ek〉 〈Ek|i〉 〈i|Ek′〉 〈Ek′|j〉

The asymptotic probability to start at site i and be at site j can be defined as [19]:

Pi→j(t→∞) = lim
T→∞

1
T

∫ T

0
dt Pi→j(t) (4.20)

After inserting (4.19) into (4.20), the sum over k 6= k′ drops out (assuming no degenera-
cies), because it just describes a rotation in the complex plain, which cancels itself in the
average.
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We are left with:

Pi→j(t→∞) =
∑
k

∣∣〈j|Ek〉∣∣2∣∣〈Ek|i〉∣∣2 (4.21)

As we can see, the only factors determining the probability for t → ∞ are the energy
eigenstates of the Hamiltonian. Therefore exact diagonalization of the Hamiltonian is
enough for calculating the probability distribution at infinite time.

4.4 Limitations

Implementing the time evolution was fairly straightforward, the challenge rather was the
simulations efficiency, that was definitely needed. The first attempts took several min-
utes of computation time for just a few atoms (< 50), which was obviously not suitable
simulating an atomic cloud with thousands of atoms.
With a continuous development of our code, we reached a point, where not the time evo-
lution is the crucial factor, but the method of exact diagonalization. As it turned out the
diagonalization of the Hamiltonian, which is for 10000 atoms a (10000 × 10000)-matrix,
is not feasible. Regardless however, we decided to continue employing this technique, as
we additionally wanted to investigate eigenstate properties. Consequently the limitation
of simulating transport in a system of 10000 atoms was accepted.

4.5 Disorder averaging

The quantum transport of only one excitation traveling through a particular arrangement
of atoms is highly affected by the individual positions leading to fluctuations. The results
can be improved by averaging. Two different methods are possible for this process.
Firstly we can generate different configurations of arrangements of the atoms, where the
initial excitation is always placed in the center of the plain. As a result the transport is
a radial expansion.
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Figure 5: Random configuration. We always place
the initial excitation in the middle of a
circle with radius R and density ρ

Secondly it is possible to average
over different time evolutions using
the same configuration, but placing
the initial excitation on a different
atom in the beginning. So the time
evolution is calculated for spreads
starting from different atoms while
diffusing through the same arrange-
ments of atoms. Here attention has
to be paid, that one doesn’t aver-
age over completely different atoms,
which don’t obey the same diffusion
process. The atoms should be rel-
atively close ensuring that one re-
ceives comparable transport behav-
iors.

To avoid wrong averages we use the first method and generate different arrangements of
atoms, where we place the initial excitation on the atom in the middle. Then the uniform
radial propagations from the center of the plane are averaged.
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5 Transport properties
Now that notation and the theoretical ansatz was presented, it is time to introduce phys-
ical quantities, which we will use to characterize the transport. We avail ourselves of:

• Mean square displacement 〈r2(t)〉
• Mean displacement 〈r(t)〉
• Standard deviation σ(t)

• Distribution width L(t)
• Participation ratio Π|Ψ〉
• radial density ρ(r)

In the following those properties are specified. Note that 〈r2(t)〉, 〈r(t)〉, σ(t) and L(t)
should have more or less the same meaning. However, we present all of them to underline
the diffusion process.

5.1 Mean square displacement

The ability of diffusing through an ensemble can be measured by the mean square dis-
placement (MSD) 〈r2(t)〉 or respectively 〈r(t)〉. It is the most common measure of the
spatial extent of random motion and characterizes the mean expansion. Before taking
a closer look at our specific case, we want to give a brief review about transport types
being relevant for the classification of our expansion.

5.1.1 Diffusive processes

It can be shown that the scaling behavior of 〈r2(t)〉 depends on the type of transport.
In general the transport process is characterized by a strictly monotonically increasing
mean square displacement, while the growth is described by a power law in time [21]:

〈r2(t)〉 ∝ tα (5.1)

One differentiates the following types:

• 0 < α < 1: subdiffusion
• α = 1: normal diffusion

• 1 < α < 2: superdiffusion
• α = 2: ballistic transport

Ballistic transport is defined as transport, where the scattering length (mean free path
length) of the particles is large compared to the transport distance [22]. This means that
a particle moves in a straight line from A to point B. Looking on a length scale much
larger than the scattering length, there will be many scattering events, which interrupt
the ballistic movement and slow it down [22]. The particle movement resembles now a
random walk, instead of a straight line. This kind of process is called diffusion.
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5.1.2 Mean square displacement of a quantum particle

Considering the excitation initially sitting on atom i, the mean displacement is the sum of
distances between all atoms and atom i weighted with the probability Pi→j(t) of finding
the excitation on the respective atom j. Therefore the mean displacement of the spread
of an excitation starting on atom i is given by:

〈ri(t)〉 =
N∑
j=1

| 〈j| exp(−iHt) |i〉 |2 · rij =
N∑
j=1

| 〈j|Ψi(t)〉 |2 · rij =
N∑
j=1

Pi→j(t) · rij (5.2)

〈r2
i (t)〉 =

N∑
j=1

Pi→j(t) · r2
ij (5.3)

With the probability distribution for t→∞ calculated in eq. (4.21), we can compute the
MSD in the infinite time limit similarly by

∑N
j=1 Pi→j(t→∞) · r2

ij.

The MSD is bounded above due to the finite size of our system. Its maximal value
〈r2〉max is obtained for a particle diffusing trough an ideal lattice, since this would cause
a perfectly uniform probability distribution for t→∞. In this case, we not only observe
the diffusion, but also the reflection of the excitation from the edges [11]. Because of the
constant radial distribution of the atoms, 〈r2〉max depends only on the system size R and
is given by:

〈r〉max = 1
πR2

∫ R
0
r dxdy = 2

3R (5.4)

〈r2〉max = 1
πR2

∫ R
0
r2 dxdy = 1

2R
2 (5.5)

5.2 Distribution width

We define the distribution width as the radius of the circle containing 90% of the excita-
tion probability. Using 90% has no deeper significance, this value was chosen arbitrarily.
L helps characterizing the physical spread of the excitation over the ensemble of atoms
[20].

5.3 Standard deviation

Another important quantity representing the physical spread is the standard deviation
determining the amount of variation. It depends on the shape of the probability distri-
bution and should be less affected by fluctuations than the distribution width.
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In our case the standard deviation σ can be computed by:

σ2
i (t) =

N∑
j

(
rij − 〈ri(t)〉

)2 · Pi→j(t) =
N∑
j

(
r2
ij − 2rij〈r(t)〉+ 〈ri(t)〉2

)
· Pi→j(t)

=
N∑
j

r2
ij · Pi→j(t)−

N∑
j

2rij〈ri(t)〉 · Pi→j(t) +
N∑
j

〈r(t)〉2 · Pi→j(t)

= 〈r2
i (t)〉 − 2〈ri(t)〉2 + 〈ri(t)〉2

= 〈r2
i (t)〉 − 〈ri(t)〉2 (5.6)

Note, that σ2
i (t) ≈ 〈r2

i (t)〉, if the mean position does not move, which we would assume
for a homogeneous system.

Localization length
The standard deviation is well qualified quantizing localization due to its connection to
the localization length. The localization length ξ is defined by the exponential decay of
the wavefunction:

Ψ(x) ∝ exp
(
−|x− x0|

ξ

)
(5.7)

Starting with a wavefunction Ψ(x) = A exp
(
− |x−x0|

ξ

)
, A is fixed to A = ξ−

1
2 by the

condition for the probability normalization:

P =
∫ ∞
−∞

∣∣Ψ(x)
∣∣2dx != 1 (5.8)

The standard deviation is given by:

∆x =
√
〈Ψ|x2 |Ψ〉 − 〈Ψ|x |Ψ〉2 (5.9)

(
∆x
)2 = 1

ξ

∫ ∞
−∞

x2 e−
2|x−x0|

ξ dx−
(1
ξ

∫ ∞
−∞

x e−
|x−x0|
ξ dx

)2

︸ ︷︷ ︸
=0

= ξ2

2

The second integral equals 0 because of integrating an antisymmetric function over a
symmetric interval.
We obtain a relation between the localization length and the standard deviation:

ξ =
√

2 ·∆x (5.10)

The standard deviation is therefore an ideal quantity to describe Anderson localization.
Note, that this is just the case when dealing with exponentially decaying wavefunctions.
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5.4 Participation ratio

The inverse participation ratio (IPR) represents over how many states a particle/excita-
tion is distributed. It measures the spread of a state |Ψ〉 over a basis {|i〉}Ni=1 or space.
More precisely, if Pj = |τj|2 is the probability of finding the state |Ψ〉 =

∑
i τi |i〉 in |j〉,

then the IPR is defined as:

I|Ψ〉 =
∑
j

|τj|4 (5.11)

However, for descriptive reasons we work with the participation ratio (PR), which is
defined as the inverse of the IPR:

Π|Ψ〉 = I−1
|Ψ〉 = 1∑

j |τj|4
(5.12)

In 1D the PR is directly proportional to the localization length [23].
In a system of size N, a fully delocalized state |Ψ〉 =

∑N
j

1√
N
|j〉, which is evenly divided

over N states with probability Pi = 1
N
∀ |i〉, corresponds to

Π|Ψ〉 = 1∑N
j |

1√
N
|4

= 1
N · 1

N2

= N (5.13)

If a particle/excitation is localized and covers only a single site, then Pj = 1 for some
state |j〉, so Π|Ψ〉 = 1.

As demonstrated, the participation ratio can just occupy values between 1 and N and
can therefore be used as a measure for localization.
In our case the PR is calculated for arbitrary time t to determine the time dependence
of the participating states:

Π|Ψi(t)〉 = 1∑N
j | 〈j|Ψi(t)〉 |4

= 1∑N
j P

2
i→j(t)

(5.14)

Infinite time average
Additionally we are again interested in computing the PR for t → ∞. Therefore we
firstly calculate the time average for the IPR and subsequently use the definition of the
participation ratio, being the inverse of the IPR:

I|Ψi(t→∞)〉 = lim
T→∞

1
T

∫ T

0
I|Ψi(t)〉 dt = lim

T→∞

1
T

∫ T

0

( N∑
j

| 〈j|Ψi(t)〉 |4
)
dt (5.15)

Π|Ψi(t→∞)〉 = I−1
|Ψi(t→∞)〉 = 1

lim
T→∞

1
T

∫ T
0

(∑N
j | 〈j|Ψi(t)〉 |4

)
dt

(5.16)
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Reminding ourselves of previous calculations for | 〈j|Ψi(t)〉 |2 in equation (4.19):

| 〈j|Ψi(t)〉 |2 = Pi→j(t) (5.17)

=
∑
k

∣∣〈j|Ek〉∣∣2∣∣〈Ek|i〉∣∣2 +
∑
k 6=k′

e−i(λk−λk′ )t 〈j|Ek〉 〈Ek|i〉 〈i|Ek′〉 〈Ek′|j〉

= Pi→j(t→∞) +
∑
k 6=k′

e−i(λk−λk′ )t 〈j|Ek〉 〈Ek|i〉 〈i|Ek′〉 〈Ek′|j〉

Now to compute equation (5.15) we need to square equation (5.17) and single out the
real components, since only they are contributing in the time average.
Additional real parts arise from the second term with the sum:

Re
(
| 〈j|Ψi(t)〉 |4

)
=
(
Pi→j(t→∞)

)2 + Re
[(∑

k 6=k′
e−i(λk−λk′ )t 〈j|Ek〉 〈Ek|i〉 〈i|Ek′〉 〈Ek′|j〉

)2]
=
(
Pi→j(t→∞)

)2 + Re
[∑
k 6=k′

e−i(λk−λk′ )t 〈j|Ek〉 〈Ek|i〉 〈i|Ek′〉 〈Ek′|j〉

×
∑
z 6=z′

e−i(λz−λz′ )t 〈j|Ez〉 〈Ez|i〉 〈i|Ez′〉 〈Ez′ |j〉
]
(5.18)

The complex phase in the sum drops out for k = z′ and k′ = z.

Re
(
| 〈j|Ψi(t)〉 |4

)
=
(
Pi→j(t→∞)

)2

+
∑
k 6=k′
〈j|Ek〉 〈Ek|i〉 〈i|Ek′〉 〈Ek′|j〉 〈j|Ek′〉 〈Ek′ |i〉 〈i|Ek〉 〈Ek|j〉

=
(
Pi→j(t→∞)

)2 +
∑
k 6=k′

∣∣〈j|Ek〉∣∣2 ∣∣〈Ek|i〉∣∣2 ∣∣〈i|Ek′〉∣∣2 ∣∣〈Ek′|j〉∣∣2
= ... (5.19)

We make use of separating the sum
∑

k 6=k′ =
∑

k ·
∑

k′ −
∑

k=k′ , so that we can trace
some terms back to our known Pi→j(t→∞):

... =
(
Pi→j(t→∞)

)2 +
∑
k

∣∣〈j|Ek〉∣∣2 ∣∣〈Ek|i〉∣∣2 ·
Pi→j(t→∞)︷ ︸︸ ︷∑

k′

∣∣〈i|Ek′〉∣∣2 ∣∣〈Ek′|j〉∣∣2
−
∑
k=k′

∣∣〈j|Ek〉∣∣2 ∣∣〈Ek|i〉∣∣2 ∣∣〈i|Ek′〉∣∣2 ∣∣〈Ek′|j〉∣∣2
=

(
Pi→j(t→∞)

)2 +
(
Pi→j(t→∞)

)2 −
∑
k

∣∣〈j|Ek〉∣∣4 ∣∣〈Ek|i〉∣∣4
= 2 ·

(
Pi→j(t→∞)

)2 −
∑
k

∣∣〈j|Ek〉∣∣4 ∣∣〈Ek|i〉∣∣4 (5.20)
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Concluding, the participation ratio for t→∞ is given by:

Π|Ψi(t→∞)〉 =
[

lim
T→∞

1
T

∫ T

0

( N∑
j

| 〈j|Ψi(t)〉 |4
)
dt

]−1

(5.21)

=
[ N∑
j=1

(
2 ·
(
Pi→j(t→∞)

)2 −
∑
k

∣∣〈j|Ek〉∣∣4 ∣∣〈Ek|i〉∣∣4)]−1

(5.22)

5.5 Accumulated probability and radial density

To measure how the probability decreases radially, we firstly calculate the probability of
finding the excitation further away from its center x0 than distance r:

n(r, t) =
∑

j:|xj−x0|∈[r,R]

Pi→j(t) (5.23)

Therefore we always obtain n(0, t) = 1, since we sum over the whole 2D plane and
n(R, t) = 0. We will use n(r, t) mainly for illustration purposes, since it features nicely
the difference of localized and non localized states.

Secondly, the radial density is computed by summing up the probabilities in equal annuli
and dividing by the number of atoms within this area.

ρ(r, t) =
∑

j:|xj−x0|∈[r,r+∆]

1
K

Pi→j(t) (5.24)

K is the number of atoms for which |xj − x0| ∈ [r, r + ∆] is true.
We set the thickness of the rings ∆ to 2rb.

Having defined now all relevant physical quantities, as well as knowing their calculation,
we are ready to investigate the spin dynamics.
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6 Microscopic mechanism
In order to understand how spin transport based on a hopping Hamiltonian works, we
start with a small number of atoms, where the dynamics are illustrated nicely. Therefore
we manually designed some scenarios, which are meaningful and can help us understand
the expansion in a much bigger system.
In our considered context, we are working without on-site energies. As a consequence the
Hamiltonian and its dynamics only depend on the distances between the placed atoms.
Intuitively one would expect that atoms situated closer to the initial excitation would be
more susceptible to excitation. In the following we want to show how far this is accurate
and which exceptions may occur.

We illustrate the path, which the excitation travels by presenting the time evolution of
the probability meeting the excitation at the different atoms (figures on the right side).

The simplest case is built with 2 atoms. Here the probability to find the excitation at one
of the atoms is periodically oscillating. This is the same as Rabi-oscillations in a two-level
system.
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Figure 6: Illustrating spin dynamics with 2 atoms. Initially the excitation was placed on atom labeled
with 0. (a) shows the arrangements of the atoms and (b) presents the probability finding the
excitation at one of the atoms.

By expanding the system to larger ensembles, a greater variety of dynamics is noticeable.
One of it is the formation of a dressed state shown in figure 7a and 7b with 8 atoms.
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Figure 7: Time evolution of an excitation transfer in a ensemble with 8 atoms. Initially the excitation
was placed on atom labeled with 0. In (c) the case of (a) is reproduced by placing on-site
energies on the atoms. Note that (c) and (d) should only qualitatively illustrate the reduction
of the complexity. We didn’t calculate the dressed states for (a). Increasing the on-site energies
would suppress the dynamics.

6.1 Dressed states

Let us now aim to explain the behavior illustrated in figures 7a and 7b. We notice how
the atoms with index i > 0 form a cluster, which wards off the excitation coming from
atom 0. This cluster forms a dressed state.
Our Hamiltonian consists of an atomic part (diagonal) and an interaction part (off-
diagonal). A dressed state is defined as an eigenstate of the total Hamiltonian or a sub-
block of the total Hamiltonian, i.e an eigenstate of both the atomic and interaction part
[24]. Once these dressed states are found, and their energies known, the dynamics of the
system is simple: the total state is a superposition of these states [24].
Knowing the dressed states, it is possible to understand the suppressed dynamics of figure
7a and 7b and to reproduce it by using 2 atoms.
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Figure 8: Atom 1 and 2 are close to-
gether, whereas atom 0 is sit-
uated remotely. Atom 1 and
2 form a cluster, which can
cause a detuning, leading to
suppressed dynamics

For simplicity we explain this procedure by start-
ing with 3 atoms, and not 8. The Hamiltonian is
given by:

H =

 0 V01 V02

V10 0 V12

V20 V21 0

 (6.1)

In case of figure 8, atoms 1 and 2 are forming
a cluster due to their small distance. For the
dressed states, we diagonalize the sub-block of
the Hamiltonian which includes those 2 atoms.
We obtain the eigenstates:

|+〉 = 1√
2
[
|1〉+ |2〉

]
(6.2)

|−〉 = 1√
2
[
|1〉 − |2〉

]
(6.3)

Corresponding eigenvalues are +V12 and −V12.
The resulting dressed states |+〉 and |−〉 couple
now to the remaining state |0〉. This coupling can be calculated by:

∆+ = 〈0|H |+〉 = 1√
2
[
V01 + V02

]
(6.4)

∆− = 〈0|H |−〉 = 1√
2
[
V01 − V02

]
(6.5)

In the end one obtains a detuning and a coupling for every dressed state. Rewriting the
Hamiltonian (6.1) in the basis |0〉 , |+〉 , |−〉 yields:

H =

 0 V01 V02

V10 0 V12

V20 V21 0

→
 0 ∆+ ∆−

∆+ +V12 0
∆− 0 −V21

 (6.6)

The dynamics of the upper left (2 × 2)-sub-block of (6.6) would be strongly suppressed
in the case of V01, V02 << V12. This is shown in figures 7c and 7d by using 2 atoms and
placing on one atom a on-site energy. It corresponds to the case of detuning for a two level
system, i.e. the frequency of the laser is slightly off from a quantum system’s resonant
frequency.
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6.2 Short distances

Due to the fact that our dynamics is only distance depended, two atoms located relatively
close to each other, compared to surrounding atoms, will mainly interact among each
other. While ignoring the other atoms, the excitation will oscillate between those near
atoms. Additionally one would expect, that the transport speed scales inversely with the
distance of the positional separation, meaning the exchange is enhanced the closer the
atoms are [5]. This effect can be seen in figure 9a and 9b, where the initial excitation
was placed on atom labeled with 1, being close to atom 2. The probability of finding the
excitation oscillates quickly between those two near atoms, while being almost zero for
every other atom.
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Figure 9: Illustraing the behavior of a system with two or more atoms situated closely. Whereas in (a)
and (b) the excitation is placed on one of the atoms of the pair, in (c) and (d) another atom
is excited.

On the other hand two or more atoms, which are situated closely, won’t be easily excited.
This is illustrated in figure 9c and 9d, which show the same configuration, albeit with the
initial excitation placed on atom 0. Although the pair of atoms (1 and 2) is closer to the
initial excitation than any other atom, the excitation rather jumps to atom 3.



6 Microscopic mechanism 27

In conclusion, atoms with small distances will speed up the short range transport, but
suppress the long range transport. This is because an excitation sitting initially at one of
these atoms will be confined, as can be seen in figure 9a and 9b.

Overall using those small manually designed scenarios, spin transport could be understood
for certain configurations and it was possible to comprehend, why some atoms are excited
and others remain untouched.
However, generally there is no way to know exactly where the full dynamics arises from.
An example is given in figure 10, where we used the configuration of figure 9 and just
changed the position of atom 4 and 5 slightly.
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Figure 10: Illustrating the complexity of spin dynamics. Same configuration was used as in figure 9,
only with sightly differences in the arrangement. We receive dynamics, which differs a lot
from the dynamics shown in figure 9d.

Changing the positions slightly can lead to major changes in the microscopic dynamics.
Even so, the dynamics at a global scale is rather robust to such changes, see following
chapters.

Using this knowledge of small-scale spin dynamics, we are more able to understand trans-
port behavior in a larger extent. This will be investigated in the next chapter.
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7 Numerical results: Transport behavior
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(b) t = 0.4µs
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(c) t = 1.1µs
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(d) t = 4.1µs
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(e) t = 51µs
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Figure 11: Example for an expansion of a single excitation in a system of 2000 atoms at a density of
ρ = 0.5 and a Rydberg blockade radius of rb = 10µm. System size is R ≈ 316µm. The
probability of meeting the excitation was calculated for different times and is shown in
colors.
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Figure 11 shows an example for the expan-
sion of a single spin excitation. As one can
see the excitation starts spreading evenly in
all directions. This process can be illustrated
by the time dependence of the accumulated
probability n(r, t) (figure 12), which repre-
sents the probability of finding the excitation
further away than distance r. For increas-
ing times (different colors) n(r, t) increases
as well, meaning the excitation spreads. For
t → ∞ the probability decreases steadily,
but one has n(r, t → ∞) > 0 even for large
r. This indicates that the excitation is not
localized or that the system size is too small
to see the localization.
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Figure 12: Probability of finding the excita-
tion further away than radius r
is shown for different times. "Ra-
dius" on the x-axis means that
our distances are always with ref-
erence to the center of the plane.

7.1 Mean square displacement

For the classification of the kind of transport process, we computed the MSD for different
times as well as for infinity. Figure 13 shows 〈r2(t)〉 for our standard case rb = 10 µm,
and compares the spread of our excitation with two additional Rydberg blockade radii,
namely rb = 6 and 2 µm.
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Figure 13: Time dependence of the mean square displacement 〈r2(t)〉 simulated with a system of 5000
atoms in random arrangements for different Rydberg blockade radius rb = 10, 6, 2µm at
fixed system size of R = 500µm each averaged over 200 configurations. The colored area
shows the standard deviation of those averages. The markers on the right side represent
〈r2(t)〉 for t→∞. Note that the plot is in log log scale.
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Regardless of the Rydberg blockade radius the excitation starts spreading quickly, then
slows down until it stagnates.
We start examining the curve for rb = 10µm. In an attempt to explain the evolution of
our MSD, we considered first the three standard cases: ballistic, diffusive and subdiffusive.
However, after some considerations we arrived at the conclusion, that we are dealing with
a steady transition between an initial ballistic dynamics, combined with a saturation-like
end. In order to verify this kind of transport behavior, we attempted to fit power laws
to the MSD shown in figure 13. Our results confirmed the prior conclusion, that the
initial spread is driven by ballistic behavior, i.e. we observe a projectile like evolution
〈r2(t)〉 ∝ t2.
For intermediate times there is no well-marked segment for a diffusive or subdiffusive
propagation. The curve seems more like a smooth decline of the gradient.
At the end the MSD almost equals 〈r2〉max, resulting in a homogeneous distribution.

Compared to the other blockade radii, the MSD is "extremal" for rb = 10µm, i.e the
lowest initially and largest at late times. Conversely for rb = 2 the MSD is highest for
small times and lowest for large times. This is exactly what we expect, referring back to
our toy models with <10 atoms. We estimated that, bringing the atoms closer together
would speed up the short range transport, but suppress the long range transport. Due
to the confined excitations caused by closely situated atoms, the spread is not able to
generate a homogeneous distribution.

Saturation
An interesting question which arises is, why a saturation effect seems to develop. Why
does the expansion of the excitation slow down after a ballistic start and even comes to
rest in the large time limit?
The saturation is either caused by the reflection from the boundaries of the system, or by
Anderson localization. Obviously the first case occurs when the spread of the excitation
reaches the limits of the system due to finite size effect. Of more interest and complexity is
the second scenario, where the propagation stagnates after some time due to interferences.
Although the excitation has enough space to propagate, the transport slows down and
saturates.
In the following section we investigate, whether the departure of the MSD from a ballistic
propagation 〈r2(t)〉 ∝ t2 is due to localization or finite size effects. Once this is done, we
want to clarify the impacts by which the localization behavior can be influenced.
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(b) t = 1.6µs
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(c) t = 4.1µs

750 500 250 0 250 500 750

750

500

250

0

250

500

750

10 6

10 5

10 4

10 3

10 2

10 1

100

Pr
ob

ab
ilit

y
(d) t = 9.1µs
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(e) t = 81µs
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Figure 14: Illustrating localization effects. The expansion of a single excitation in a system of 3200
atoms at a density of ρ = 0.1 with a Rydberg blockade radius of rb = 10µm is shown.
System size is R = 900µm.
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Figure 15: Probability of finding the excitation fur-
ther away than radius r is shown for dif-
ferent times.

Figure 14 shows an example expansion
involving localization behavior. As op-
posed to figure 11, a completely differ-
ent state is obtained for t → ∞, due
to changing the density from ρ = 0.5
to ρ = 0.1. The quantitative differ-
ence to the expansion without localiza-
tion can be seen in figure 15. While
n(r, t → ∞) in case of non localization
decreases steadily with the radius (fig.
12), here n(r, t → ∞) decreases faster.
The excitation seems to be confined in a
much smaller area than the system size.
The probability to meet the excitation further away than 400µm remains almost zero,
even for infinite t. As a whole, the excitation seems to be trapped, with a probability
dropping fast from the center of the plane.

In the following we are going to present two totally different transport scenarios, one af-
fected by localization and one not. The focus in the next section is showing the differences
between transport properties for both processes.

8.1 Localization and density

This section aims at clarifying the difference between a localized and delocalized excita-
tion. We want to motivate qualitatively the influence of the density (∼ randomness) on
our localization behavior. We then turn to our quantitative study of the explicit density
dependence.

The excitation transfer was computed at two different densities: ρ = 0.5 and 0.1. As was
already mentioned, we try to distinguish saturation due to localization or finite size effect
by varying the system size. All quantities, which are going to be presented should be
independent of the system size, if the excitation is localized!
For both densities we calculated the expansion for three different system sizes:

For ρ = 0.5 :
• 3200 atoms with R = 400µm
• 5000 atoms with R = 500µm
• 7200 atoms with R = 600µm

For ρ = 0.1 :
• 3200 atoms with R ≈ 894µm
• 5000 atoms with R ≈ 1118µm
• 7200 atoms with R ≈ 1342µm

We averaged over 200 different disorder realizations.
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8.1.1 Meeting the excitation at the edge
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(b) For density ρ = 0.1

Figure 16: Probability of finding the excitation further away than distance r. Calculated for 3 different
system sizes at constant density ρ = 0.5 and 0.1. Again the colored area represents the
standard deviation occuring through the averages.

In figure 16 the accumulated probability n(r, t→∞) is presented once more, allowing a
direct comparison. In 16a it can the seen, that the three different expansions differ a lot,
while the decay in 16b seems to be equal regardless of the system size. Additionally for
ρ = 0.5 one receives a probability 6= 0 to find the particle far outside, while it’s almost
zero for ρ = 0.1.
We conclude that for ρ = 0.5 no localization effect can be seen, caused by finite size
effects. In contrast, for ρ = 0.1 we obtain true localization, since the three probability
curves are equal.

8.1.2 Distribution width
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(b) For density ρ = 0.1

Figure 17: Time dependence of the distribution width (radius of a circle containing 90% of the excitation
probability) for three different system sizes at fixed densities of ρ = 0.5 and ρ = 0.1

The distribution width (figure 17) characterizes the extent of the physical spread. For
ρ = 0.5 the saturation ends at around 0.9R for each system size R, i.e. the expansion
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has reached the boundaries. This differs quite a lot to ρ = 0.1, where the distribution
width seems to be the same for the three cases. This indicates that the excitation is
trapped in a circle with a radius of roughly L. Comparing the finite distribution length L
it strikes, that Lρ=0.1 is a lot less than Lρ=0.5 as well as its boundaries. This means that
the excitation in 17a can travel until reaching the boundaries, whereas the propagation
in 17b stagnates already after 100µm.
Additionally we note a high variance at low density. This is caused by the increased
randomness of the arrangement of the atoms. The potentially bigger differences in the
placements lead to higher fluctuations in our results.

8.1.3 Participation ratio
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Figure 18: Time dependence of the participation ratio for three different system sizes at fixed densities
of ρ = 0.5 and ρ = 0.1

The participation ratio represents the number of states over which the excitation is dis-
tributed, and therefore can indicate the extent of its expansion. In contrast to the high
participation ratio in figure 18a, Πρ=0.1 saturates already at around 7 states. This sug-
gests a highly localized final probability distribution and also explains the low distribution
width in figure 17b. Consequently the excitation travels just a little and is subsequently
confined.
Another feature we can observe is, that the PR suffers a lot from the high standard de-
viation, even for a high density ρ = 0.5. The variation of up to 1000 participating states
demonstrate, how different a transport in a random ensemble can be, although using the
same density.
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8.1.4 MSD and MD
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Figure 19: Time dependence of the mean square displacement and mean displacement computated for
three different system sizes at two fixed densites ρ = 0.5 and ρ = 0.1.

The mentioned facts are supported by the curve of 〈r2(t)〉 and 〈r(t)〉, since a similar
scaling becomes apparent. The expansion is stopped by the boundaries for ρ = 0.5, due
to fact that 〈r2(t → ∞)〉 or 〈r(t → ∞)〉 differ for different system sizes. In contrast, for
ρ = 0.1 the MSD and MD is independent of system size, i.e. we see localization.
What is striking is that at low density (19b and 19d), the saturation isn’t completely
finished for the time scale considered. This is indicated by the values for infinite time,
since they are a bit above our values for the last calculated time at t = 10−3s. A further
expansion after t = 10−3s is also recognizable looking at the distribution width in figure
17b, but not supported by the curve of the PR in 18b. Here it seems that the participating
states don’t increase. This is not necessarily a contradiction, because the excitation can
spread itself further without taking new atoms into account.
Nevertheless we can be sure that even for larger times the boundaries won’t be reached,
because the markers for t → ∞ are far below 〈r2〉max = 1

2R
2 and 〈r〉max = 2

3R. As well
as the evolution of the spread, the values for infinite time don’t differ from each other,
suggesting Anderson localization at low density.
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Referring to the introduction Anderson localization requires 〈r(t)〉 < C uniformly in time.
We could not only show a stagnated MD in figure 19d, but we also proved that we can
exclude boundary effects due to system independence of our three measurement series.
Therefore we can claim to see Anderson localization for a density of ρ = 0.1.

8.1.5 Localization length
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Figure 20: Time dependence of standard deviation of the mean displacement computated for three
different system sizes at two fixed densites ρ = 0.5 and ρ = 0.1.

We considered two possible ways of determining the localization length. On the one hand,
as we deduced the connection between the localization length and standard deviation in
chapter 5 with ξ =

√
2 · σ, we thought it is justified to identify the curve of σ with the

localization length. On the other hand, our second approach was to use the definition of
the exponential decay

∝ exp
(
−|x− x0|

ξ

)
(8.1)

and receive the localization length ξ trough a fit to the radial density .
Both methods require an exponential decay of the wave function.

Unfortunately we were neither able to find such an exponential scaling nor an appropriate
fit, meaning that both methods were not justified after all. Figure 21 shows for the two
cases ρ = 0.5 and ρ = 0.1 the respective radial density.
Since we have already proved localization in case of ρ = 0.1, one would surmise exponen-
tial scaling. However this is not the case, as can be seen in figure 21b.

For ρ = 0.5 we observe a decrease given by ∝ t−1. Note the double logarithmic scale in
21a. In 21b only the y-axis is plotted logarithmically, for verifying an exponential decay,
but even with good will an exponential fit would not be appropriate.
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Figure 21: Illustrating the decay of the radial density computated for three different system sizes at
two fixed densities ρ = 0.5 and ρ = 0.1.

In similar researches [20] they investigated Anderson localization of rotational excitations
in disordered ensembles of polar molecules. As we did, they used the standard deviation
as measure for the extent of the excitation. In 1D an exponential decay of the probability
was found, but not in case of 2D and 3D. Additionally there wasn’t a quantitative de-
pendence between the localization length and the density presented. One could assume
that the missing of the exponential decay is a quite common problem.
However, also other reasons might exist for the missing of an exponential decay. Perhaps
Anderson localization does not enter purely in the way we assumed, but rather a more
complex behavior and dynamics could be present. In this case it would be interesting to
see, how slight modifications to Anderson localization could imprint themselves on the
scaling and other properties. Regardless of the reason, this is an issue which needs further
study and research.
A promising idea seems to be the approach of a stretched exponential decay∝ exp

(
−[ r

ξ
]α
)

[19].

Unfortunately we didn’t succeed in establishing a quantitative connection between the
density and the localization length. Nevertheless we still want to clarify the impact of
the density (∼ randomness). As we were unable to verify our theoretical model providing
the link between our density and the localization length, we proceed in the next section
by empirical means. Through considering a varying density, we observe the change in
expansion.
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8.2 Density dependency

In the following we won’t pay attention to the time dependent expansion anymore, but
will investigate the dependence of the transport properties for t → ∞ on the systems
density. Therefore we computed the same quantities as before, but only for infinite time
at the steady state, and compare them to each other for different densities.

As before we use for one density multiple system sizes to be able to distinguish finite size
effects from localization. In case of localization, meaning low densities, we would expect
quite similar results, since the transport and the final distribution has to be independent
of the system size. But for high densities, where a observation of localization is not neces-
sarily given due to finite size effects, we expect a behavior which scales with system size.
Table 1 shows, which densities and respective sizes we used.

Density ρ 0,005 0,01 0,025 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

R : 700µm

Atoms 98 196 490 980 1960 2940 3920 4900 5880 6860 7840 8820 9800
# Avg 50000 30000 20000 6000 5000 2000 1000 500 300 150 70 50 30

R : 600µm

Atoms 72 144 360 720 1440 2160 2880 3600 4320 5040 5760 6480 7200
# Avg 50000 30000 20000 7000 2000 800 500 200 100 100 100 70 24

R : 500µm

Atoms 50 100 250 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
# Avg 50000 40000 30000 15000 7000 3000 1500 1000 800 600 400 250 120

R : 400µm

Atoms 32 64 160 320 640 960 1280 1600 1920 2240 2560 2880 3200
# Avg 50000 40000 30000 20000 10000 5000 2000 1000 800 600 400 300 200

Table 1: We investigated 13 densities from ρ = 0.005 to 0.5. For each density, four systems with
different sizes and adjusted number of atoms are used to differentiate boundary effects
from localization. The number of disorder averages for each configuration is shown as
well. The Rydberg blockade radius is unchanged rb = 10µm.
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8.2.1 Participation ratio
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Figure 22: Density dependence of the participation ratio in the infinite time limit, computated for four
different system sizes.

Figure 22 shows the participation ratio which increases for rising density, i.e. the final
distribution of the excitation covers more and more atoms. Up to a density of approxi-
mately ρ ∼ 0.2, it seems, that there is no difference of the PR for the four different sizes.
Consequently we can assume localization for ρ ≤ 0.2.

8.2.2 Distribution width

0.0 0.1 0.2 0.3 0.4 0.5
density

0

100

200

300

400

500

600

di
st

rib
ut

io
n 

wi
dt

h 
[

m
] 

= 700
= 600
= 500
= 400

Figure 23: Density dependence of the distribution width in the infinite time limit, computated for four
different system sizes.

As well as the PR, the distribution width doesn’t differ in system size until ρ ∼ 0.2.
What attracts attention is the initial decrease between ρ = 0 and ρ = 0.05. Actually one
would expect a positive monotonous gradient for the distribution width, similar to the
evolution of the PR, since the extent of the excitation should increase until it reaches the
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boundaries. The initial decrease does not only appear for the distribution width, but also
is present in the following plots for 〈r2(t)〉, 〈r(t)〉 and the standard deviation.

rb

2rb

2rb

4rb

Figure 24: The lower con-
figuration can be
rescaled to the
upper one by the
factor 2.

In order to understand this effect, we consider the fol-
lowing argument. From a certain density onwards (ρ ≤∼
0.05) the Rydberg radius has no impact anymore. The
positions are completely random, as the mean distance to
the nearest neighbor is much larger than the blockade
radius. Consequently the ratio of the distances among
the atoms is unchanged for different densities, see fig-
ure 24. As a result, we can rescale our system, provided
ρ ≤ 0.05. Because the Hamiltonians differ from each other
now only by a global factor, the eigenstates remain the
same. As demonstrated in eq. (4.21), the probability dis-
tribution Pi→j(t → ∞) depends only on the eigenstates.
Now due to the unchanged eigenstates for different densi-
ties ρ ≤ 0.05, we obtain again unchanged populations in
the infinite time limit.
In the end, lowering the density increases quantities like
〈ri〉 =

∑N
j=1 Pi→j · rij, because the distances rij enlarge and the population remains the

same.

8.2.3 MSD and MD
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Figure 25: Density dependence of the mean square displacement and the mean displacement in the
infinite time limit, computated for four different system sizes

As well as before, we observe localization for ρ < 0.2, due to fact that the curves of the
MSD and MD are equal for the different system sizes.
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However, since the MSD represents the ability of diffusing through an ensemble, one can
draw conclusions about the suitability of different densities for transport.
As it can be seen in figure 25, the MSD remains low for small densities, i.e. the long
range transport is suppressed. This proves that for a fast and far reaching transport, one
requires maximally dense lattices. Nevertheless, it should not be forgotten that in such
dense systems also localization phenomena arise. Only because we were unable to show
localization effects at densities higher than ρ ∼ 0.2, it does not mean that such effects
do not occur at all. Rather, the localization length becomes comparable, and even larger
than the system size, such that finite size effects prevent their detection.
One could easily observe localization at higher densities by increasing the system size
a fifth or a sixth time. But that’s exactly the curse of proving Anderson localization
numerically. At a certain point your computing capacities are exhausted and your are not
able to increase the number of atoms and the respective system size further. Unfortunately
we reached this limit with our measurement series (red), using a system size ofR = 700µm
and 9800 atoms.

8.2.4 Standard deviation
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Figure 26: Density dependence of the standard deviation in the infinite time limit, computated for four
different system sizes

At this point we hoped to present the standard deviation shown in figure 26 as a final
result, equating it with the localization length, such that a dependency between density
and localization length would be provided. But as already mentioned we cannot identify
the standard deviation with the localization length as initially imagined, due to the non
exponential decrease of our radial density.

Although the approach of exact diagonalization restricts the number of atoms we can
simulate, in the next chapter the method pays off, since it enables to investigate individual
energy eigenstates and their statistical properties.
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9 Energy eigenstates
The eigenstate properties can be totally different in different parts of the spectrum, as
can be seen in figure 27. Here the population of an eigenstate is plotted for the ground
state, as well as the highest energy eigenstate for a system with 5000 atoms and ρ = 0.5.
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Figure 27: Distributions of the population and the correlation functions for the groundstate and state
with the highest eigenvalue. For the correlation functions we averaged over 200 ground states
or the state with the highest energy and used: ∆ ≈ 2rb.

Figure 27c and 27d are supposed to illustrate this difference in extent by showing the
correlation function computed via:

f(r) =
∑

|ri−rj |∈[r,r+∆]

PiPj (9.1)

While the ground state covers only a small area, the eigenstate for higher energy is
completely distributed over the plane, leading to the question of what the impacts are on
the extent of the eigenstates.
In the following we take a closer look at the participation ratio of eigenstates, belonging
to different eigenvalues and densities, as well as computing the spectral density and the
level spacings.
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9.1 Participation ratio
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Figure 28: Participation ratio of the energy eigenstates for the respective energy eigenvalues. The plots
show an increasing density in a descending order. The x-axis is the same for all the plots
allowing comparison. The histogram was not normed to 1, meaning the area under the curve
equals the number of eigenstates.
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Density 0,005 0,01 0,025 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

R : 500µm

Atoms 50 100 250 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
# Avg 50000 40000 30000 15000 7000 3000 1500 1000 800 600 400 250 120

Table 2: For all calculations in this chapter, we used the third measurement series from table
1, shown again in this table.

We calculated the participation ratio for every eigenstate of a particular system. This
was done for multiple disorder realizations belonging to the same density. In the end the
PRs were averaged over binned eigenvalues in different energy windows.
We made use of two different methods to vary the density. In the first one we changed the
number of atoms at fixed system size R according to table 2. Consequently we obtained
for a low number of atoms less eigenstates, than for a system with lots of atoms. To avoid
possible bias due to changing atom number, the same calculation of the PR was done for
a measurement series, where we varied the system size but fixed the number of atoms. In
that way we obtained for every density the same number of eigenstates.
Interestingly, after binning and normalizing, there was no difference in the curves of the
PR using those two methods. This indicates among others, that all the eigenvalues of the
system with many atoms are in the same range like the eigenvalues of the system with
only few atoms. Due to the equality of the methods, we choose to vary the number of
atoms for further studies. Therefore all the following results, including the PR in figure
28, were calculated with the systems shown in table 2.

Considering now again the participation ratio shown in figure 28, it appears to exist a
mobility edge for eigenvalues at zero for intermediate densities. A mobility edge charac-
terizes the transition between localized and extended states. In our case it is indicated
by the abrupt increase of the PR for eigenvalues at 0. However, in case of ρ = 0.005 the
highest obtained PR is 6, i.e. the states for eigenvalues at zero are still localized. There-
fore one cannot speak of a mobility edge at low densities, since all states are localized.
In addition, one expects the ground state to be one of the most localized ones, but for
small densities the PR starts to rise for lower energies (and for higher energies too).
Moreover, we note that especially for ρ = 0.005 the PR looks symmetric around E = 0.

What is striking as well is, that the minimum of the participation ratios is not at one,
like would be expected for a completely localized state. It seems to lie around two. So
every eigenstates covers at least two sites. We argue that this is basically caused by the
fact, that we simulate the dynamics by setting all on-site energies to zero and working
only with interaction parts of the Hamiltonian. In the following we explain further.
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(a) with on-site energies (b) without on-site energies

Figure 29: In (a) energy levels of a system with atomic and interaction part are shown. In (b) energy
levels of a system with only interactions are shown.

In a system where we have various on-site energies like in figure 29a, one can identify a
ground state, which only lives on one site. But in our case (figure 29b) on-site energies
originate just due to interaction between two sites. Consequently a ground state consists
of several coupled sites, while the other levels are shifted away caused by the interaction.
Despite of that, it is still possible to receive a ground state covering only one site. If an
eigenstate is localized on a single site, then its energy is zero, because the Hamiltonian
only has off-diagonal terms. Thus states with energies significantly different from zero, in
particular the ones with low energy, cannot be localized on a single site. In our case, this
may actually happen sometimes for low density, if an atom is really "isolated" from the
rest of the cloud. This would be the scenario generated manually in figure 7a, where we
explained a dressed state.
But in general we think, that the existence of such a arrangement of atoms is much less
likely than the existence of a ground state with two sites, explaining why the PR is at
least two.

Comparing now the curves of the PR for increasing density, a clear tendency is recogniz-
able. On the one hand for ascending densities we receive higher energies, which stretches
the curve. On the other hand the PR increases for high energies. At the final density
ρ = 0.5 the eigenstates belonging to low energies are localized, while the higher energies
seems to be spread out. This explains the illustrated difference for the ground state and
highest state in figure 27.

9.2 Level spacing

Besides the participation ratio, one can investigate eigenstates properties through the
distribution of the level spacings δn = En+1 − En. These are best characterized by the
ratio [15]:

rn = min(δn, δn−1)
max(δn, δn−1) (9.2)



9 Energy eigenstates 46

Localized states present a Possonian distribution of rn with an average 〈r〉P ≈ 0.386,
due to the proliferation of degenerate states located at distant spatial positions [15]. In
contrast, extended states form a Wigner-Dyson distribution, caused by level repulsion
[25]. This is a fact deduced in random matrix theory, considering a Gaussian orthogonal
ensemble (GOE) [15, 25]. We expect for extended states: 〈r〉GOE ≈ 0.51 [15].
We calculate the ratio rn for all levels and evaluate 〈r〉 for binned energy windows. This
can be seen in figure 30 for the lowest and highest density.
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Figure 30: Binned ratio of the level spacings for two different densities

As one can see, the curve for the density ρ = 0.1 as well as for ρ = 0.5 corresponds to
the results received by using the participation ratio in figure 28. In case of a high den-
sity ρ = 0.5, the ratios 〈r〉 are approaching to 〈r〉P for low energies, whereas 〈r〉 equals
〈r〉GOE for energies > 0. This indicates that rather eigenstates belonging to high energies
are delocalized. For ρ = 0.1 the ratios 〈r〉 stay at around 〈r〉P . Accordingly all eigenstates,
independent of the energy, are localized for a small density (high disorder).
In total, the ratio of the level spacings is a suitable method of describing the localization
property of the eigenstates.

Figure 31 shown on the next page, represents the dependence of the spectral density on
the density of the system. For a low density ρ, the spectral density seems to be perfectly
symmetric. Increasing ρ leads to new higher energies, whereas the ground state is almost
the same for every density. For rising ρ especially low energies are occupied, whereas their
number decreases for higher energies.
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Figure 31: Frequency of the eigenvalues for
different densities
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Figure 32: Frequency of the level spacing ratio
for different densities
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Figure 32 represents the frequency for different rn. One would expect a Poisson distribu-
tion for completely uncorrelated levels [15], which seems to be the case for low densities.
By increasing ρ, the level spacing ratios form more and more a curve that looks like a
Wigner-Dyson distribution, indicating the increase of extended states. This corresponds
to the results, obtained by the participation ratio in figure 28.
We can thus infer, that the level spacings offer a suitable alternative to quantify localiza-
tion.

Averaging not only over energy intervals, but over all rn allows us to draw conclusions
regarding the scale of delocalization, not only for a single eigenstate, but for the whole
system. For a system, where almost all eigenstates are localized, one would expect 〈r〉all ≈
〈r〉P ≈ 0.386, whereas 〈r〉all ≈ 〈r〉GOE ≈ 0.51 for a system with all eigenstates delocalized
[15]. Values between those extrema would indicate a system with mixed localized and
delocalized states. We calculated 〈r〉all for different system sizes and densities:
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Figure 33: Mean level spacing ratio. The level spacing ratio was averaged over all energies. This was
done for different system sizes and different densities, which we already used before, see
table 1.

While for low densities almost all eigenstates are localized, the number of delocalized
states rises for increasing density. At a density of ρ = 0.2, i.e. the critical density after
which we fail to observe localization, the ratio of the level spacings starts to rise, indi-
cating a blend between localized and delocalized states. For increasing density the ratio
should rise until 〈r〉GOE ≈ 0.51, where every state is delocalized [15].
We note, that the curves for the different system sizes are ordered from the smallest size
at the top to the highest at the bottom. There appears to exist a dependence on the
number of eigenstates.

Nevertheless, the eigenstates follow the same tendency like the propagation of the single
excitation. Decreasing the density (i.e. increasing the randomness) provides localization.
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10 Conclusions
We succeeded in implementing a simulation for the propagation of a single spin excitation
trough a two dimensional frozen Rydberg gas. Especially the time efficiency allows the
investigation of a relatively large ensemble of atoms including many time steps. Neverthe-
less, due to the method of exact diagonalization we are limited to around 10000 atoms.
In the end this pays off again, since it makes determining eigenstate properties possible.
We started by giving a theoretical derivation of the simulation, followed by an illustration
of spin dynamics in the context of small ensembles. The formation of a dressed state could
be shown as well as the relevance of the positional placement.
After that, we increased the system size and examined different regimes of transport. In
the beginning the excitation started to propagate ballistically with a steady transition,
until it resulted in a saturation. No diffusive part could be detected. Additionally we
examined the impact of the Rydberg blockade radius. For small rb the propagation was
speed up at the beginning and only for bigger rb long range transport was assured.

In chapter 8 the effects of Anderson localization were illustrated by firstly showing a
qualitative difference between a delocalized propagation for ρ = 0.5 and a localized one
for ρ = 0.1. After making clear, that localization can only be detected if the distribution
properties are independent of the system size, we started to investigate the impact of the
the density on the localization behavior. As was mentioned in the introduction, we were
aware that localization has to occur in a 2D system. Therefore the question was not when
localization appears, but rather how far it can be detected and how it scales with the
density. Accordingly we were able to prove localization effects below a density of ρ = 0.2.
For higher densities our computing capabilities were not sufficient.
As well as in the case of a random on-site potential, the localization is determined by the
magnitude of randomness. One would intuitively expect that a low density constitutes
a high randomness and vice versa. In other words not the density, but rather the ran-
domness is the crucial factor. As we were able to prove localization for low densities (i.e.
high randomness), our results match the facts of Anderson localization, and its crucial
dependence on disorder.
Unfortunately we were not able to provide a functional form describing the dependency of
the localization length on the density, as the required exponential decay was not observed.

Finally the eigenstate properties were analyzed. By examining the participation ratio and
making use of the level spacings, the difference in the extent of eigenstates for different
energies as well as for different system densities was shown. In principle eigenstates be-
longing to low energies are localized regardless of the density, whereas the extent of states
belonging to higher energies depends on ρ.
By means of the averaged ratio of the level spacings a clear trend was noticeable regarding
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the degree of localization: Increasing the density leads to a growing number of delocalized
eigenstates.

Altogether this thesis was supposed to provide an insight into spin dynamics based on
dipole-dipole interaction, resulting in quite interesting phenomena like the Anderson lo-
calization. Among others aspects, we hope that the propagation of a single excitation,
as well as the impact of disorder on localization effects, has become clearer through this
work.

11 Outlook
We want to provide some ideas, which we would have carried out, if time had not been
such a limiting factor.
The knowledge that every excitation has to be localized in two dimensions reduces pos-
sible surprises. It would be quite interesting to expand the numerical approach to the
localization problem to three dimensions. In 3D localization effects don’t need to exist.
Therefore the mobility edge, which separates a normal diffusion process from localiza-
tion behavior, could be investigated. Additionally one could change the assumption for
the placements of the atoms. Neglecting a fixed radial density, more similarities to the
experiment can be achieved by assuming a Gaussian distribution of the atoms.

Improvements of our procedure include for example increasing the number of measured
data in the interval, where we proved localization, and where we don’t have rescaling
effects. Therewith we probably could determine more precisely the scaling behavior of
the localization effects depending on the density.
As was already mentioned, the highest density, achievable with random placement, lies
around ρ ≈ 0.5. We could increase the possible density by using a lattice with randomly
placed vacancies. This would allow increasing the density further, without dropping the
issue of randomness.
Another aspect one could study, is taking on-site energies into account. It is possible to
generate this kind of disorder by hand, but it would be quite interesting introducing a
term

∑
Szi S

z
j . By expanding the dipolar XY spin Hamiltonian with this term the on-site

disorder will be generated by the arrangements of the atoms. Consequently the random
placement of atoms leads to random disorder on the diagonal. Thus we would have an-
other factor of randomness.

In the end, the most attractive idea is to develop our simulation by leaving the concept
of a single excitation behind, and going to multiple excitations.
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