
Department of Physics and Astronomy
University of Heidelberg

Bachelor Thesis in Physics
submitted by

Fabian Zhou
born in Frankfurt/Main (Germany)

2019





Bogoliubov theory of dilute Bose Einstein
condensates with a background flow

This Bachelor Thesis has been carried out by Fabian Zhou at the
Kirchhoff-Institute of Physics in Heidelberg

under the supervision of
Prof. Thomas Gasenzer





Abstract
We study a one component Bose Einstein condensate, in which we realise an acoustic
event horizon in a step-like configuration. In this process we make use of the micro-
scopic Bogoliubov theory for dilute Bose Einstein condensates. We investigate density
correlations of scattering processes at the horizon. This results in long-range correlation
signals, which can be identified with an analogue Hawking-effect. Furthermore, we give
a brief insight into analogue gravity and derive the acoustic metric.
Subsequently, we consider a two component Bose Einstein condensate with an addi-
tional tunnel coupling. We assume both components to have an opposite background
flow leading to a strong coupling between the symmetric and the antisymmetric de-
grees of freedom. For this theoretical setup the dispersion relation is derived and its
behaviour analysed.

Zusammenfassung
Wir studieren ein einkomponentiges Bose-Einstein-Kondensat, in dem wir in einer
stufenartigen Konfiguration einen akustischen Ereignishorizont realisieren. Dabei machen
wir Gebrauch von der mikroskopischen Bogoliubov-Theorie für verdünnte Bose-Einstein-
Kondensate. Wir untersuchen Dichtekorrelationen von Streuprozessen am Horizont.
Dies führt zu Langstreckenkorrelationssignalen, welche wir mit einem analogen Hawking-
Effekt identifizieren können. Desweiteren geben wir einen kurzen Einblick in die Grav-
itationsanalogie und leiten die akustische Metrik her.
Darauffolgend betrachten wir ein zweikomponentiges Bose-Einstein-Kondensat mit zusät-
zlicher Tunnelkopplung. Wir setzen voraus, dass beide Komponenten einen entgegenge-
setzten Hintergrundfluss haben. Dies führt dazu, dass die symmetrischen und antisym-
metrischen Freiheitsgrade stärker gekoppelt sind. Für diese theoretische Konfiguration
leiten wir die Dispersionsrelation her und analysieren ihr Verhalten.
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1 Introduction

1.1 Motivation

The theory of general relativity by A. Einstein (1915) is currently the most fundamental
theory in terms of gravity. It states that gravity is a basic property linked to curvature
of space-time, caused by mass and energy. An essential part of general relativity are
the so called Einstein’s field equations, which are ten equations of motion describing
the interaction of mass with the underlying space time. Amongst other solutions, the
"black hole" emerges as one of the strangest and most intriguing predictions. These
objects consists of a tremendous amount of compressed matter resulting in a gravita-
tional field strong enough, that nothing can escape once the event horizon is crossed.
Consequently it was thought for a long time that it is not possible to directly observe
such a black hole, since not even light is able to escape it.
The turning point was brought years later by Stephen Hawking et al. By comparison
of the thermodynamic laws with the properties of a black hole, he concluded that black
holes must have a finite temperature (Hawking-temperature). Subsequently they have
to emit a continuous flux of thermal radiation. This was confirmed by Hawking in 1974
[1] , where he investigated quantum mechanical effects in curved space time. As was
shown, the Hawking-temperature is inversely proportional to the mass resulting in a
very low temperature, much smaller than the cosmic microwave background of approx-
imately 2.7K. For this reason, it has not been possible to detect this thermal radiation
yet.
Later on in 1981, William G. Unruh investigated models of analogue gravity, which
consists of analogies (often based on condensed matter physics) to probe aspects of the
physics of curved spacetime [2]. He recognised the similarities of sound waves propa-
gating through non-homogeneous media and light propagating in curved space time. In
addition, a transition from a subsonic to a supersonic flow creates an acoustic horizon
which influences the sound waves in the same way a black hole event horizon affects
photons [3]. In this context the analogue black hole is called "dumb hole".
Much earlier in 1972, he used a vivid example of fish living near a waterfall to clarify
the circumstances around such a horizon [4]. For the fish the waterfall at the edge of
their habitat was a point of no return, since the supersonic flow velocity of the the
water becomes too large. Furthermore the screams of those who travelled too close to
the horizon were bass shifted (similar to the Doppler-shift), which means that the wave
length of the sound waves become larger for an observing fish above the waterfall, and
no fish could be heard from beyond the horizon.
Unruh even realised that the equations of motion of sound waves and those around the
event horizon are identical [3]. Also the quantisation of these sound waves would result
in thermal radiation, just as Hawking had predicted in the case of black hole horizons.
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1.2 Experimental Situation

Due to these theoretical results, the experiments investigating Hawking-like effects
accumulated in the last decade. There was for instance a classical analogue setup in-
volving moving water in a tank [5], where a dumb hole configuration was realised and
the Hawking effect observed. In other cases light pulses moving in optical fibers [6] or
lasers travelling in a non-linear luminous liquid were used to realise a sonic horizon [7].
The problem considered in this thesis is an analogue transsonic system in a Bose
Einstein condensate, whose theory has been worked out well by now. From the exper-
imental point of view, the manipulation of ultracold atomic gases and the control of
their physical properties became more familiar over the last decades. Currently, one
of the most significant publications is by Jeff Steinhauer from the Israel Institute of
Technology in 2015, where he stated that the analogue quantum Hawking radiation
and its entanglement were observed [8].
Steinhauer used a BEC of 87Rb confined by a radial laser, such that the behaviour is
quasi one dimensional. Another laser is used to create a very sharp potential which
constitutes the acoustic horizon. Hence the resulting velocity gradient is chosen to be
very steep in order to maximise the Hawking temperature and facilitate the observa-
tion of Hawking radiation. In order to achieve a background flow velocity the potential
step is swept along the condensate. To this end, all considerations are made in the rest
frame of the horizon.
However, Steinhauer’s paper got strong criticism, especially by Ulf Leonhardt, who
directly picked up on Steinhauer’s work in his publication "Questioning the recent ob-
servation of quantum Hawking radiation" [9]. Apparently, one of the main flaws was
the inconsistency between the theory and the measurements on the one hand, and
the incompleteness of data on the other hand. For instance, Steinhauer claimed that
the population of Hawking-partners inside the black hole was measured, yet the corre-
sponding data was not published. Moreover, no measurement of the velocity gradient
was reported, which seems to be significant if one considers a system including an ana-
logue of an event horizon.
Another point of criticism by Leonhardt was the quality of Steinhauer’s fit functions. In
the plot of the measured Hawking population the distribution is stated to be planckian,
whereas a linear fit would have a similar fit accuracy. Accordingly this fit is no longer
very convincing, as well as the confidence of 5.7σ for the observation of entanglement.
All in all the analysis of Steinhauer’s paper "raises severe doubts on the observation of
Hawking radiation" [9]. Steinhauer defended himself in another publication and con-
tradicts each point of Leonhardt, whereby it becomes difficult to assess Steinhauer’s
work.
Nevertheless, in 2018 he again published a paper on exactly the same topic. The ex-
perimental setup was improved and the errors minimised. While Leonhardt remains
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sceptical, there are supporters like the theoretical physicist Renaud Parentani, who
deals with the theoretical side of analogue Hawking radiation. According to him, "Jeff
[Steinhauer] is really, at the moment, the world-leading expert of using cold atoms to
probe black hole physics".

In section 2 we consider a one component Bose Einstein condensate with a step-like
configuration in order to reach a sonic horizon. Applying the Bogoliubov approach,
we derive the dispersion relation, which is the basic object for expressing our fields in
an appropriate way. To this end, we take a closer look at scattering at the horizon,
where we consider free particle excitations initiating the scattering process. The actual
Hawking radiation originates from virtual pair production. Naively said, one particle of
the pair with positive energy escapes the black hole, while the negative energy partner
falls into the black hole. In our analogue model these partners are represented by the
outgoing modes of the scattering process. For the purpose of clarifying the gravitational
analogy, the acoustic metric is deduced in the hydrodynamic approximation.
In the following section long-range correlations are computed, which can be identified
with an analogue Hawking effect.
These derivations were also shown for a Bose Einstein condensate with two components
[10]. The results are very similar compared to the case of one component.
However, in the last section we consider the model of two components with modified
conditions. In this case the two components have an opposite background flow velocity.
Further there is an additional tunnelling term in the Hamiltonian of this configura-
tion, depending on the tunnel coupling constant J . Therefore a circulating current of
the condensate arises. This theoretical setup was motivated by the idea that it could
be easier to handle in an experiment. Steinhauers experiment for example is somehow
restricted, since the condensate is spatially limited and therefore the potential step can-
not be swept along forever. To this end, Steinhauer had to redo his experiments often.
It is clear that with each run the initial conditions are always slightly altered, which
reduces the accuracy. Whether one can counteract this fact with enough repetitions,
is questionable. In contrast, the centre of the circulating flow would be stationary and
the dynamics could be observed for a much longer time.
However, it turns out that the system becomes much more complicated, more precisely,
the degrees of freedom are more strongly coupled. Under certain approximations it is
possible to derive a dispersion relation, which unfortunately does not resemble one
which reproduces the Hawking-effect. Nevertheless there is a band like structure which
is interesting from a condensed matter point of view.
Throughout the whole thesis we work in natural units, i.e. h̄ = 1.
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2 Theoretical background

2.1 Bogoliubov theory of a one component Bose Einstein
condensate with a background flow

We consider a system of a one component Bose Einstein condensate in one spatial
dimension described by the following Hamiltonian:

H =
∫
dx
{
ψ†
[
− 1

2m∂2
x + (V (x)− µ)

]
ψ + g

2ψ
†ψ†ψψ

}
, (2.1)

with an external potential V (x), the chemical potential µ and the coupling constant g.
The bosonic annihilation and creation operator ψ and ψ† fulfil the usual commutation
relations for fixed time

[
ψ(x, t), ψ†(x′, t)

]
= δ(x− x′), (2.2)

whilst all other commutation relations vanish. Using the Heisenberg equation of motion

i∂tψ = [ψ,H] , (2.3)

we obtain the equations of motion for the condensate, which is the Gross-Pitaevskii
equation (GPE)

i∂tψ =
[
− 1

2m∂2
x + (V (x)− µ) + g|ψ|2

]
ψ, (2.4)

and an analogous equation for ψ†.
Now we consider the so called Madelung transformation for our field operators, which
expresses them in terms of their real-valued density n(x) and phase θ(x)

ψ(x) =
√
n(x)eiθ(x), (2.5)

where n and θ also obey the commutation relation

[n(x, t), θ(x′, t)] = iδ(x− x′). (2.6)

Inserting the transformation (2.5) in the GPE (2.4) leads to coupled equations of motion
for n and θ
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∂tn = − 1
m
∂x[n∂xθ], (2.7a)

∂tθ = 1
2m

∂2
x

√
n√
n
− 1

2m(∂xθ)2 − [V (x)− µ]− gn. (2.7b)

Equation (2.7a) is the continuity equation, equation (2.7b) is equivalent to the quan-
tum Euler equation for fluids, featuring the quantum pressure term (first term on the
r.h.s.). Since we are in the quasi-condensate regime, the Bogoliubov approach is appro-
priate. Hence we use the mean field approach, where we consider our fields as a smooth
background with small fluctuations on them,

n(x, t) = n0(x) + δn(x, t), (2.8a)

θ(x, t) = θ0(x) + δθ(x, t). (2.8b)

In the following we will leave out the position- and time-dependence of these fields.
The background flow velocity of our condensate is defined as

v(x) := ∂xθ0(x)
m

. (2.9)

Linearising the equations (2.7) we find in to lowest order

[
− 1

2m∂2
x + 1

2mv
2 + V (x)− µ+ gn0

]√
n0 = 0, (2.10)

which is again the GPE with an additional kinetic energy term 1
2mv

2 due to the back-
ground flow velocity. Moreover we find

∂x[n0v] = 0, (2.11)

which is the continuity equation for the time-independent case.
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To first order we find a set of two coupled equations of motion

∂tδn = −∂x
[
δnv + n0

m
∂xδθ

]
, (2.12a)

∂tδθ = −v∂xδθ + 1
4mn0

∂x

[
n0∂x

(
δn

n0

)]
− gδn. (2.12b)

As seen in [11], we now introduce new variables δñ = δn√
n0

and δθ̃ = δθ
√
n0, to simplify

the notation. δñ and δθ̃ now have the same dimension. Now the equations of motion
(2.12a) and (2.12b) take the compact form

[∂t + v∂x] δñ = 1
m
∂2
xδθ̃, (2.13a)

[∂t + v∂x] δθ̃ =
[ 1
4m∂2

x − gn0

]
δñ, (2.13b)

If we now consider a homogeneous region of the condensate (which means n0, v = const.
and V (x) = 0), we can expand the solution of equations (2.11) in terms of plane waves

δñ = Aei(kx−ωt), δθ̃ = Bei(kx−ωt), (2.14)

where A and B are constant amplitudes. Substituting these into equations (2.12a) and
(2.12b) leads to a matrix equation

−i(ω − vk) 1
m
k2

1
4mk

2 + gn0 −i(ω − vk)

×
 A

B

 = 0. (2.15)

In order for this matrix equation to have nontrivial solutions for the amplitudes the
determinant of the matrix has to vanish. This leads to the dispersion relation for our
system

(ω − vk)2 = c2k2
(1

4ξ
2k2 + 1

)
, (2.16)

with the speed of sound c2 = gn0
m

and the healing length ξ = 1
mc

.
The r.h.s. of this dispersion relation is the standard Bogoliubov dispersion, which is
linear in the low k limit and quadratic for large k. On the l.h.s. there is an energy shift
due to the background flow with velocity v which can be seen as a Doppler-shift.
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Following the Bogoliubov approach explained in [12], we know there is the quasi particle
basis in which the second order Hamiltonian (second order considering the fluctuations)
becomes diagonal

H(2) =
∑
k

ωkb̂kb̂
†
k, (2.17)

with the annihilation and creation operator b̂k and b̂†k for bosonic quasi-particle exci-
tations. They fulfil the bosonic commutation relations

[
b̂k, b̂

†
k′

]
= δkk′ , (2.18)

whilst again the others vanish. Therefor we expand our fields δñ and δθ̃ in terms of the
quasi-particle operators, this is called the Bogoliubov expansion [11]. Thus we get

δñ(x, t) =
∑
k

[
f+
k (x)e−iωktb̂k +

(
f+
k (x)

)∗
eiωktb̂†k

]
, (2.19a)

δθ̃(x, t) = −i
∑
k

[
f−k (x)e−iωktb̂k −

(
f−k (x)

)∗
eiωktb̂†k

]
. (2.19b)

The mode functions f±k are related to the normal Bogoliubov mode functions uk and
vk via f±k = uk ± vk. The normal mode functions uk and vk are normalised by

∫
dx
[
|uk(x)|2−|vk(x)|2

]
= ±1, (2.20)

Therefore the mode functions f±k are normalised to

1
2

∫
dx
[(
f+
k (x)

)∗ (
f−k′ (x)

)
+
(
f−k (x)

)∗ (
f+
k′ (x)

)]
= ±δk,k′ (2.21)

In this normalisation the negative sign of the Kronecker-delta arises from the negative
norm branch of the dispersion relation, which will be specified later. If we now insert
the Bogoliubov expansions (2.19) in the equations of motion (2.13) we get the equations
for the eigenmodes f±k and their corresponding eigenvalues Ω̃k

L

 f+
k

f−k

 = Ω̃k

 f+
k

f−k

 , (2.22)

with Ω̃k = ωk + iv∂x and
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L =
 0 1

m
∂2
x

1
4m∂

2
x − gn0 0

 . (2.23)

It should be mentioned that the operator L has a more general expression [13]. How-
ever, for our case of a one component condensate, where we made use of transformation
(2.5), it reduces to (2.23).
The solutions for equation (2.22), under the condition that the condensate is homoge-
neous, are

f+
k (x) = eikxF+

k = eikx
k2

m√∣∣∣Re ( k2

2mΩ∗k
)∣∣∣ , (2.24a)

f−k (x) = eikxF−k = eikx
Ωk√∣∣∣Re ( k2

2mΩ∗k
)∣∣∣ , (2.24b)

with Ωk = ωk − vk, [11].
Since it is possible that k is complex, the normalisation factor

∣∣∣Re ( k2

2mΩ∗k
)∣∣∣− 1

2 ensures
that the normalisation condition (2.21) is still fulfilled. This is easy to check by insert-
ing for f±k (x) in the normalisation condition (2.21).

If we now look at the normalisation (2.21), we see that there are modes belonging
to the positive and the negative norm branch. This corresponds to a positive and a
negative co-moving frequency, respectively. Because of the fourth order polynomial of
the dispersion relation, there seems to be a symmetry, such that for every wave vector
k and the associated frequency ω(k) there is a −k with corresponding −ω(k). As a
result, we can replace the sum over the wave vector k in the expansions (2.19) with
an integral over the frequency ω, restricted to ω > 0. Consequently, one has to take
the Jacobian | dk

dw
| into account, which is the inverse of the group velocity vg = dω

dk
. It is

important that beside the integral over ω, one also has to sum over all possible k-roots
for each frequency ω. Otherwise not all modes summed over in equation (2.19) would
be taken into account. Therefore our new mode functions are

f+
l (x, ω) = eiklxF+

l (ω) = eiklx

k2
l

m√
|vg(kl)|

∣∣∣Re ( k2

2mΩ∗l
)∣∣∣ , (2.25a)

f−l (x, ω) = eiklxF−l (ω) = eiklx
Ωl√

|vg(kl)|
∣∣∣Re ( k2

2mΩ∗l
)∣∣∣ . (2.25b)
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In the above relations the index l labels one of the four k-roots for fixed frequency ω.
Additionally, we also rescale our quasi-particle operators as follows

b̂k = b̂kl
(ω)√
|vg(kl)|

. (2.26)

The normalisation now becomes

1
2

∫
dx
[
(f+
l (x, ω))∗(f−l′ (x, ω′) + (f−l (x, ω))∗(f+

l′ (x, ω′))
]

= ±δl,l′δ(ω − ω′), (2.27)

and the Bogoliubov expansion reads

δñ(x, t) =
∫ ∞

0
dω

∑
l

[
f+
l (x, ω)e−iωtb̂l(ω) +

(
f+
l (x, ω)

)∗
eiωtb̂†l (ω)

]
, (2.28a)

δθ̃(x, t) = −i
∫ ∞

0
dω

∑
l

[
f−l (x, ω)e−iωtb̂l(ω)−

(
f−l (x, ω)

)∗
eiωtb̂†l (ω)

]
. (2.28b)

Now we expressed our fields in a way, which is suitable for further investigations.
However, before we take a closer look at the geometry of our system and the dispersion
relation, we clarify how the propagation of fields in the condensate is similar to field
propagation in curved space time.

2.2 The acoustic metric

After introducing the Bogoliubov theory for the one component condensate in a rather
general case, we now take a look at analogue gravity. It will be shown how the propa-
gation of (long wavelength) sound waves in the Bose gas can be rewritten in terms of a
massless scalar field propagation in curved space-time with an acoustic metric. In our
case this scalar field is the velocity potential θ, or more precisely the phase perturbation
δθ. As already said in the introduction, this similarity can be seen as a motivation, why
the possibility of acoustic black holes and Hawking-like excitations were investigated
in the first place.
In this section we will derive the acoustic metric and consequently the line element
for the system. Since the metric is not defined in one spatial dimension we will work
in 3 + 1 dimensions. The equations of motion (2.12a) and (2.12b) stay the same, we
only replace ∂x −→ ∇x and v −→ ~v, though we drop the vector arrow from now on as
simplification.
Because the length scales we consider are much larger than the healing length ξ, we
approximate our system in the hydrodynamic limit, which means that the quantum
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pressure can be neglected [14]. That is possible because we assume that the condensate
does not vary rapidly in space [4]. The quantum pressure is the first term on the r.h.s.
in equation (2.7) which becomes the second term on the r.h.s. in equation (2.12b).
Thus we can isolate the density fluctuation δn

δn = −1
g

(∂t + v∇x)δθ = − n0

mc2 (∂t + v∇x)δθ, (2.29)

and insert it in equation (2.12a). This results in a wave equation for the phase fluctu-
ation δθ

− (∂t +∇xv) n0

mc2 (∂t + v∇x)δθ +∇x

(
n0

m
∇xδθ

)
= 0. (2.30)

Following [14], it can be brought in the compact form

∂µ(fµν∂νδθ) = 0, (2.31)

with the 4× 4-matrix

fµν = n0

c2

−1 −vj

−vi c2δij − vivj

 , (2.32)

with the usual Lorentz-indices µ and ν running from 0 to 3. Latin indices go from 1 to
3. We know the d’Alembert operator in curved space-time for a massless scalar field in
a pseudo-Riemannian geometry, which is defined as

� := 1√
−g

∂µ(
√
−ggµν∂ν), (2.33)

where gµν is the inverse of the metric gµν and g = det(gµν).
By identifying

fµν =
√
−ggµν , (2.34)

the equation (2.31) can be written in the form of a curved space wave equation

�δθ = 0, (2.35)



2 Theoretical background 11

that is a Klein-Gordon-equation for a massless scalar field propagating in a space-time
described by the metric gµν .
From equation (2.34) we can compute

det(fµν) =
(√
−g
)4
g−1 = g

!= −n
4
0
c2 , (2.36)

where the last step is obtained by simply calculating the determinant of fµν from
(2.32). Now we can write the explicit expression for the inverse metric gµν

gµν = 1
n0c

−1 −vj

−vi c2δij − vivj

 , (2.37)

and from that we can derive the metric itself by inverting gµν

gµν = n0

c

−(c2 − v2) −vj

−vj δij

 . (2.38)

Therefore the acoustic line element is

ds2 = n0

c

[
c2dt2 + (dxi − vidt)δij(dxj − vjdt)

]
. (2.39)

In conclusion we manipulated our equations of motion (2.12a) and (2.12b) such that
we obtained a Klein-Gordon equation for a massless scalar field propagating in space-
time described by the metric gµν . This sets the groundwork for investigating analogue
gravity. One should notice, that this analogy is only valid in the hydrodynamic approx-
imation, which holds for small k, or long wave sound modes, respectively.

2.3 Quantum fluctuations around an acoustic black hole horizon

2.3.1 Step-like background configuration

Now we establish the geometry of our one dimensional system. In order to obtain an
event horizon similar to one in the black hole, the fluid should have a transition from
a subsonic (v < c) to a supersonic (v > c) flow. We want the horizon to be at x = 0.
Since the background flow points in the positive x-direction, there is an upstream region
(u) for x < 0 and a downstream region (d) for x > 0. In order to achieve a step-like
configuration we set the coupling constant to be given by

g(x) = guΘ(−x) + gdΘ(x), (2.40)
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where Θ is the Heavyside step function. Hence we have two different speeds of sound
for the upstream and the downstream region

cu,d =
√
gu,dn0

m
. (2.41)

Recall that the background density n0 and the background velocity v is equal for
both, the upstream and the downstream region, so the continuity equation is fulfilled
throughout the whole system. If we now choose gu and gd, such that

cu > v > cd, (2.42)

we obtain subsonic flow in the upstream region and a supersonic flow in the downstream
region. Therefore an acoustic event horizon arises at x = 0.

2.3.2 Dispersion relation and the different k-roots

Now that we set a transition from a subsonic to a supersonic flow, we can take a closer
look at the dispersion relation for both, the upstream and the downstream region.
The dispersion relation (2.16) we derived for our system is a fourth order polynomial
in k, consequently there are four (complex) solutions for k at a fixed frequency ω > 0.
In addition there is a positive norm branch (solid line) and a negative norm branch
(dotted line), corresponding to the two possible signs if one takes the root of equation
(2.16). The negative norm branch can be seen as holes or antiparticles, respectively.

In case of a subsonic flow there are two real roots, which we denote by ku|in and ku|out

(figure 2.1a). “In“ means that the wave vector points towards the horizon and “out“
that it points away from the horizon. They correspond to propagating plane waves and
have a positive norm. The other two are complex conjugate to each other and corre-
spond to exponentially growing or decreasing evanescent waves. They have negative
norm. Here we discard the one with Im(kl) > 0, since it diverges for x −→ −∞. The
one we retain is denoted by ku|eva.

If the flow becomes supersonic, meaning the background flow velocity becomes bigger
than the local speed of sound (v > cd), the dispersion is skewed (figure 2.1). Due to the
background flow velocity v the negative norm branch is skewed in a way that a part of
it takes positive values for the frequency ω and vice versa. Now there exists a certain
frequency Ω∗ > 0 where for any 0 < ω < Ω∗ all four roots are real. The two solutions
corresponding to the positive norm branch are denoted by kd1|in and kd1|out, whereas
the ones in the negative norm branch are denoted by kd2|in and kd2|out. Here in and
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out means the same, but in this case the in-modes have negative and the out-modes
have positive group velocity. Above the critical frequency, ω > Ω∗, there are again two
real and two complex roots, more precisely the kd2|in,d2|out modes do not exist. Instead,
there is again the kd|eva mode after we discard the diverging one.
From now on we use the truncated notation, where we denote the modes only by their
index, for instance u|in means the mode with wave vector ku|in.
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(a) upstream region
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−Ω∗

supersonic flow
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Figure 2.1: The shifted Bogoliubov dispersion relation (2.16) for a subsonic (a) and
a supersonic (b) flow. The positive norm branch is represented by a solid
line, whereas the dotted line stands for the negative norm branch. The real
solutions for fixed frequency ω are marked by red dots. In (b) the critical
frequency Ω∗ is marked by an orange dot, above that there are again two
real solutions, [15]
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2.3.3 Matching conditions at the horizon

We chose our condensate to be homogeneous on both sides of the horizon. The eigen-
modes are presented in section 2. However, these eigenmodes are restricted to one side
of the horizon so they cannot be the eigenmodes for the whole system. The true eigen-
modes of the whole system are linear combinations of the modes (2.25) with appropriate
matching at the horizon. Intuitively one expect our fields and their derivatives to be
continuous in x = 0. More rigorously, we obtain the matching conditions by integrat-
ing the equations (2.13) over an infinitesimal interval around the horizon. Provided the
background flow velocity v is constant, this results in the matching conditions

[δñ] = 0, (2.43a)

[∂xδñ] = 0, (2.43b)[
δθ̃
]

= 0, (2.43c)[
∂xδθ̃

]
= 0, (2.43d)

where the square brackets means [•] := [•]x−→0+ − [•]x−→0− . A detailed derivation of
these matching conditions can be seen in [16].

Now, once we have the matching conditions for the field operators, we want to express
the conditions in terms of the eigenmodes of the whole system. Therefore we define
them as

Πr(x, ω) :=
 f+

r (x, ω)
f−r (x, ω)

 , (2.44)

where the index r indicates which side of the horizon is looked at, so r = u for x < 0
(upstream) or r = d for x > 0 (downstream). As was mentioned before the vectors
(2.25), which we write as

πl(x, ω) :=
 f+

l (x, ω)
f−l (x, ω)

 = eiklx

 F+
l (ω)
F−l (ω)

 , (2.45)

where here l specifies one of the k-roots for fixed frequency ω,
i.e. l ∈ {u|in, u|out, u|eva, d1|in, d1|out, d2|in, d2|out, d2|eva}, depending on the value of
ω and which side of the horizon is considered. For instance, Πu describes an excitation
in the upstream region and is a linear combination of πu|in, πu|out, πu|eva. By the use
of the new definitions (2.44) and (2.45) we are now able to formulate the matching
conditions in terms of mode functions (2.44) (for fixed frequency ω)
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Πu(0−) = Πd(0+), (2.46a)

∂xΠu(0−) = ∂xΠd(0+). (2.46b)

Here 0± denotes the limit x −→ 0 taken from above and from below respectively.

2.3.4 The scattering solution

Looking at the possible combinations of (2.44), the ones we are interested in are the
scattering modes. These are modes originating from infinity on a well defined in-going
mode (either u|in, d1|in or d2|in, cf. with dispersion relations in figure (2.1)), imping-
ing on the horizon, and leaving again towards (minus) infinity as a superposition of
transmitted and reflected modes. In this connection the u|out-mode leaving the horizon
towards minus infinity corresponds to the actual Hawking emission. Note that at x = 0
there has to be a potential step due to the step-like configuration in the coupling g
(2.40), which makes scattering possible [17].
We label the scattering modes with capital letters according to their incoming chan-
nels, which also distinguishes them from the more general modes (2.44). In addition
to the capital indices there is still the index r ∈ {u, d}, since the modes have different
analytic expressions for each side of the horizon. Therefore the scattering modes are
ΠU
r , ΠD1

r and ΠD2
r . We will display the explicit expressions in the following [17]. One

should note, that all the modes are x-dependent.

U mode, initiated by u|in

ΠU
u = πu|in + Su,uπu|out + Seva

u,uπu|eva, (2.47a)

ΠU
d = Sd1,uπd1|out + Θ(Ω∗ − ω)Sd2,uπd2|out + Θ(ω − Ω∗)Seva

d2,uπd2|eva. (2.47b)

Figure 2.2: U scattering mode as a superposition of the eigenmodes, initiated by u|in
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D1 mode, initiated by d1|in

ΠD1
u = Su,d1πu|out + Seva

u,d1πu|eva, (2.48a)

ΠD1
d = πd1|in + Sd1,d1πd1|out + Θ(Ω∗ − ω)Sd2,d1πd2|out + Θ(ω − Ω∗)Seva

d2,d1πd|eva. (2.48b)

Figure 2.3: D1 scattering mode as a superposition of the eigenmodes, initiated by d1|in

D2 mode, initiated by d2|in

ΠD2
u = Θ(Ω∗ − ω)

[
Su,d2πu|out + Seva

u,d2πu|eva
]
, (2.49a)

ΠD2
d = Θ(Ω∗ − ω)

[
πd2|in + Sd1,d2πd1|out + Sd2,d2πd2|out

]
. (2.49b)

Figure 2.4: D2 scattering mode as a superposition of the eigenmodes, initiated by d2|in

In figures 2.2 - 2.4 the scattering modes initiated by the three eigenmodes are displayed
in a pictorial way [17]. The magenta wiggles represent the evanescent modes. While in
the upstream region the u|eva mode is always one of the outgoing modes, the d|eva
mode just replaces the d2|out if the energy is high enough (ω > Ω∗). As mentioned
above the analytic expression are different for the up- or downstream region, but match
at the horizon at x = 0.
The scattering coefficients are determined by solving the matching conditions (2.46a)
and (2.46b), which together form a 4x4-system of linear equations. The full analytic
expressions of the coefficients can be seen in [17]. They only depend on the frequency ω.
The square of the absolute values |Sl′,l(ω)|2 indicate the the transmission or reflection
coefficient for an l-ingoing mode at frequency ω (energy h̄ω) into an l′-outgoing mode
at the same frequency.
During the scattering process the energy has to be conserved, for that reason the S-
matrix
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S(ω) =


Su,u Su,d1 Su,d2

Sd1,u Sd1,d1 Sd1,d2

Sd2,u Sd2,d1 Sd2,d2

 , (2.50)

has to obey the skew unitarity condition

S†ηS = η = SηS†. (2.51)

In this connection the unity matrix is replaced by the Bogoliubov metric
η = diag(1, 1,−1), due to the negative norm of the d2-modes.
If we are above the critical frequency ω > Ω∗, the stated 3 × 3-matrix (2.50) reduces
to a 2× 2-matrix

S =
Su,u Su,d1

Sd1,u Sd1,d1

 , (2.52)

which fulfils the usual unitarity condition

S†S = 1 = SS†. (2.53)

In this case, the D2-scattering mode does not exist anymore, because there cannot
be a d2|in-mode initiating the scattering. Furthermore the d2|out-mode is replaced by
the d2|eva-mode. As one can see in equations (2.47) - (2.49), this is ensured by the
Heavyside step functions Θ(Ω∗ − ω) and Θ(ω − Ω∗).
Alternatively, we also could put the expressions (2.50) and (2.52) of the S-matrix to-
gether by simply adding the factor Θ(Ω∗ − ω) to both, the third row and the third
column. This will be helpful in the next section talking about density correlations.
Since the evanescent modes decay exponentially, they carry no current. For this reason
the coefficients Seva

i,j are neither involved in the unitary conditions (2.51) and (2.53),
nor in the S-matrix itself.

In figure 2.5 the scattering coefficients as a function of the frequency ω. For the case
ω > Ω∗ the transmission (and reflection) coefficients |Su,d1|2 and |Sd1,u|2 (|Su,u|2 and
|Sd1,d1|2) show the usual behaviour expected in wave mechanics. They are between 0
and 1 and increase (decrease) with ω. If the frequency falls below the critical frequency,
ω < Ω∗, the statements made for the case ω > Ω∗ are not valid anymore. Moreover the
d2-modes are involved in the dynamics. As one can see in figure 2.5, all the coefficients
|Si,d1|2 and |Si,d2|2 (∝ ω−

1
2 ) diverge in the low-ω limit. These divergences do not violate

energy conservation because of the skew unitarity of the S-matrix. This is one of
the main consequences of the occurrence of a horizon, which is the analogue to an
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infinite surface gravity. For low energies the quasiparticles entering the system from
the downstream region (d1|in or d2|in) remain blocked at the horizon forever. Although
these modes are blocked, at the horizon they partially transfer their energy which results
in the u|out leaving the horizon.
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Figure 2.5: Transmission and reflection coefficient for the u|in mode (upper panel),
d1|in mode (middle panel) and the d2|in mode (lower panel). The parame-
ters used are gu = 0.8, gd = 0.04, v/cu = 0.7 und v/cd = 3. For ω/Ω∗ > 1
the d2 mode is not involved in scattering and the other coefficient show the
usual behaviour. In the low ω limit the coefficients for the d1|in and the
d2|in mode diverge. This is the signature of an event horizon, [15].
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2.3.5 Quantisation

After we investigated the scattering modes for our system in the past section, we are
now able to expand our fields δñ and δθ̃ in these scattering modes. That is simply a
change of basis in which the expansion takes place, since all the scattering modes are
linear combinations of the eigenmodes (2.25). In order to reach the new expansion,
we simply replace the eigenmodes f±l (x) from (2.25a) and (2.25b) with the scattering
modes. Therefore we rewrite the modes displayed in (2.47) - (2.49) as following

ΠL(x) =
 f+

L (x, ω)
f−L (x, ω)

 :=

ΠL
u(x, ω), if x ≤ 0.

ΠL
d (x, ω), if x > 0.

(2.54)

The index L ∈ {U,D1, D2} specifies which incoming channel is considered. The ex-
pansion now is

δñ(x, t) =
∫ ∞

0

dω√
2π

∑
L∈{U,D1}

[
f+
L (x, ω)e−iωtb̂L(ω) +

(
f+
L (x, ω)

)∗
eiωtb̂†L(ω)

]
(2.55a)

+
∫ Ω∗

0

dω√
2π

[
f+
D2(x, ω)e−iωtb̂†D2(ω) +

(
f+
D2(x, ω)

)∗
eiωtb̂D2(ω)

]
,

δθ̃(x, t) = −i
∫ ∞

0

dω√
2π

∑
L∈{U,D1}

[
f−L (x, ω)e−iωtb̂L(ω)−

(
f−L (x, ω)

)∗
eiωtb̂†L(ω)

]
(2.55b)

− i
∫ Ω∗

0

dω√
2π

[
f−D2(x, ω)e−iωtb̂†D2(ω)−

(
f−D2(x, ω)

)∗
eiωtb̂D2(ω)

]
.

In each of these expansions (2.55a) and (2.55b) the second integral has a cutoff at
ω = Ω∗, which comes from the Heavyside step functions in equations (2.49).
The operators b̂†L(ω) and b̂L(ω) are now the creation and annihilation operators of an
excitation of energy h̄ω in one of the three scattering modes U , D1 and D2. They obey
the bosonic commutation relations

[
b̂L(ω), b̂†L′(ω′)

]
= δL,L′δ(ω − ω′), (2.56a)[

b̂L(ω), b̂L′(ω′)
]

= 0 =
[
b̂†L(ω), b̂†L′(ω′)

]
. (2.56b)

One also has to note, that for the D2 scattering mode the quantisation is carried out
in a nonstandard way. The role of the creation and annihilation operator is exchanged
compared to the U and D1 scattering mode. This has to do with the negative norm of
the initiating d2|in-mode. Using the skew unitarity condition (2.51), one can show this
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choice of quantisation is necessary for the commutation relation (2.6) to be fulfilled,
[17].
The expression of our fields in terms of the scattering modes are now well suited for
the investigation of density correlations in the next section.
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3 Density correlations
As seen in [13], the two point density correlation was found to be the most suitable
tool for identifying acoustic Hawking radiation.
In the one component Bose condensate the two point density correlation function is
defined as

g(2)(x1, x2) := 〈ψ†(x1, t)ψ†(x2, t)ψ(x1, t)ψ(x2, t)〉 (3.1)

− 〈ψ†(x1, t)ψ(x1, t)〉〈ψ†(x2, t)ψ(x2, t)〉.

By using ψ†(x1, t)ψ(x1, t) = n(x1, t) and the commutation relation (2.2), equation (3.1)
can be brought into the form

g(2)(x1, x2) := 〈n(x1, t)n(x2, t)〉 − 〈n(x1, t)〉δ(x1 − x2)− n2
0 (3.2)

= 〈δn(x1)δn(x2)〉 − n0δ(x1 − x2),

where we inserted the mean field approximation (2.8) to get the second line, and
additionally used

〈δn(x, t)〉 = 0, (3.3)

per definition of the mean field. The delta function arises due to the commutator of ψ
and ψ†, but we will focus on the correlation of the fluctuations. Using our expansion
over the scattering modes (2.55a) we can rewrite the two point function (3.2) in terms
of an integral over the frequency ω

g(2)(x1, x2) =
∫ ∞

0

dω

2π γ(x1, x2, ω)− n0δ(x1 − x2). (3.4)

Looking at the expression of γ(x1, x2, ω), one can see that there is a zero temperature
contribution as well as a thermal one to γ(x1, x2, ω), where only the thermal part
depends on the occupation number NL(ω) = 〈b†L(ω)bL(ω)〉. Therefore we have

γ(x1, x2, ω) = γ0(x1, x2, ω) + γth(x1, x2, ω), (3.5)
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with

γ0(x1, x2, ω) =
∑

L∈{U,D1}
f+
L (x1)

(
f+
L (x2)

)∗
+
(
f+
D2(x1)

)∗
f+
D2(x2) (3.6)

and

γth(x1, x2, ω) =
∑

L∈{U,D1,D2}

[
f+
L (x1)

(
f+
L (x2)

)∗
+
(
f+
L (x1)

)∗
f+
L (x2)

]
×NL(ω). (3.7)

The zero-temperature contribution stays finite even if T = 0. In this case the occupa-
tion number NL(ω) = 0, as a consequence the thermal part γth(x1, x2, ω) vanishes.
We will mainly focus on the T = 0 case, therefore we only take a look at γ0(x1, x2, ω).
Since we are only considering density correlations only the first component of the scat-
tering modes (2.47) - (2.49) is relevant for now. With the expressions for the mode
functions from (2.25b) we are able to give the explicit expressions for γ0(x1, x2, ω). In
this treatise we restrict ourselves to the case where x1 and x2 are far away from the
horizon. This allows us to neglect the evanescent modes in equations (2.47) - (2.49).

1st case: x1 and x2 are both deep in the upstream region, x1, x2 � −ξu

γ0(x1, x2, ω) = |F+
u|in|

2eiku|in(x1−x2) + |F+
u|out|

2eiku|out(x1−x2) (3.8)

+ Θ(Ω∗ − ω)
[
|Su,d2|2|F+

u|out|
2eiku|out(x1−x2) + c.c.

]
,

where we used

|Su,u|2+|Su,d1|2= 1 + Θ(Ω∗ − ω)|Su,d2|2. (3.9)

This comes from the skew unitarity condition (2.51) of the S-matrix (2.50).

2nd case: x1 is deep in the upstream region and x2 is deep in the down-
stream region, x1 � −ξu and x2 � ξd

γ0(x1, x2, ω) = Θ(Ω∗ − ω)
[
Su,d2(Sd1,d2)∗F+

u|out(F
+
d1|out)

∗ei(ku|outx1−kd1|outx2) (3.10)

+ Su,d2(Sd2,d2)∗F+
u|out(F

+
d2|out)

∗ei(ku|outx1−kd2|outx2) + c.c.
]
,
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where we again made use of the skew unitarity condition (2.51) of the S-matrix (2.50)

Su,u(Sd1,u)∗ + Su,d1(Sd1,d1)∗ = Θ(Ω∗ − ω)Su,d2(Sd1,d2)∗, (3.11a)

Su,u(Sd2,u)∗ + Su,d1(Sd2,d1)∗ = Θ(Ω∗ − ω)Su,d2(Sd2,d2)∗. (3.11b)

There is also the case where x1 is deep in the downstream region and x2 deep in the
upstream region. Obviously this corresponds to the exchange x1 ↔ x2.

3rd case: x1 and x2 are both deep in the downstream region, x1, x2 � ξd

γ0(x1, x2, ω) = |F+
d1|in|

2eikd1|in(x1−x2) + |F+
d1|out|

2eikd1|out(x1−x2) (3.12a)

+ Θ(Ω∗ − ω)
[
|F+
d2|in|

2eikd2|in(x1−x2) − |F+
d2|out|

2eikd2|out(x1−x2)

+ |Sd1,d2|2|F+
d1|out|

2eikd1|out(x1−x2) + |Sd2,d2|2|F+
d2|out|

2eikd2|out(x1−x2)

+ Sd1,d2(Sd2,d2)∗F+
d1|out(F

+
d2|out)

∗ei(kd1|outx1−kd2|outx2)

+ Sd2,d2(Sd1,d2)∗F+
d2|out(F

+
d1|out)

∗ei(kd2|outx1−kd1|outx2)
]
,

this time we used

|Sd1,u|2+|Sd1,d1|2 = 1 + Θ(Ω∗ − ω)|Sd1,d2|2, (3.13a)

|Sd2,u|2+|Sd2,d1|2 = −1 + |Sd2,d2|2, (3.13b)

Sd1,u(Sd2,u)∗ + Sd1,d1(Sd2,d1)∗ = Sd1,d2(Sd2,d2)∗, (3.13c)

(Sd1,u)∗Sd2,u + (Sd1,d1)∗Sd2,d1 = (Sd1,d2)∗Sd2,d2. (3.13d)

As stated in [13], there are only local correlations ("short-range antibunching") if there
is no transition from a subsonic to a supersonic flow, which means γ0(x1, x2, ω) = 0
for the second case. In the presence of an acoustic horizon new long-range correlations
appear (γ0(x1, x2, ω) 6= 0), which can be led back to the emission of correlated phonons.
These correlated phonons arise due to quantum fluctuations and propagate away from
the horizon through the u|out, d1|out and d2|out channels. This can be identified with
the analogue Hawking emission. In the low k limit the group velocity of a phonon is
approximately equal to the sound of speed cu,d. Additionally, in the laboratory system
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Figure 3.1: Plot for the dimensionless quantity ξug
(2), the parameters are the same

as in figure 2.5. The grey area around the x1- and x2-axis corresponds to
|x1|, |x2|< 10ξu. The coloured lines correspond to the largest expected long-
range signals, the light green line corresponds to d2 − d1 correlation, dark
green corresponds to u − d1 correlation and blue corresponds to u − d2
correlation, [15].
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the background flow velocity also has to be taken into account. Therefore at time t
after the emission the phonons in the different channels are located at

xu|out(t) = (v − cu)t < 0, (3.14a)

xd1|out(t) = (v + cd)t > 0, (3.14b)

xd2|out(t) = (v − cd)t > 0, (3.14c)

where the minus sign in front of cd, in equation (3.14c), comes from the second real
solution of the dispersion relation (2.16) for ω < Ω∗. Hence in the low k limit we expect
the long-range correlation signals to appear along the lines of slope

xu|out(t)
xd1|out(t)

= v − cu
v + cd

, (3.15a)

xu|out(t)
xd2|out(t)

= v − cu
v − cd

, (3.15b)

xd2|out(t)
xd1|out(t)

= v − cd
v + cd

, (3.15c)

for the u − d1 correlation, the u − d2 correlation and the d2 − d1 correlation. Of
course there are similar signals along the lines of inverse slope. This corresponds to the
exchange x1 ↔ x2.

To summarise, provided that a transition from a subsonic to a supersonic flow takes
place, the presence of such an acoustic horizon results long-range correlations, which
correspond to the actual Hawking-effect. The numerical calculation of the correlation
function matches the theoretical expectations regarding the largest correlation signals.
The expected lines of slope are marked in figure 3.1 with coloured solid lines. If we take
a closer look, we can observe a pattern parallel to the lines crossing the origin. This
corresponds to a correlation of modes emitted at different times from the horizon.
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4 Modifying the two component model

4.1 Bogoliubov theory of a two-component Bose Einstein
condensate with opposite background flows

In this section we consider a system of two coupled Bose Einstein condensates in one
spatial dimension. The problem described in section 2 is very similar with two compo-
nents, as one can see in [10]. However, this time we consider the two components to
have opposite background flows. The system is described by the following Hamiltonian:

H =
∫
dx

∑
j=1,2

ψ†j

[
− 1

2m∂2
x + (V (x)− µ)

]
ψj − J(ψ†1ψ2 + ψ†2ψ1) +

∑
i,j=1,2

gij
2 ψ†iψiψ

†
jψj

 ,
(4.1)

with an external potential V (x), the chemical potential µ, the tunnel coupling J and the
inter and intra species coupling gij. For simplicity we set g11 = g22 = g, g12 = g21 = αg

and assume that both components have equal atomic massm. The bosonic annihilation
and creation operators ψ1,2 and ψ†1,2 fulfil the usual commutation relations for fixed time

[
ψi(x, t), ψ†j(x′, t)

]
= δijδ(x− x′), (4.2)

whilst all others vanish.
Following the same process as in section (2), we get a system of four coupled equations
of motion for n1, n2, θ1 and θ2:

∂tni = − 1
m
∂x[ni∂xθi] + 2J√ninj sin (θi − θj), (4.3)

∂tθi = 1
2m

∂2
x

√
ni√
ni
− 1

2m(∂xθi)2 − [V (x)− µ] + J

√
nj
ni

cos (θi − θj)− gni − αgnj (4.4)

with i, j ∈ {1, 2} and i 6= j.
Again, we use the mean field approximation, slightly altered compared to section 2 by
choosing different background phases θ0i(x) for each component

ni(x, t) = n0(x) + δni(x, t),

θi(x, t) = θ0i(x) + δθi(x, t)
(4.5)
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with

θ01(x) = πx

x0
,

θ02(x) = π − πx

x0

(4.6)

and
(n0)1 = (n0)2. (4.7)

Therefore we get opposite signs for the background velocities for each component,
which are defined as

vi := ∂xθ0i(x)
m

= ± π

mx0
:= ±v. (4.8)

Linearising equations (4.3) and (4.4) we find to lowest order

∂x[n0v] = −2Jn0 sin
(2πx
x0

)
:= −2Jn0 sin(ax) (4.9)

which is the continuity equation, with a term on the r.h.s. depending on the tunnel
coupling J . This holds for both components of the condensate. Looking at one compo-
nent, we can see there are sources and sinks, since sin(ax) can be both, positive and
negative. Hence the particle number for one component is locally not conserved, unless
the whole system with two components is considered. We also find the Gross-Pitaevskii
equation

[
− 1

2m∂2
x + 1

2mv
2 + V (x)− µ+ gn0(1 + α) + J cos(ax)

]√
n0 = 0. (4.10)

Regarding the tunnel coupling J , we consider a slightly simplified setup. We divide our
system into three parts, such that we have a region for x < 0, 0 ≤ x ≤ x0 and x0 < x.
In the following we call [0, x0] the main area. Now we turn the tunnel coupling off in
this main area. This is expressed by setting

J(x) = JΘ(−x) + JΘ(x− x0) (4.11)

and consequently

J(x) = 0 for x ∈ [0, x0]. (4.12)

Thus our system forms a circulating current, where both components flow with opposite
background velocities in one another and outside of the main area tunnel into each
other.
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Figure 4.1: Background density n0(x) for the three areas

Because of v = const. equation (4.9) is a differential equation of n0 = n0(x) for x 6∈
[0, x0]. Solving (4.9), we get the background density profile for x 6∈ [0, x0] for both
components:

n0(x) = Ñ0 exp
(2J
va

cos(ax)
)

(4.13)

with Ñ0 = N0 exp
(
−2J
va

)
.

For the main area we have J = 0. We chose the background flow velocities ±v to
be constant. Therefore in order for the continuity equation (4.9) to be fulfilled the
background density has to be constant for the main area, n0(x) = N0 = const. for
x ∈ [0, x0]. Therefore the condensate is homogeneous in the main area.

We transform our variables in order to investigate the symmetric (+) and antisymmetric
(−) degrees of freedom

δn+ = δn1 + δn2, δn− = δn1 − δn2

2 , (4.14a)

δθ+ = δθ1 + δθ2

2 , δθ− = δθ1 − δθ2. (4.14b)
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The symmetric and antisymmetric d.o.f. do not decouple instantly. We find to first
order

∂tδn+ = − 2
m
∂x [n0∂xδθ+]− 2v∂xδn−, (4.15a)

∂tδn− = − 1
2m∂x [n0∂xδθ−]− 2Jn0a cos(ax)δθ− −

v

2∂xδn+ − J sin(ax)δn+, (4.15b)

∂tδθ+ = 1
2m

1
4n0

∂x

[
n0∂x

(
δn+

n0

)]
− g

2(1 + α)δn+ −
v

2∂xδθ− − J sin(ax)δθ−, (4.15c)

∂tδθ− = 1
2m

1
n0
∂x

[
n0∂x

(
δn−
n0

)]
+
[
J

n0
cos(ax)− 2g(1− α)

]
δn− − 2v∂xδθ+. (4.15d)

In our main region these equations simplify a lot, because J = 0 and n0 = const.. Thus
we get

∂tδn+ = −2n0

m
∂2
xδθ+ − 2v∂xδn−, (4.16a)

∂tδn− = − n0

2m∂2
xδθ− −

v

2∂xδn+, (4.16b)

∂tδθ+ = 1
2m

1
4n0

∂2
xδn+ −

g

2(1 + α)δn+ −
v

2∂xδθ−, (4.16c)

∂tδθ− = 1
2m

1
n0
∂2
xδn− − 2g(1− α)δn− − 2v∂xδθ+. (4.16d)

In order to decouple (+) and (−) we have to manipulate equations (4.16a) - (4.16d).
In the process we use the hydrodynamic approximation where we only keep first and
second derivatives, higher ones are neglected.
First we take the time derivative of equation (4.16a) and insert equation (4.16b) (the
time and the spatial derivative are interchangeable). Thus we get

∂2
t δn+ = −2n0

m
∂2
x∂tδθ+ + v2∂2

xδn+. (4.17)

For the other equation of the symmetric regime we take the time derivative of (4.16c)
and insert (4.16d). We get

∂2
t δθ+ = 1

8mn0
∂2
xδn+ −

g

2(1 + α)∂tδn+ + g(1− α)v∂xδn− + v2∂2
xθ+ (4.18)

Now we isolate v∂xδn− from equation (4.16a) and insert it in (4.18). This results in

[
∂2
t −

(
v2 − gn0

m
(1− α)

)
∂2
x

]
δθ+ −

[ 1
8mn0

∂2
x − g

]
∂tδn+ = 0. (4.19)
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Following the same process we get the equations of motion for the antisymmetric
regime. Summarised, our equations of motion decouple in the symmetric and antisym-
metric d.o.f. and take the form

[
∂2
t − v2∂2

x

]
δn+ + 2n0

m
∂2
x∂tδθ+ = 0, (4.20a)[

∂2
t −

(
v2 − gn0

m
(1− α)

)
∂2
x

]
δθ+ −

[ 1
8mn0

∂2
x − g

]
∂tδn+ = 0, (4.20b)[

∂2
t − v2∂2

x

]
δn− + n0

2m∂2
x∂tδθ− = 0, (4.20c)[

∂2
t −

(
v2 − gn0

m
(1 + α)

)
∂2
x

]
δθ− −

[ 1
2mn0

∂2
x − 4g

]
∂tδn− = 0. (4.20d)

Once again we use the scaled variables δña = δna√
n0

and δθ̃a = δθa
√
n0, a ∈ {+,−}. The

equations (4.20a) - (4.20d) become

[
∂2
t − v2∂2

x

]
δñ+ + 2

m
∂2
x∂tδθ̃+ = 0, (4.21a)[

∂2
t −

(
v2 − gn0

m
(1− α)

)
∂2
x

]
δθ̃+ −

[ 1
8m∂2

x − gn0

]
∂tδñ+ = 0, (4.21b)[

∂2
t − v2∂2

x

]
δñ− + 1

2m∂2
x∂tδθ̃− = 0, (4.21c)[

∂2
t −

(
v2 − gn0

m
(1 + α)

)
∂2
x

]
δθ̃− −

[ 1
2m∂2

x − 4gn0

]
∂tδñ− = 0. (4.21d)

As a result of decoupling the symmetric and antisymmetric d.o.f. in equations (4.16a)
- (4.16d) we obtain four linear equations of motion which are second order in position
and time. Having these, we are now able to derive the dispersion relation for both, the
symmetric and antisymmetric regime.

4.2 Dispersion relation

Since we assumed our condensate to be homogeneous in the main area, we can expand
the solutions of equations (4.21a) - (4.21d) in terms of plane waves

δñ+ = Aei(kx−ω+t), δθ̃+ = Bei(kx−ω+t), (4.22a)

δñ− = Cei(kx−ω−t), δθ̃− = Dei(kx−ω−t). (4.22b)

and insert them into equations (4.21a) - (4.21d). This leads to a matrix equation
 −ω2

+ + v2k2 iω+
2
m
k2

−iω+[ 1
8mk

2 + gn0] −ω2
+ + [v2 − gn0

m
(1− α)]k2

×
 A

B

 = 0, (4.23)
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for the symmetric d.o.f. and
 −ω2

− + v2k2 iω−
1

2mk
2

−iω−[ 1
2mk

2 + 4gn0] −ω2
− + [v2 − gn0

m
(1 + α)]k2

×
 C

D

 = 0, (4.24)

for the antisymmetric d.o.f.
In order to have non trivial solutions for these matrix equations, the determinants have
to vanish. This leads to the implicit dispersion relations

(ω2
+ − v2k2)(ω2

+ −
[
v2 − gn0

m
(1− α)

]
k2)− ω2

+
1
m
k2
[ 1
4mk2 + 2gn0

]
= 0, (4.25a)

(ω2
− − v2k2)(ω2

− −
[
v2 − gn0

m
(1 + α)

]
k2)− ω2

−
1
m
k2
[ 1
4mk2 + 2gn0

]
= 0. (4.25b)

For both d.o.f. the dispersion only differs in the sign of the coupling parameter α.
Looking at the dispersion relations (4.25a) and (4.25b) we see that there are only
terms proportional to ω4

a, ω2
a and ω0

a. Therefore we can find a solution for ω2
a, namely

ω2
a = −pa2 ±

√(
pa
2

)2
− qa, (4.26)

with

pa = − 1
4m2k

4 −
[
2v2 + (1 + αa)

gn0

m

]
k2 and qa =

[
v2 − gn0

m
(1− αa)

]
v2k4, (4.27)

with αa = +α if a equals + and αa = −α if a equals −.
As one can see, there two different branches in the dispersion relation (4.26) depending
on the sign in front of the square root. We denote them by "+"- and "−"-branch. Since
all parameters occurring in pa are positive, it is clear that for the "+"-branch ω2

a ∝ k4

(leading order) and therefore diverges for large k, provided that the root exists (real
value). This is similar to the standard Bogoliubov dispersion. More interesting is the
"−"-branch. In order to investigate the large k limit, we absorb all the constants into
new ones for simplicity. Introducing the new constant b, ca, and da we define

b := 1
4m2 , ca :=

[
2v2 + (1 + αa)

gn0

m

]
and da :=

[
v2 − gn0

m
(1− αa)

]
v2. (4.28)

and therefore

pa = −bk4 − cak2, qa = dak
4. (4.29)



4 Modifying the two component model 34

The "−"-branch of the dispersion (4.26) now reads

ω2
a = 1

2(bk4 + cak
2)−

√
1
4(bk4 + cak2)2 − dak4 (4.30)

= 1
2(bk4 + cak

2)− k4

√
1
4(b+ cak−2)2 − dak−4

:= 1
2bk

4 + 1
2cak

2 − k4f(k−1).

In the last line we defined the function f , which is simply the square root term from
the second line. Considering equation (4.30), more precisely f(k−1), in the large k limit
is equivalent to an expansion of f(x) for x� 1. This gives us

f(x) ≈ 1
2b+ 1

2cax
2 − da

b
x4 +O(x6). (4.31)

Resubstituting k−1 = x and inserting this expansion in equation (4.30) leads to

ω2
a = da

b
+O(k−6). (4.32)

For large k we can drop the terms of order (−6) and lower. Hence the frequency ωa
approaches a limit frequency ωlim

a for k −→∞ with

ωlim
a =

√
da
b

= 2mv
√
v2 − gn0

m
(1− αa), v2 >

gn0

m
(1− αa). (4.33)

It is remarkable that this limit mainly depends on the background flow velocity v. In
figure 4.2 we plotted the dispersion relation for the main area. The "+"-branch is repre-
sented by the blue lines and shows the usual behaviour. The "−"-branch is represented
by the green line and the asymptotic behaviour can be clearly observed. The dotted
lines are the negative solutions of equation (4.30) if one takes the root. These are the
negative norm branches, similar to the ones mentioned in section 2. They also can be
seen as holes or anti particles, respectively.
In figure 4.3 we plotted the dispersion relation (4.30) for positive k and ω over loga-
rithmic axes. Here the power laws of the branches are well presented. Both are linear
in the low k regime. At a certain value of k (around ∼ 101) the power laws become
noticeably different. The "+"-branch becomes quadratic, similar to the Bogoliubov dis-
persion (2.16), whereas the "−"-branch manifestly shows constant behaviour. This is
consistent with the expansion of equation (4.30) for large k. Roughly speaking, it means
that if the frequency approximately reaches the limit frequency ωlim

a , there are infinitely
many real solutions for k, which is not very intuitive. In the known setup involving
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either only one component or or two components having the same background flow
velocity we always found a regular fourth order polynomial for the dispersion relation
and therefore got four complex solutions for a fixed frequency ω from which at least
two solution were real. In our case, the energy of the modes for different k is somehow
determined by the background velocity v.
At this point it has to be mentioned that it is difficult to define the speed of sound. So
in general, as stated in [4], a modified dispersion relation can be written as

Ω2 = ω0 + c2k2 + ηk4 + ... (4.34)

where Ω2 is the co-moving frequency, ω0 is proportional to an effective mass (rest mass)
and c is the speed of sound. η contains higher order corrections which go beyond the
hydrodynamic approximation. Here the first problem arises. The background flows of
both components of the condensate point in opposite directions, hence it is not possible
to Galilei-transform our system to a system at rest, contrary to the case where both
backgrounds flow in the same direction. Because of that one cannot simply talk about
a co-moving frequency. Secondly, we could identify Ω2 from equation (4.34) with the
frequency ω2

a(k) of the laboratory system. If we then expand the dispersion relation for
small k and look at the coefficient of the term ∝ k2, we would have a speed of sound
cs = cs(v2) and hence it would be dependent on the square of the background flow
velocity, which is not easy to handle. Therefore it remains unclear whether a transition
from a subsonic to a supersonic flow can be reached. On top of that one cannot tune
the background flow velocity arbitrarily high either, since it then can be predicted that
the "−"-branch will disappear if ω2

a(k) becomes negative. Nevertheless we will take a
close look at the dispersion relation itself, regarding the k-roots for a fixed frequency
ωa > ωlim

a .
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Figure 4.2: Positive and negative norm branches of the dispersion relation
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4 Modifying the two component model 37

If we now consider a fixed frequency ω, significantly below the critical frequency ωlim
a ,

there are four real solutions for k. This can be seen in figure 4.4. We have the two roots
of the "+"-branch denoted by k+ and −k+, which correspond to modes with positive
and negative group velocity, respectively. We find analogue results for the roots k−

and −k− in the "−"-branch. Above the critical frequency, ω > ωlim
a , there are only the

roots of the "+"-branch left. The other two solutions are now complex conjugate to
each other, similar to the dispersion relation derived in section 2.

4 2 0 2 4

k [a.u.]

ω
a
 [

a
.u

.]

k −k +−k +−k −

Dispersion relation of the main area

Figure 4.4: Four modes for a fixed frequency ω, below the critical frequency ωlim
a

For the parameters in the plots of figure 4.2 - 4.4 we used v = 2 and α = 0.2. The
general structure of ωa(k) is conserved if we choose α = −0.2, that is the behaviour
for small and large k for each of the branches. This underlines that the symmetric
and antisymmetric d.o.f. do note differ very much, which can be led back to opposite
background flows and consequently the stronger coupling of both d.o.f..
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5 Conclusion
In this thesis we first considered a one dimensional Bose Einstein condensate. We made
use of the Bogoliubov approach and investigated the fluctuations to the first order.
By making an appropriate choice for the coupling constant g we reached a system
containing an acoustic horizon which corresponds to transition from a subsonic to a
supersonic background flow. Hence there is an upstream and a downstream region, in
which the dispersion relation we derived shows different behaviour.
From our equations of motion we deduced the matching conditions for our fields at the
horizon, which resulted in matching conditions for the eigenmodes of the whole system.
To this end we used the Bogoliubov expansion.
Among these eigenmodes for the whole system, we focused on the scattering modes
and presented their explicit expressions. Finally our fields could be expanded in these
scattering modes, which was crucial for the following step.
Investigating the density correlations, we considered the outgoing modes to be emitted
at the same time from the horizon. We found that beside the expected short range
correlation, there is also a long-range correlation signal, which is a direct consequence
of the occurrence of an horizon. This can be identified with the analogue Hawking-
effect. The numerical calculation of the correlation function shows a behaviour which
is similar to the (theoretical) expectations. This is clarified by the three dimensional
plot of the correlation function in figure 3.1.
In the fourth section we considered a two component Bose Einstein condensate, where
each of the component has a background flow velocity pointing in opposite directions.
We wanted to investigate whether in this configuration a Hawking-like effect arises. To
this end we decoupled our equations of motion and derived the dispersion relation once
again. In this connection we transformed our variables to symmetric and antisymmetric
degrees of freedom. Under certain approximations this made the decoupling possible
in the first place.
It turned out that it is not trivial to read off the speed of sound from the dispersion
relation which makes it difficult to set an upstream and a downstream region. Fur-
thermore the dispersion was not skewed by the background flow velocity v the way it
was in the case of an one component flow. This leads us to conclude that it is rather
unlikely to observe a Hawking-like effect.
If the frequency ω approaches a critical frequency, nearly infinite modes can be oc-
cupied. It is nonphysical that modes with an arbitrary high wave number k have the
same probability to be occupied as the lower ones for a given frequency ω near to the
critical frequency ωlim

a . Therefore we can conclude that the amplitude of these large k
modes have to be suppressed somehow by other effects.
Moreover, the group velocity of these modes goes to zero for k −→ ∞. For this reason,
it is not very sensible to consider them in connection to emitted modes or emitted
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radiation, respectively, since these are modes propagating away from the horizon. Nev-
ertheless, this does not apply to the modes, whose frequency is significantly below
the critical frequency. These would be the ones to work with if we consider scattering
processes.

5.1 Outlook

We considered a setup where the tunnelling only takes place outside the main area.
This simplified the equations of motion a lot inside the main area. If we consider J 6= 0
throughout the whole system, the equations of motion retain the form seen in (4.15).
In this case the degrees of freedom are strongly coupled and seem to be analytically un-
solvable in an exact way. This is mainly caused by the potential terms containing sin(x)
and cos(x). Further one cannot use the plane wave approach to derive the dispersion
relation. If we keep the division into three areas, where we tune the parameters (espe-
cially v) significantly different in the main area, we could expand the potential terms
near the edge of the main area and expand the solutions in Bessel-functions. From
that we should probably be able to formulate matching conditions between each two
of the three areas, namely at the "horizon"-like positions x = 0 and x = x0. These are
needed if we follow a similar process as in section 2. Consequently scattering processes
involving the modes presented in figure 4.4 could be investigated and hence correlation
functions computed. Thereby one could make sure if actual Hawking-like effects occur.

Despite us not being able to verify an analogue Hawking-effect in our modified mode
at this point, the results of this thesis, in particular the dispersion relation in equation
(4.30), awakens scientific interest from another point of view. It is possible that appli-
cation can be found in other areas, for instance in solid state physics. The resulting
behaviour of one of the branches of the dispersion relation resembles a band structure
which plays an important role if one studies the physics of crystalline materials. Hence
it would be interesting if one makes further investigations regarding, e.g., Bose Einstein
condensates in periodic potentials. However, a detailed study of this was out of scope
for this work, and thus could be a potential topic for future research. Overall we can
say, that by no means the calculations can be carried out in such a straightforward
manner as was the case of the one component condensate. As an educated guess we
believe that numerical tools are required, especially to handle the coupled equations of
motion properly.
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