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ABSTRACT

The Mu3e experiment searches for the lepton flavor violating decay µ+ → e+e+e−,

whose discovery would be a strong indication for physics beyond the Standard Model.

The detector aims at a sensitivity of 10−16. This is achieved via high vertex, momentum

and time resolution, using a combination of different detector technologies.

A high time resolution is achieved by the tile detector, which uses scintillating tiles as

well as silicon photomultipliers for readout. To ensure that correct timing information

is used, a clustering algorithm for tile hits has been developed and analyzed during this

work. For the analysis of the algorithm, data from a previously developed simulation

of the detector has been used. Limiting the size of tile hit clusters to a realistic value

yields an overall efficiency of 86.7%.

KURZFASSUNG

Das Mu3e Experiment sucht nach dem leptonflavorverletzenden Zerfall µ+ → e+e+e−,

dessen Entdeckung ein starker Indikator für Physik jenseits des Standardmodells wäre.

Ziel des Experiments ist eine Sensitivität von 10−16. Dies wird durch eine hohe Vertex-,

Impuls- und Zeitauflösung erreicht, wobei eine Kombination verschiedener Detektion-

stechnologien zum Einsatz kommt.

Eine hohe Zeitauflösung wird durch den Kacheldetektor erreicht, der sowohl szintil-

lierende Kacheln als auch Silizium Photomultiplier zum Auslesen verwendet. Um sicherzustellen,

dass korrekte Zeitinformationen verwendet werden, wurde im Rahmen dieser Arbeit ein

Clustering-Algorithmus für Kacheltreffer entwickelt und analysiert. Für die Analyse

des Algorithmus wurden Daten aus einer zuvor entwickelten Simulation des Detektors

verwendet. Die Begrenzung der Größe der Kacheltreffer-Cluster auf einen realistischen

Wert führt zu einer Gesamteffizienz von 86,7%.
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1 Introduction

1.1 Motivation

The decay of the muon is very interesting for searches for physics beyond the Standard

Model (BSM). A recent experiment searching for physics BSM using the muon decay is

the g-2 experiment at Fermilab, which was able to measure a precise value for the muon

anomalous magnetic moment, aµ = (g − 2)/2. Combined with a previous measurement

from the Brookhaven National Laboratory, the current discrepancy to the theoretical

Standard Model of particle physics (SM) prediction is 4.2σ [6]. Another very interesting

process to study with muons is the charged lepton flavour violating (CLFV) decay µ+ →

e+e+e−. The current limit of 10−12 for this decay was measured by the SINDRUM-I

experiment in 1987 [4]. The Mu3e experiment now aims to set a new limit for the CLFV

decay µ+ → e+e+e− [5]. It was proposed in 2012 and will be conducted at the Paul

Scherrer Institute (PSI) in Villingen, Switzerland.

The Mu3e decay is especially interesting since the branching ratio (BR) of the decay in

the SM is suppressed by 10−54 and therefore theoretically, there are no indistinguishable

background processes. Background suppression is therefore only limited by the resolution

of the detector. The Mu3e experiment will be operated in two phases, and in its second

phase it aims to achieve a sensitivity of 10−16, after the beamline at PSI as well as the

detector have received an upgrade, which enables a muon rate of 2 × 109 muons per

second. This in return means that the current limit will be improved by four orders of

magnitude.
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1.2. PHYSICS BEYOND THE STANDARD MODEL

1.2 Physics beyond the Standard Model

The SM has been developed to describe how the basic building blocks of matter inter-

act, governed by four fundamental forces. It has been well tested through countless

experiments in the last decades and is currently the best description of the subatomic

world. However, the SM still has some shortcomings, with the most obvious being the

fact that the SM just includes the electromagnetic, the weak and the strong interaction

while omitting gravity. Moreover, the SM cannot explain dark matter and dark energy.

[2]

A search for a CLFV decay implies a search for physics BSM. The SM including neutrino

oscillations (see Figure 1.1a) predicts a BR of 10−54 for the decay µ+ → e+e+e− [4].

Theories that extend the SM by introducing various new heavy particles have been

developed and are still lacking evidence, since no new particles or other deviations from

the SM have been found. These heavy particles can mediate the CLFV either in virtual

loops such as in supersymmetric (SUSY) models (Figure 1.1b), at tree level (Figure 1.1c),

or in box diagrams [4].

(a) SM (b) BSM SUSY (c) BSM tree level

Figure 1.1: Feynman diagrams for CLFV in µ+ → e+e+e−. (a) in the SM by massive
neutrino mixing; (b) by heavy mediating particles, such as in SUSY models;
(c) tree level mediating particles. [4]
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2 The Mu3e Experiment

The Mu3e experiment will be conducted in two phases. The first phase will be using

the current muon beamline (π5e) at PSI which provides a muon rate of 108 muons per

second. This first phase aims at a sensitivity of 2 × 10−15. The second phase will be

conducted after the muon beamline at PSI has been upgraded to achieve a rate of 2×109

muons per second. For the second phase, the detector itself will also receive significant

upgrades. The goal of the second phase is then to achieve the desired sensitivity of

10−16. [1]

2.1 Signal and Background

The decay µ+ → e+e+e− possesses some key characteristics that enables the differen-

tiation between the signal decay and background events. Firstly, the decay is prompt,

which means that the three electron1 tracks coincide and emerge from the same vertex

in time and space. Furthermore, the muons are stopped by a target and therefore decay

at rest. Due to energy and momentum conservation, the energy sum of the electrons

must equal the muon rest mass and the vectorial sum of the momenta has to vanish:

Etot =
3∑

i=0

Ei = mµ (2.1)

p⃗tot =
3∑

i=0

p⃗i = 0⃗ (2.2)

1From here on, the term “electron” denotes generically both decay electrons and positrons.
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2.2. DESIGN OF THE MU3E EXPERIMENT

Therefore, in order to suppress background processes, the Mu3e experiment aims at

an excellent momentum, vertex and time resolution [3]. These requirements drive all

aspects of the design of the Mu3e experiment.

The two types of background are shown in Figure 2.1. The irreducible background

is caused by internal conversion decays (µ+ → e+e+e−νeν̄µ) which have a branching

ratio (BR) of 3.4×10−5 [7] (see Figure 2.1b). Compared to the signal decay, two additional

neutrinos are produced in the internal conversion decay. Taking advantage of this, the

internal conversion background can be distinguished from the signal decays, provided

that an excellent momentum resolution is given. The second type of background is

the accidental background which can be caused by different processes. The dominating

accidental background process is an overlay of a Michel decay (µ+ → e+νeν̄µ) and

Bhabha scattering (e+e− → e+e−) of a positron and an electron in the stopping target

(see Figure 2.1c). This type of accidental background can therefore be suppressed if

the two different processes can be separated in space and time. This in fact raises the

requirement for an excellent time and vertex resolution of the detector [7].

(a) Signal (b) Internal Conversion (c) Accidental background

Figure 2.1: Comparison of the decay topologies of signal and background events. [7]

2.2 Design of the Mu3e Experiment

A schematic view of the Mu3e experiment in the configuration for phase 1 is shown

in Figure 2.2. The muons will be stopped in the hollow double cone target, located
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2.2. DESIGN OF THE MU3E EXPERIMENT

in the center station of the experiment, where they decay into electrons. From the

target, the electrons will pass the first two layers of the pixel detector. These inner pixel

layers provide the vertex information of the decays. Since Multiple Scattering (MS)

has a significant effect at the relative low momenta of the electrons, the experiment is

constrained by a very low material budget. For this reason, the pixel layers have to

be thinned down significantly, which is mainly achieved by using High Voltage Active

Monolithic Pixel Sensors (HV-MAPS). The next part of the experiment, which is passed

by the electrons, is the Scintillating Fibre (SciFi) detector, which provides the first timing

information with a resolution of about 1 ns. The fibers have to be used due to the low

material budget, compromising on light yield and therefore also on timing resolution.

Another two layers of pixel detectors are placed outside the SciFi detector to provide

further spatial information to track the electrons. To either side of the central station, a

recurl station is placed to enhance the momentum resolution via two more pixel layers.

The tile detector is also placed inside the two recurl stations. The material budget for

the tile detector is not as stringent, as it is the last detector that will be hit. Therefore,

its design is just constrained by the tight space in the recurl stations. This allows for a

detector design, with a higher material budget, to be used in order to achieve a much

higher timing resolution, compared to the SciFi detector, of better than 100 ps [1]. Since

this thesis focuses on the tile detector, it will be discussed in detail in the next section.

Figure 2.2: Schematic view of the experiment cut along the beam axis in the phase 1
configuration. [1]
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2.3. THE TILE DETECTOR

2.3 The Tile Detector

In order to be able to correctly identify coincident signal decays and suppress accidental

background, the goal of the tile detector is to provide the most precise timing information

possible, with a timing resolution of better than 100 ps and a detection efficiency close

to 100%.

(a) Double matrix arrangement (b) Module (c) Full tile station

Figure 2.3: CAD rendered views of the tile detector. [1]

The tile detector consists of two stations, placed in each recurl station below the outer

pixel layers. The stations have a length of 32.4 cm along the beam direction (z-direction)

and an outer radius of 6.4 cm. A CAD drawing of a full station is shown in Figure 2.3c.

The full station is segmented into 52 tiles in z-direction and 56 tiles in ϕ-direction (along

the azimuthal angle), adding up to 2912 tiles in total per station. The tiles have a size of

6.3× 6.2× 5.0mm3 and are individually wrapped in Enhanced Specular Reflector (ESR)

foil to isolate the tiles from one another and also increase light yield. Each tile is read

out by a 3 × 3mm2 Silicon Photomultiplier (SiPM), which is soldered to the tile matrix

Printed Circuit Board (PCB), assembling a 4×4 channel matrix. A whole module of the

tile detector is composed of 26 matrices (see Figure 2.3b). The matrices are connected to

the Tile Module Board (TMB) which hosts 13 readout ASICs (MuTRIG), one for every

double matrix arrangement (see Figure 2.3a). A full station of the tile detector is then

made up of 7 modules arranged in a circle (see Figure 2.3c).
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2.4. DETECTOR SIMULATION

2.4 Detector Simulation

All data that was used in the frame of this thesis has been produced by a Geant4 1

simulation of the Mu3e detector.

The Geant4 simulation also uses ROOT 2 as a data framework. The main way ROOT

saves data, which was also used for the Mu3e simulation software, is in so-called trees,

branches and leaves. In the case of the Mu3e simulation, the different trees contain the

simulation data, the corresponding Monte Carlo truth data and alignment information.

Examples for branches would then be the tile IDs of the tiles that have been hit, the

time when the tiles have been hit, and so forth. Possibly the most important concept

to note in terms of the simulation, in order to understand how the developed clustering

algorithms work, is the frame. A frame is a time period of 64 ns in which the simulation

data is split up. Frames originate from the way the reconstruction operates on GPUs

(Graphical Processing Unit). Since a large dataset can not be computed all at once while

maintaining a reasonable hardware requirement, the simulation works by performing the

necessary computations frame by frame. This way, the production of smaller datasets is

even possible on regular consumer hardware. Figures 2.4 and 2.5 show a Visualization

of events from one frame in a cross-sectional and a side view respectively. These figures

were created using the Mu3e Display tool included in the simulation software package.

1”Geant4 (for GEometry ANd Tracking) is a platform for "the simulation of the passage of particles
through matter" using Monte Carlo methods. It is the successor of the GEANT series of software
toolkits developed by The Geant4 collaboration, and the first to use object oriented programming
(in C++).”[8]

2”ROOT is an object-oriented program and library developed by CERN. It was originally designed for
particle physics data analysis and contains several features specific to this field, but it is also used
in other applications such as astronomy and data mining.”[9]
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2.4. DETECTOR SIMULATION

Figure 2.4: Cross-sectional view of the detector showing the events from one frame.

Figure 2.5: Side view of the detector showing the events from one frame.
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3 Tile Hit Clustering

The development and evaluation of a clustering algorithm for the tile detector is the

goal of this thesis. The final clustering algorithm, which will be discussed in close detail

in the following chapters, uses a combination of time and spatial clustering. In this

chapter, the concept of clusters, in the context of the experiment is explained. This is

followed by a detailed explanation of the algorithms.

3.1 Origins of Clusters

A cluster in the context of the tile detector is defined as multiple tile hits caused by the

same particle. As an illustration of these clusters, Figure 3.1 shows one station of the

tile detector that has been rolled out into a two-dimensional plane.

Figure 3.1: Map of hits on the tile detector.
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3.1. ORIGINS OF CLUSTERS

The colored tiles are all tiles that have been hit in a particular frame, where the different

colors indicate different clusters.

Clusters in general can have different origins or also originate from a combination of

different processes. The most direct and obvious cause is when a particle hits multiple

tiles in a row. For this to happen, the incident angle of the track on the tile surface has

to be flat enough. A sketch illustrating this is shown in Figure 3.2.

Figure 3.2: Sketch showing how one track hits multiple tiles, and therefore causes a
cluster to form.

The ϕ-distribution as well as the θ-distribution have been studied, where θ is the angle

in z-direction (beam direction), ranging from 0◦ to 180◦, and ϕ is the azimuthal angle to

the normal vector of the tile surface, ranging from −180◦ to +180◦. The corresponding

distributions are shown in Figure 3.3.

(a) ϕ-distribution (b) θ-distribution

Figure 3.3: ϕ-distribution (a) and θ-distribution (b) of the incident angle of the tile hits.
The angles are plotted against the z-direction and the density is shown using
a logarithmic scale.
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3.1. ORIGINS OF CLUSTERS

From these distributions, it can be concluded that the majority of tracks are vertical to

the tile surface in ϕ-direction but rather flat in θ-direction, which results in many tracks

hitting multiple tiles in a row. Optical crosstalk between two tiles is the more indirect

cause of clusters. Here, light from one tile enters a second tile and is therefore detected

as two hits. In order to minimize the optical crosstalk, all tiles are individually wrapped

in foil. Apart from the optical crosstalk, it is also possible that an electron scatters in

the first tile and triggers a hit in a second tile.

Another case of cluster formation can be caused by multiple tracks being very close to

one another and therefore hit the same tile. If the tile is hit with enough time difference

between two consecutive tracks, both hits can be detected. In this case, the algorithm

ideally should be able to assign the timestamps in the correct order. However, if the

hits are too close together in time so that the second hit occurs during the dead time, a

pile-up effect occurs and the time information of all hits except the first one is lost, and

therefore the clusters originating from these hits are invalid.

Figure 3.4 shows the probability to have a hit in the surrounding tiles for truth clusters

with at least two hits. This is shown for the upstream and the downstream recurl

stations. In both plots, a cluster hit in the center tile is denoted by a probability of

100%. For the surrounding tiles, the probability for that tile to be hit in the same cluster

is given. Here, all probabilities under 1% have been left out due to their insignificance.

This gives a visualization of the shape and size of typical clusters.
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3.2. INITIAL STUDIES

(a) Upstream (b) Downstream

Figure 3.4: Cluster maps showing the probabilities for hits in clusters with multiple hits
for neighboring tiles around a center tile for the upstream (a) and down-
stream (b) stations.

3.2 Initial Studies

As a starting point to develop the clustering algorithm, different methods to build clus-

ters from prior knowledge or other event information were studied. These methods are

generally track-based.

3.2.1 Spatial Clustering

The general spatial clustering algorithm was developed on the basis of the current imple-

mentation in the reconstruction software (Mu3e Trirec), which is part of the simulation

software package that has been developed for the Mu3e experiment. The implemented

approach has also already been briefly studied by Christian Graf in his master’s thesis [7].

The general idea behind the algorithm is to check every hit in a frame and see whether

there are hits in the neighboring tiles. This is implemented by building masks around

the tile that has been hit, and then all tiles included in the masks are checked whether
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3.2. INITIAL STUDIES

they were hit as well. All tiles that have been hit within a mask are then added to the

same cluster. In the thesis of Christian Graf, three different mask sizes were studied, as

well as their efficiency and fake rate (see Figure 3.5) [7].

(a) Small (b) Medium (c) Large

Figure 3.5: Definition of neighboring tiles for a small, medium and large mask in a flat
detector projection. The red tile in the center marks the reference tile. For
each mask, all green tiles are defined to be neighbors. [7]

In his studies, Christian Graf found that the large masks perform best for the experi-

mental setup of phase 1. This is largely due to the fact that the muon rate is not as

high as in phase 2 and the larger masks therefore do not have a large effect on the fake

rate [7]. The large masks also make it possible to detect cluster hits next to a tile that

was technically hit but where the hit was not recognized, for example due to dead time

[7]. This also holds true for the algorithms developed for this thesis, therefore the effi-

ciency analysis in the following chapter was completely carried out using the large masks.

3.2.2 Simple Masks

The first method that has been tried out using this type of spatial clustering was the

simple mask method. It is very similar to the clustering algorithm that is currently

implemented in Mu3e Trirec and to the method that has been studied by Christian

Graf [7], which rely on the information of seed tiles (the tiles the mask is built around),

typically from a pixel track or a hit-duplet from the two pixel detector layers surrounding

the tile detector, which is projected onto the tile surface. Hits are searched in the

surrounding of the seed tile by the use of masks, as shown in Figure 3.5. The same
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3.2. INITIAL STUDIES

masks are used by the simple mask method. With this simple method, different seed

tiles have been studied. The simplest approach of selecting the seed tiles is to use all

hits and always build the masks around the next hit tile that has not been added to

any cluster yet. Another method that has been investigated, as a reference case, is to

use Monte-Carlo-truth data, to select tile hits that are tagged as primary, which are the

first hit of a track in the tile detector. The concept of this hit-ID (HID) numbering is

sketched in Figure 3.6. For the cluster seeds, all hits with HID=1 are used. A problem

of this method is, that a tile would have an HID of one assigned to it even if the hit was

not detected due to dead time or low energy deposition, since the HID is part of the

truth information. Therefore, a lot of clusters can not be included as they do not have

a hit with a HID of one. This results in over 20% of all hits not being associated to any

cluster. For this reason the method has not been further investigated.

Figure 3.6: Explanation of the HID. The HIDs are assigned to every hit in a single track
and are given by the number of tiles that have been hit by the track so far.
Orange tile: HID=1. Green tile: HID=2. Red tile: HID=3.

The last method extending the clustering using seed tile hits uses a simple tracking

algorithm, which uses hits in both pixel detector layers in the recurl stations to project

a hit onto the tile surface. These hits are then selected as seed tiles. A sketch explaining

this method is shown in Figure 3.7. Here, the red curve is the actual track and the black

line through the two pixel hits is the linear projection. Unfortunately, this tracking

method is not precise enough for clustering purposes, and therefore was not further

investigated. For this reason, no special seed tiles were used in all upcoming analyses,

since technically all tiles were used as seeds.
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3.2. INITIAL STUDIES

Figure 3.7: Tracking method using hits in both pixel layers of the recurl stations to
project a track onto the tile surface.

3.2.3 Merging of Frames

When building events from fixed time intervals, there is always some inefficiency, related

to clusters at the edge of the time windows. Therefore, after testing multiple methods

which used one frame at a time, a frame merging algorithm has been developed to check

whether there are significant differences in the overall efficiency of the clustering when

considering multiple frames at the same time. This method now takes three frames

into account with each iteration. While the masks are just built around the hits of the

frame that is currently being clustered, the other cluster constituents are searched in all

three frames simultaneously. This can be imagined as the three frames being stacked

on top of one another before the masks are built. The result of this is an overlap of

different frames that is sketched in Figure 3.8. The frame 0 is the one that is currently

being clustered, and it also provides the seed tiles for the masks. The frames ±1 are the

neighboring frames that are checked simultaneously for cluster constituents.

It was found, that using this method around 6% of cluster hits come from neighboring

frames. But without using time information a large error was introduced, since all three
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3.3. TIME SEGMENTATION

Figure 3.8: Sketch explaining the three-frame clustering.

frames were checked completely and not just the edges of the neighboring frames. This

resulted in clusters from different frames being to close in space, and thus being combined

by the algorithm. This was not further investigated, but the effect could be studied in

the future with additional time information.

3.3 Time Segmentation

The time segmentation is the first step in the complete algorithm, which only uses

information from the tile detector. The intention behind it is to provide a first rough

clustering. This method can be applied since the rate in phase 1 of the experiment is not

that high, and there is a high enough chance that two clusters are further apart in time

than the hits in each individual cluster. If the rate was significantly higher, this method

would fail since the clusters can not be separated on a time axis anymore. In order to

show that the clusters are indeed relatively well distinguishable on a time axis, Figure 3.9

shows the time differences ∆t between two hits in a single frame whose hits have been

sorted in time (blue histogram). Without clusters, a completely random distribution

within the interval of the framelength (64 ns) is to be expected. This would mean that

an exponential distribution is to be expected, which would be linear on a logarithmic

scale. For the most part this is also what can be seen in Figure 3.9, except for very small

∆t. Here, a strong deviation from random behavior can be observed, which is caused by

the clusters. To prove this, the part of the histogram, where ∆t is the time difference

between two hits from the same truth cluster is colored in orange in Figure 3.9. From

this it is clear that the characteristic behavior is caused by the clusters.

In Figure 3.10 the first 5 ns of the same histogram as in Figure 3.9 are shown. Here, a fit
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3.3. TIME SEGMENTATION

has been applied to the histogram in order to extract the characteristic time tc of the peak

caused by the clusters. The characteristic time tc describes the time in which a cluster is

usually formed, and therefore all hits of a given cluster should be generally found within

this time. As a fit function, an exponential function with another exponential function

as offset has been used. This now provides an estimate for the characteristic time tc of

0.34 ns, which is also close to the time threshold of 0.4 ns, which was found to yield

maximum efficiency for the pure time segmentation.

Figure 3.9: Time differences ∆t between two hits.

Figure 3.10: Fitted time differences ∆t between two hits.
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3.3. TIME SEGMENTATION

This threshold can now be used in the time segmentation, which works as follows. The

first step of the segmentation is to sort all hits in time (see Figure 3.11). Then start

with the first hit on the time axis (left side of Figure 3.11) and apply a time threshold to

it and see if the next hit is included in this threshold. If the second hit is included, the

same threshold is applied to the second hit to see whether the third hit is also included.

This is repeated until the threshold does not include the next hit anymore. The end of

the hit search for an individual cluster is indicated by the red arrows in Figure 3.11. All

hits in this current iteration are then added to the same cluster and the next cluster

starts with the first hit that has not yet been added to any cluster. The beginning and

the end of each cluster is represented by green and red vertical lines respectively.

Figure 3.11: Sketch of the time clustering method, where the hits in a single frame are
represented by stars on the time axis.

If the time segmentation is used in combination with the spatial clustering, the time

threshold is chosen larger than what would be ideal if just the time segmentation was

used. The intention behind this is to make sure the time clusters are rather too big

and almost never too small. Therefore, a time cluster is likely to contain multiple truth

clusters, but almost never split up truth clusters. The spatial clustering then provides

additional information to separate time clusters, if they contain multiple truth clusters.
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3.4. FULL CLUSTERING ALGORITHM

3.4 Full clustering algorithm

In the software developed for this thesis, the spatial clustering is also implemented using

the masks which include the neighboring tiles, but here an iterative approach has proven

to be the most efficient. As a first step, the time segmentation is applied to split hits in

a frame into multiple hit collections, forming only clusters in the same time frame. This

results in clusters with an average size of three hits and 10 cluster candidates per frame

on average, compared to 16 true tracks hitting the tile detector on average per frame.

After all hits in a frame have been split up into hit collections during the time segmen-

tation step, they are iteratively split further into clusters. This process is sketched in

Figure 3.12. First, masks are iteratively applied to the hits in the individual hit collec-

tions, starting with the earliest one. All hits included in these masks are added to the

same cluster. The next step is to apply another iteration of masks to the hits that have

been found in the first iteration, and check whether there are further hits of the same

hit collection. If further hits are found, they are added to the same cluster. This will be

repeated until every hit in a given hit collection has been assigned to a cluster.

(a) (b) (c)

Figure 3.12: Sketch of the iterative spatial clustering process. a) Mask built around
time cluster hit (red). b) Mask (green) built around first hit (blue) in
mask around time cluster hit (red). c) Mask (green) built around second
hit (blue) in mask around time cluster hit (red). The yellow tile is a time
cluster hit found in the second iteration of masks (around blue hits).
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4 Efficiency Analysis

The definition of a quality measure for the effectiveness of the different algorithms is

critical to compare the methods, yet difficult to implement in practice. This is due to

the fact that the Monte Carlo truth data provided by the simulation does not include

the truth clusters directly. The closest information provided is the track ID (TID) which

is assigned at the vertex to every track. Problematic is that if the hits with the same

TID are taken as reference clusters, an intrinsic error is introduced, since some particles

undergo elastic scattering processes which leads to multiple hits with the same TID, that

are far apart in space and time. These would be examples of clusters that can not be

correctly identified without Monte Carlo truth data but are also irrelevant for the pur-

pose of the tile detector, since any viable timing information is lost. It would be ideal

to discard all these clusters since the timing information after scattering processes is

invalid in terms of track reconstruction. However, this is made nearly impossible by the

fact that there is no data saved by the simulation that would make it easy to directly

filter this. The only method left to solve this problem to some extent is to limit the size

a cluster may have, in order to be considered for the efficiency.

In general the efficiency is defined as the average fraction of correctly assigned hits, when

comparing to truth clusters using the TID.

It is important to note here that, if no special seed tiles are used and a time segmentation

is involved, a simple comparison of the TID fails as a method to determine the efficiency,

if the time thresholds are too small. This occurs because the TID of hits in a cluster are

then compared to the TID of the first hit in a cluster, as a replacement for the seed tile.

In this case the time segmentation yields clusters with an average number of hits close

to one. Therefore, the simple comparison would mostly compare the one hit to itself.
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4.1. COMPARISON TO TRUTH INFORMATION

This would give an efficiency close to 100%, which obviously would be a false result. In

order to avoid this and make the algorithm stable for all time thresholds, it also has to

be checked whether there are multiple clusters with the same TID, since this would mean

that all but one of the clusters with the same TID have been assigned incorrectly, which

needs to be accounted for when calculating the efficiency. The cluster with the earliest

hit is selected, as the only correct cluster. This is done automatically for all clustering

algorithms, since it also has a small effect on the spatial clustering.

4.1 Comparison to Truth Information

As mentioned before, the direct comparison of the clusters to the TID does not represent

a realistic efficiency analysis, because the Monte Carlo truth data includes clusters with

hits that are far apart in space and time. Nonetheless, it still gives an idea of how close

to the truth clusters the algorithms can get, even if the truth clusters include clusters

from which the timing information generally is not wanted. For all upcoming analyses

in this section, up to six million frames, which are equal to about 380 ms, were analyzed

to provide enough statistics.

Pure time segmentation with a time threshold of 0.4 ns results in an efficiency of 56.1%

(see Figure 4.1a). A time threshold of 0.4 ns was found to deliver the maximum effi-

ciency for pure time segmentation.

The simple spatial clustering with straightforward TID comparison yields a lower effi-

ciency of just 45.4% (see Figure 4.1b). An inferior efficiency for this method is not

surprising, since the masks are often big enough to include hits from other clusters,

which cannot be detected without timing information.

Combining the time segmentation and the mask based clustering also yields a low ef-

ficiency of 43.1% (see Figure 4.1c). Here it was found that the best result is achieved

with a time threshold of 1.2 ns.
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4.1. COMPARISON TO TRUTH INFORMATION

(a) Time segmentation

(b) Spatial clustering

(c) Time & spatial clustering

Figure 4.1: Efficiency histograms for (a) pure time segmentation, (b) pure spatial clus-
tering, (c) combination of time and spatial clustering.
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4.1. COMPARISON TO TRUTH INFORMATION

This result is quite surprising, since the algorithm combining time and spatial clustering

is expected to yield much better results, and when single frames are visualized, it also

seems like it is working as intended and performing well. Figure 4.2 shows a typical case

where the time segmentation, as well as the full clustering, seem to work very well, since

both algorithms associated all hits to the correct cluster. The horizontal axis shows the

z-direction (direction of muon beam) and the vertical axis the ϕ-direction (azimuthal

angle), where the unit is the number of tiles in either direction. The colored tiles are all

hits in the frame and the colors indicate the individual clusters. To better understand

why the algorithm does not perform better at first sight, we need to investigate in which

cases it fails and whether this affects the experiment.

24



4.2. CAUSES FOR INEFFICIENCY

(a) Truth clusters

(b) Time segments (c) Clusters from full algorithm

Figure 4.2: Visualization of the clustering results for (b) time segmentation and (c) the
full algorithm, compared to the truth clusters (a).

4.2 Causes for Inefficiency

There are two main cases where the algorithm fails to detect the truth clusters, as they

are defined in the Monte Carlo truth data. In the first case, the algorithm merges

multiple clusters into one, because they are close in time and space. An example for this
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4.2. CAUSES FOR INEFFICIENCY

case is outlined in red in Figure 4.3, where the hits are direct neighbors and only 73 ps

apart in time. The horizontal axis again shows the z-direction (direction of muon beam)

and the vertical axis the ϕ-direction (azimuthal angle), where the unit is the number

of tiles in either direction. The colored tiles are all hits in the frame and the colors

indicate the individual clusters. This case is intrinsically indistinguishable due to the

finite spacial granularity and timing resolution of the tile detector, thus it can only be

improved by using other information from the tracking system, as discussed in section

3.2. Fortunately, it is much more common, that the algorithm splits up truth clusters,

since it has been observed that the number of clusters that are found is 9.7% higher

than the number of truth clusters. One of those cases is outlined in blue in Figure 4.3.

Here, the hits are far apart in space and also have large time differences between 0.5 ns

and 1.7 ns.

Figure 4.3: Visualization of the clustering results (left) compared to the truth clusters
(right) for the cases where the algorithm fails.

This much more common case has already been briefly discussed at the beginning of

this chapter. From the available information, it appears that this is most likely caused

by elastic scattering processes that can lead to these big separations. Assuming there

is no bug in the simulation software, the cluster shown in Figure 4.3 should be caused

by the same particle. Unfortunately, this can not be proven with the simulated data
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4.3. ANALYSIS WITH REALISTIC CLUSTER SIZE

currently available, but it could be verified that the three hits are caused by a positron

with similarly high energy deposition in the tiles. This is exactly what is to be expected

from elastic scattering processes.

Since the goal of the tile detector is to provide very precise timestamps, this type of

cluster should be excluded, because there is no way to assign a proper timestamp to

the track. Since there is no easy way of excluding these clusters from the efficiency

calculation without a separate tracking algorithm, the effect these clusters have on the

efficiency of the clustering algorithm can be approximated by limiting the size of the

clusters, which are included in the calculation of the efficiency.

4.3 Analysis with Realistic Cluster Size

4.3.1 Truth Cluster Size

To properly select a realistic maximum cluster size for the calculation of the efficiency,

we first take a look at the sizes of the truth clusters. To do so, Figure 4.4 shows the

distribution of the maximum distance between two hits in a truth cluster. All clusters

with just one hit therefore get a maximum distance of zero. The distance between two

cluster hits is calculated in a three-dimensional space and is defined as the distance

between the centers of the tiles. It can be seen, that the vast majority of clusters have a

size of well under 50 mm. From this we can already conclude that a threshold of around

30 mm will include almost all clusters with relevant time information for the experiment.

The small peak at around 120 mm is caused by clusters with hits that have very similar

z-coordinates and ϕ-coordinates, which differ by around 180◦, since it is the diameter of

the tile detector.

This maximum distance was also plotted against the number of hits in truth clusters in

Figure 4.5. The vast majority of clusters has a realistic extent and number of hits. In

fact, even though the maximum distance is 1140 mm, which is the length of the diagonal

of the whole detector, the mean distance is still 21.7 mm. Also, the mean number of

hits per truth cluster is two, while the maximum is 32 hits. The gap in the middle is

caused by the fact, that the center station is longer than the recurl stations. Therefore,

27



4.3. ANALYSIS WITH REALISTIC CLUSTER SIZE

Figure 4.4: Histogram showing the maximum distance between two cluster hits in the
truth clusters. Note that the horizontal axis is limited to 250 mm.

the part of the plot for shorter distances represents the clusters in a single station. This

is followed by the gap, which is as large as the difference in length of the center and the

recurl station. After the gap, the clusters with hits in both stations can be seen.

Figure 4.5: Maximum distance between two cluster hits in the truth clusters plotted
against the number of hits in the clusters with logarithmic density.
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4.3. ANALYSIS WITH REALISTIC CLUSTER SIZE

With this information, we can now look at the amount of clusters that would have been

left out by the different possible thresholds to check whether thresholds around 30 mm

are realistic. Figure 4.6 shows the percentages of clusters that would be excluded for

different thresholds.

Figure 4.6: Percentage of truth clusters that have a maximum distance between hits
bigger than the threshold on the horizontal axis.

To take this argument further, we can also take a look at how many hits a cluster usually

has, which is also a limiting factor for the size of the clusters. The histogram in Figure

4.7 shows the amount of clusters with a specific number of hits. The mean number of

hits per truth cluster is 2, and if clusters containing a single hit are not considered it

is 3. From this, a threshold for the cluster size of 30 mm can finally be chosen, since

it excludes the clusters that give unusable timestamps, while not excluding a significant

amount of usable clusters.

A more precise efficiency calculation would just be possible if the clustering was done

after a tracking matched a seed tile to every track, thus detecting most of the unusable

clusters, which then could be filtered beforehand.
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4.3. ANALYSIS WITH REALISTIC CLUSTER SIZE

Figure 4.7: Histogram showing the number of hits in the clusters.

4.3.2 Efficiency for Limited Cluster Size

This section will discuss the efficiencies resulting from limited truth cluster sizes and

compare them to the results for an unlimited truth cluster size.

For the calculation of the efficiency, all cases where a truth cluster was split up into

multiple individual clusters have been checked for their maximum distance between two

of the clusters. If the maximum distance exceeded a given Monte-Carlo-threshold, the

clusters were excluded from the efficiency calculation. Figure 4.8 shows the efficiency

plotted against the maximum cluster size. The efficiency is almost constant up to a

Monte-Carlo-threshold of around 20 mm and then decreases linearly with increasing

threshold.

Table 4.1 shows the efficiencies for different Monte-Carlo-thresholds of the cluster size

for the algorithm combining time and spatial clustering, as well as for the two individual

algorithms. All values have been calculated from around six million frames in order to

provide enough statistics.

When just considering the efficiencies for an unlimited cluster size, the pure time seg-

mentation performs far better in comparison to the other two methods. From this we

can conclude that the case where the hits in a truth cluster are far apart in time and also
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4.3. ANALYSIS WITH REALISTIC CLUSTER SIZE

Figure 4.8: Efficiency of the clustering algorithm for different truth cluster size thresh-
olds.

Threshold [mm] Efficiency
Time [%]

Efficiency
Spatial [%]

Efficiency
Combined
[%]

None 56.08 45.44 43.13
20 79.33 85.53 89.24
25 79.14 84.67 88.23
30 78.90 83.38 86.74
35 78.68 82.28 85.45
40 78.43 81.11 84.10

Table 4.1: Efficiencies for different cluster size threshold for the three clustering algo-
rithms.

far apart in space is more likely to affect the spatial clustering method. Therefore, it is

very probable that a large spatial separation is more likely than a large temporal separa-

tion in these cases. By implication, the spatial clustering should exceed the performance

of the time segmentation for limited cluster sizes. Exactly this can also be observed in

the results shown in Table 4.1. Here it can be seen, that all clustering methods have

increasing efficiencies for decreasing size thresholds, but the time segmentation never

reaches 80% efficiency, while the pure spatial clustering reaches 85.5% and the combined

clustering method reaches 89.2% efficiency. Also, for the previously selected threshold of
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4.3. ANALYSIS WITH REALISTIC CLUSTER SIZE

30 mm, the time segmentation performs worst with 78.9%, while the spatial clustering

reaches 83.4% and the combined clustering again has the best efficiency with 86.7%.

This also clearly shows the benefits of combining the time and the spatial clustering.
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5 Summary & Outlook

The goal of the tile detector in the Mu3e experiment is to provide the most precise timing

information possible. This precise timing information is needed to properly distinguish

coincident signal decays from combinatorial background processes. Clusters occur natu-

rally for shallow incident angles in the tile detector. Here one particle triggers multiple

hits, which are usually in close proximity to one another. This means that multiple

timestamps belong to a single particle. The goal of a clustering algorithm is therefore

to associate all hits to the particle that caused them. Developing such a clustering al-

gorithm was the goal of the work presented in this thesis. In the course of this work,

multiple algorithms have been implemented to work with the data provided by the Mu3e

simulation software. The final algorithm uses both temporal and spatial information to

properly associate the hits to clusters. The biggest challenge was presented in quantify-

ing an efficiency parameter, since the truth data from the simulation does not directly

include the truth clusters. It was found that limiting the cluster size to a threshold of

30 mm ensures that almost only clusters carrying valid timing information are included

and also very few of those valid clusters are discarded. For this threshold the efficiency

was estimated to be 86.7%.

This work could be carried on by implementing a tracking algorithm before the clustering

algorithm. A next step also would be to determine how the multiple available timestamps

for one particle are best combined to get the most precise timestamp.
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