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Abstract
Magnetic Fields for Cooling and Trapping of Potassium Atoms

This thesis presents a versatile setup to precisely control magnetic fields for trapping and
cooling of potassium atoms as well as the control of their interactions via a magnetic Feshbach
resonance. It consists of an arrangement of water-cooled coils to generate high magnetic
fields and field gradients, as well as a pair of coils for each spatial dimension to compensate
extrinsic fields and to fine tune the applied field. Special emphasis is put on the uniformity of
the field, since it determines the deviations of the scattering lengths within the trapping region.
The field of the water-cooled coils is simulated taking into account their actual geometry and
winding imperfections. The design and winding of the compensation coils is presented. Their
resulting fields, inductances and resistances are characterized and compared to simulated
results and analytical calculations. The agreement of measured and simulated results qualifies
the use of the coils in the experiment and to predict the field configuration in the trapping
region from numerical simulations.

Zusammenfassung
Magnetische Felder zum Kühlen und Speichern von Kaliumatomen

Diese Arbeit behandelt einen vielseitigen Aufbau zur präzisen Einstellung magnetischer
Felder für das Kühlen und Speichern von Kaliumatomen und der Kontrolle deren Wechsel-
wirkung mit Hilfe einer magnetischen Feshbach-Resonanz. Dieser besteht aus einer Anord-
nung wassergekühlter Spulen für die Erzeugung hoher Felder und Feldgradienten, sowie
einem Spulenpaar pro Raumrichtung um äußere Felder zu kompensieren und das angelegte
Feld fein abzustimmen. Besonderer Wert wird auf die Homogenität des Feldes gelegt, da diese
die Abweichungen der Streulänge in der Fallenregion bestimmt. Die wassergekühlten Spulen
werden unter Berücksichtigung ihrer echten Geometrie und Wicklungsunregelmäßigkeiten
simuliert. Die Dimensionierung sowie der Wicklungsprozess der Kompensationsspulen wird
dargestellt. Messungen der resultierenden Felder, Induktivitäten und Widerstände werden mit
simulierten, sowie analytischen Werten verglichen. Die Übereinstimmung zwischen Messung
und Simulation qualifiziert die Spulen für den Einsatz im Experiment, sowie die numerische
Simulation für eine Vorhersage der Feldkonfiguration in der Fallenregion.
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1 Introduction

As early as 1924 Albert Einstein noticed the relevance of Satyendra Nath Boses work on
photon statistics for bosonic (integer spin) particles and postulated the so called Bose-Einstein
condensate (BEC) as a new phase of matter [1],[2]. But is was not until 1995 that a BEC was
obtained for clouds of trapped alkali-metals by the groups of Cornell and Wieman at JILA
for 87Rb [3] and Ketterle at MIT for 23Na [4]. Today these condensates of trapped atoms are
of particular interest for the field of bosonic quantum physics. Since Feshbach resonances
can be used to tune the effective interaction potential of the particles, a variety of quantum
systems can be mapped on the atoms of a condensate in suitable trapping potentials. The
trapped bosons act like a quantum simulator of the model quantum system. The concept of a
quantum simulator was first proposed by Feynman in 1982 [5] and can not only be used to
explore the properties of specific quantum systems, but also to benchmark theories describing
the behavior of many-particle systems.

The context of the work described here is an experiment to achieve a BEC-state of a cloud
of atoms of the potassium isotope 39K. This is enabled by a broad Feshbach resonance of the
|1, 1〉 hyperfine state at around 403.4 G [6], which allows tuning to repulsive interactions, a
prerequisite for achieving sizable BECs. The large width of the resonance of 52 G allows for a
precise tuning of the scattering length and therefore the effective interactions in the condensate.

This thesis focuses on the role of the magnetic field and its experimental control, needed not
only to tune the scattering length but also for the different steps of the cooling processes in
order to reach the BEC phase transition around 150 nK [7]. Following a short introduction of
the experimental concepts and required theory in Chapter 2, Chapter 3 explores influences of
asymmetries of the water-cooled coils, which produce a quadrupole field for magneto-optical
as well as magnetic trapping and cooling as well as a homogeneous offset field for the tuning of
the scattering length. Here, the approach was to simulate the field of the already manufactured
coils to validate its suitability for the experiment, especially for the configuration needed to
reach the vicinity of the Feshbach resonance. At this point a high uniformity of the field is
crucial because otherwise the scattering length can differ significantly within the trapping
region. Chapter 4 covers the compensation coils, which are needed to minimize the effects of
any extrinsic magnetic fields, such as the earths magnetic field and magnetic fields arising from
electrical equipment. Since the six coils, one pair compensating a single spatial dimension,
were build during this work, the designing process of the coils is described. Measurements
including resistance, inductance and the magnetic field are analyzed. The latter is compared to
simulated results in order to verify the accuracy of the simulation, which was used in turn to
predict influences of nonuniformities on the trapping region.

6
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2 Experimental and Theoretical
Background

2.1 Cooling and Trapping

The planned experimental cycle starts with laser-cooling in a two-dimensional magneto optical
trap (2D-MOT), which pre-cools the atoms from the hot background vapor in a vacuum
chamber. A push beam transfers the atoms into a 3D-MOT inside the science chamber, which
is connected via a differential pumping tube. After sufficiently many atoms are captured in the
3D-MOT, cooling below the Doppler-temperature is achieved with a gray molasses stage [8].
This allows for further evaporative cooling in a magnetic trap. Finally the atoms are loaded
into a dipole trap [9], where further evaporative cooling and the transition to a Bose-Einstein
condensate is enabled by the use of a Feshbach resonance. The goal is not only to reach this
phase, but also to retain as much atoms as possible for the experiments to be performed later
on.

2.1.1 Magneto-Optical Trap

A magneto-optical trap uses the momentum of photons ~p = h̄~k to confine the atoms in position
and momentum space. To understand the basic principles we first consider a two level atomic
system denoted by J=0 and J=1 with a transition energy E0 = h̄ω0 moving in a single spatial
dimension. To confine the atoms in momentum space one sets up two counter-propagating laser-
beams with a frequency ω which is slightly detuned below the transition frequency ω0 = ω+ δ.
Therefore the photon scattering rate is small for stationary or perpendicular moving atoms and
more importantly equal for both directions. If however an atom moves in the direction of a laser
beam with velocity ~v its effective frequency gets Doppler shifted by ~k~v. In its comoving frame
this corresponds to a blue-shift of one beam (the counterpropagating one in the laboratory
frame) and a red-shift of the other one. This results in unequal scattering rates and the atom
gets slowed down by the momentum transfer of the photons. After each scattering process the
atoms fall back to the ground state J=0 via spontaneous emission. The corresponding photon
gets emitted in a random direction. Therefore the corresponding momentum kicks average to
zero for a lot of these processes. By setting up a pair of laser beams in each of the three spatial
axes, one can confine the atoms in momentum space, which corresponds to cooling them down.
This process is also called optical molasses.

For confinement in position space one can additionally add a magnetic field gradient typically
on the order of 10 G/cm. This gradient is produced by a pair of coils with opposite directions
of current (in the later experiment these are the multicoils). These produce a quadrupole field
with a point of vanishing field in the center. Due to the Zeeman effect, this magnetic field shifts

7



8 2 Experimental and Theoretical Background

Figure 2.1 Schematic plot of the capturing process in the MOT for a two level atom. The counter-
propagating laser beams are plotted at their point of resonance with a resting atom. Nevertheless do
unequal scattering rates confine the atoms in position space not only at this point. Cooling of the atoms
takes place, since their velocity corresponds to a frequency shift of the beams depending on their relative
direction, resulting in unequal scatering rates, too. Fig. taken from [10] with adjusted labels for a
quantization axis locally parallel to the magnetic field.

the energies of the sublevels Mj = 1, 0,−1 (see Fig. 2.1). Therefore for positions outside the
center the Mj = −1 sublevel will be closer to resonance with the laser beams. According
to the selection rules for the transition one has to adjust the polarity of the light to σ−. By
choosing the right polarity for the beams one can set this up such that atoms outside the center
experience a restoring force towards the center. Note that due to the switch of sign of the
magnetic field in the center, the relative polarity of the beams switches sides, while the energy
splitting of the hyperfine states does not. Therefore the outgoing beam is off-resonant and on
one axis one has to shine in light with equal polarities.

39K is not a two level system like described above [11]. Nevertheless the basic principle
and especially the magnetic field requirements remain the same. In the experiment two MOTs
are used. The first one confines the atoms in only two spatial dimensions and is therefore
called 2D-MOT. It is used to cool the thermal atoms that are dispensed by an oven. Since the
atoms are only confined in two dimensions, they are distributed on a line. An additional beam
aligned with that line, the so called push beam, transfers a small momentum to the atoms. This
pushes the atoms through a differential pumping stage into the 3D-MOT region in the science
chamber. In this way the actual MOT is loaded with a stream of already pre-cooled atoms
and can also operate with much less thermal atoms around, which otherwise would severely
limit the lifetime of the BEC. Since the cooling process in the MOT is limited to the Doppler
temperature [12], which corresponds to 145 µK for 39K [11], further cooling has to be achieved
through other techniques. Common sub-Doppler cooling mechanisms (which for most species
can be used inside the MOT) are highly inefficient due to the small hyperfine splitting of 39K
[13]. The next stage will therefore be a gray molasses stage, for which temperatures as low as
6 µK have been reported [8].

8



2.1 Cooling and Trapping 9

2.1.2 Magnetic Trap and Evaporative Cooling
In principle it is possible to load the dipole trap directly from the gray molasses [8], which
renders the magnetic trap unnecessary. However, a lot of laser power is required to obtain deep
optical traps with a big volume, such that a large fraction of the laser-cooled atoms can be
captured. An option to obtain larger samples could therefore be to employ a magnetic trap
as an intermediate step. A quadrupole trap is the easiest way of realizing this. The magnetic
dipole moment ~µ of an alkali atom in its ground state consists of the magnetic moment of the
spin ~S of its valence electron and the spin ~I of its nucleus with their respective coefficients.
Therefore the total energy in an external magnetic field sums to:

E =
µB

h̄
(gS

~S + gI
~I) · ~B (2.1)

Depending on the Zeeman-sublevel this can either result in an increase of energy or a decrease.
Therefore the resulting force is either towards decreasing field, which is called low-field-seeker,
or towards increasing field, a so called high-field-seeker. Since it is not possible to get a
local maximum of the magnetic field one can only trap low-field-seekers (generalization of
Earnshaws theorem [14]). Like in the MOT stage two coils with opposite directions of current
produce a quadrupole field. This results in a local field minimum in their center and nearly
constant magnetic field gradients. In a comparable experiment, which includes a magnetic
trap for 39K, a magnetic field gradient of 190 G for the z-direction and 90 G for the x- and
y-direction was used [15]. To prevent losses by so called spin-flip Majorana transitions [16] in
the zero field region in the center due to the small energy splittings of the hyperfine states, one
can use an additional optical dipole trap, which shifts the trap center slightly out of the region
of vanishing magnetic field.

The atoms trapped with this technique can then be evaporatively cooled. In thermal equilib-
rium the energy of the atoms is Boltzmann-distributed. From this we can depict the process of
evaporative cooling via looking at discrete steps. First one lowers the effective depth of the
magnetic trap until the atoms with the highest energies are able to escape (which is done with
a technique called RF-knife). The remaining atoms will rethermalize via collisions, which
means their energies will again form a Boltzmann distribution. The mean energy of the new
distribution will be lower than before, since the atoms that left the trap in the last step had an
energy way higher than the old mean energy. Via further lowering of the trap depth one can
therefore lower the mean energies of the remaining atoms, which corresponds to cooling them
down. This process works also for continuously lowering of the trap depth but one has to keep
in mind that the time the system needs to rethermalize determines how fast this process can be
done. If one reduces the barrier of the trap more slowly, less atoms are needed to escape for
reaching the same final temperature, since due to a more perfect thermalization, escaping atoms
posses optimum high energies. Instead other loss processes will dominate. One therefore has to
make a trade-off. In principle cooling 39K below the temperature of the BEC-transition should
be possible using this technique, but would result in a collapse of the just obtained condensate
due to attractive interactions [17]. To avoid this one has to load the atoms into a dipole trap
above the BEC temperature. By operating two coils with unidirectional current flow, one can
apply a magnetic fied suitable to tune the collision properties as briefly illustrated below. This
allows for a further evaporation of atoms to reach below the transition temperature. According
to [18] this process can be enhanced for a magnetic field of 395.2 G, which corresponds to a

9



10 2 Experimental and Theoretical Background

Figure 2.2 Plot of the atomic wavefunctions for different resulting scattering lengths a. For the
microscopic scale of the potential (left), one can see the linear extrapolation of the wavefunction
resulting in the intersection point defining a. The macroscopic scale of the wavefunction at high
distances r from the scattering point (right) shows the phase difference between incoming and scattered
wave, when the blue a = 0 wave is considered as being also the incoming wave (since a = 0 results in
no phase difference, see Eq. 2.4). Fig. taken from [20].

scattering length of a ≈ 180 a0. As one can see in the next section this increases the total cross
section (Eq. 2.5) and therefore enhances the rethermalization process, which results in a higher
efficiency of the evaporation.

2.2 Feshbach Resonance of 39K

In the experiment a Feshbach resonance of the hyperfine state |1, 1〉 of 39K located at (403.4±
0.7)G ([6]) will be used to tune the scattering length during the evaporation process and in the
condensate. This section introduces the basic properties of the scattering length itself as well
as the Feshbach resonance (additional information and basic derivation can be found in [19],
that this summery is based on).

2.2.1 Scattering Length

The scattering length a is used to describe the interaction properties of particles with low kinetic
energy (corresponding to small k = |~k|). For interatomic potentials which are spherically
symmetric and short ranged (< 1/r) one can assume a scattering amplitude f(θ), which
depends only on the angle θ between the relative momenta before and after scattering. The
total wave function consists of the incoming wave and the scattered one:

Ψ = eikz + f(θ)
eikr

r
(2.2)

10



2.2 Feshbach Resonance of 39K 11

Figure 2.3 Schematic plot of the open and closed channel used for a Feshbach resonance. Eres is the
energy of the bound state and Eth is the threshold energy of the open entrance channel. Fig. taken from
[19]

Here the incoming direction was set to the z-direction, k is the wave number of the incoming
wave and r is the distance to the scattering center. For low energies the wavelength is much
larger than the short ranged scattering potential. Therefore any potential can be considered
spherically symmetric and (since the energies are low) higher angular momenta do not con-
tribute and it is sufficient to consider s-wave scattering only. For the asymptotic limit f(θ)
approaches a constant, that yields the point of intersection of the extrapolated wave function
with the z-axis, which is identified as the scattering length a = −f(θ):

Ψ = 1− a

r
(2.3)

As one can see in Fig. 2.2 this intersection point corresponds to a phase difference δ on the
macroscopic scales of the wave function:

δ = −ka (2.4)

In this picture one can understand that negative (positive) scattering lengths act like an attractive
(repulsive) interaction. For scattering lengths close to zero the gas can be considered as
noninteracting. The latter gets even clearer by looking at the resulting total cross section σ for
identical bosons and s-wave scattering:

σ = 8πa2 (2.5)

2.2.2 Feshbach Resonance
Feshbach resonances arise for scattering particles, which share a bound state with a magnetic
moment different from the one of the two incoming particles. While this bound state is part of

11



12 2 Experimental and Theoretical Background

Figure 2.4 Dependence of the scattering length a in units of the Bohr radius a0 on the magnetic
field B in [G] for the |1, 1〉 hyperfine state of 39K in the vicinity of its Feshbach resonance located at
(403.4± 0.7) G, with its width ∆ = −52 G and background scattering length abg = −29 a0 in units of
a0 (values taken from [6])

a closed channel and has a higher energy Eres than the energy of the incoming particles Eth (see
Fig. 2.3), the difference in magnetic moment can be used to compensate for this the energy
difference, via applying a magnetic field. In the vicinity of the resonance where Eres − Eth is
small, corresponding to B ≈ B0, the presence of the bound state affects the scattering length,
as can be calculated via perturbation theory [19] and be approximated as:

a = abg

(
1− ∆

B −B0

)
, (2.6)

with abg the background scattering length far off resonance and ∆ being the width of the
resonance, which corresponds to the difference in field between the field at resonance B0

and the field at the zero crossing of the scattering length. For the |1, 1〉 hyperfine state of
39K, ∆ = −52 G and abg = −29 a0 ([6]), with a0 being the Bohr radius, which leads to a
dependence of the scattering length as plotted in Fig. 2.4.

2.3 Magnetic Properties of Circular and Square Coils
The scattering length shows an asymptotic behavior close to its resonance. Therefore to enable
tuning over a large range one has to make sure that the magnetic field varies as little as possible
within the trapping region. One could use a long solenoid, which has a practically constant
magnetic field inside, and use magnetic shielding to block any undesired fields, such as the
earths magnetic field and magnetic fields produced by electrical equipment. But as discussed
before the setup also has to be able to produce magnetic quadrupole fields for the MOT and
the magnetic trap. Also both the solenoid and the shielding would block any optical access

12



2.3 Magnetic Properties of Circular and Square Coils 13

to the science chamber. This section covers the basic properties of circular and square coils,
such as their magnetic field and inductance. Also the Helmholtz configuration will be derived
for both shapes, which uses only two short coils to produce a uniform field in their center and
therefore allows optical access.

2.3.1 Magnetic Field

The magnetic flux d ~B of a current I flowing at position ~r′ can in general be calculated according
to the Biot-Savart law:

d ~B(~r) = µ̃Id~l × ~r − ~r′

|~r − ~r′|3
(2.7)

with ~r being the point of interest, d~l the differential element of the path of the current and the
constant:

µ̃ = 0.1 G cm/A (2.8)

This is defined for practical reasons. Then all lengths are in centimeter and the resulting
field B is in Gauss, while the current I can be plugged in in Ampere. From this one can
calculate the field of a circular coil with N turns and radius R for its axis of symmetry (z-axis)
in cylindrical coordinates:

~r =

0
0
z

 = z ~ez , ~r′ =

R cos(ϕ)
R sin(ϕ)

0

 = R~eρ =⇒ d~l =

−R sin(ϕ)
R cos(ϕ)

0

 dϕ = R~eϕdϕ

~B(z) = µ̃IN

∫ 2π

0

dϕR~eϕ ×
(z ~ez −R~eρ)
|z ~ez −R~eρ|3

= µ̃IN

∫ 2π

0

dϕ
(R2~ez +Rz~eρ)

(R2 + z2)3/2

(2.9)
Integration over sin and cos from 0 to 2π is zero. Therefore only the z-component of the

magnetic field is nonzero, which reflects the symmetry of the setup and yields the final result:

B(z) =
2µ̃πINR2

(R2 + z2)3/2
(2.10)

This calculation is also possible aside the axis of symmetry, but leads to elliptic integrals.
Therefore a calculation without a computer is not practical and this work rather relies on a
simulation, which respects the shape of the coils.

In principle this works the same for rectangular coils. Here one loop is parametrized as a set
of four sides with length L and the axis of symmetry is chosen to be the x-axis (matching the
experiment):

13



14 2 Experimental and Theoretical Background

~B(x) = µ̃IN

∫ L/2

-L/2
dl



0
1
0

×
 x
−l
L/2

+

0
0
1

×
 x
−L/2
−l


(
x2 +

(
L
2

)2
+ l2

)3/2

+

 0
−1
0

×
 x

l
−L/2

+

 0
0
−1

×
 x
L/2
l


(
x2 +

(
L
2

)2
+ l2

)3/2


= µ̃IN

∫ L/2

-L/2
dl

2L
0
0


(
x2 +

(
L
2

)2
+ l2

)3/2 (2.11)

Again all components perpendicular to the axis of symmetry vanish. The final result is:

B(x) =
2µ̃L2IN(

x2 +
(
L
2

)2) · (x2 + 2
(
L
2

)2)1/2 (2.12)

2.3.2 Helmholtz Configuration
The Helmholtz configuration is a way of setting up a pair of only two coils to reach maximum
uniformity of the magnetic field in the center between the coils. This is done by choosing
their distance d such that the second derivative of the field along their common axis vanishes.
While this is not the biggest realizable uniform region [21], it has the highest uniformity in
the center. Due to the symmetry of the setup, odd derivatives do not arise. This means in
Helmholtz configuration the first nonzero derivative, while expanding around the center point,
is ∂4B/∂x4, which leads to maximum uniformity. These constraints yield d = R for radius R
for circular coils. While sometimes this result is used to estimate d = L/2 for the sidelength L
of rectangular coils, the actual result is d = l/1.8365 as shown below.

To proof the Helmholtz condition d = R for circular coils, one adds the field of two coils
(2.10) with distance ±d/2 to the center point:

B(z) = 2µ̃πINR2

(
1(

R2 + (z − d/2)2
)3/2 +

1(
R2 + (z + d/2)2

)3/2
)

(2.13)

From this one can calculate the first derivative, which is zero due to symmetry for z = 0:

∂B(z)

∂z
= 2µ̃πINR2

(
−3(z − d/2)(

R2 + (z − d/2)2
)5/2 +

−3(z + d/2)(
R2 + (z + d/2)2

)5/2
)

(2.14)

14



2.3 Magnetic Properties of Circular and Square Coils 15

(a) (b)

Figure 2.5 Plot of the relative magnetic field of a pair of (a) circular and (b) square coils for different
distances d and along their common axis. One can see that the Helmholtz distance (red) corresponds to
the distance, where the maximum at the center (smaller d) turns into a local minimum (higher d), which
is equivalent to the definition of the fourth derivative vanishing. In the case of the square coils one can
see that, although L/2 is not far off, L/1.8365 leads to maximum uniformity at the center.

The second derivative yields the relation between R and d as discussed above:

∂2B(z)

∂z2
= 2µ̃πINR2

(
−3(R2 + (z − d/2)2) + 15(z − d/2)2(

R2 + (z − d/2)2
)7/2

+
−3(R2 + (z + d/2)2) + 15(z + d/2)2(

R2 + (z + d/2)2
)7/2

)

∂2B(z)

∂z2

∣∣∣∣
z=0

= 2µ̃πINR2 · −6(R2 + (d/2)2) + 30(d/2)2(
R2 + (d/2)2

)7/2 !
= 0

=⇒ 30(d/2)2 = 6(R2 + (d/2)2)⇔ 4(d/2)2 = R2

=⇒ d = R

(2.15)

Fig. 2.5 shows the relative magnetic field on the common axis of a pair of circular coils for
different distances d. One can see that the Helmholtz distance is the transition point between a
minimum and a maximum being at the center. This works similarly for rectangular coils:

15



16 2 Experimental and Theoretical Background

(2.16)

B(x) = 2µ̃L2IN

 1(
(x+ d/2)2 +

(
L
2

)2) · ((x+ d/2)2 + 2
(
L
2

)2)1/2
+

1(
(x− d/2)2 +

(
L
2

)2) · ((x− d/2)2 + 2
(
L
2

)2)1/2


Since this yields extensive derivatives only the second one, evaluated at x= 0 is presented
here (while the first one vanishes again at x = 0):

∂2B(x)

∂x2

∣∣∣∣
x=0

= 2µ̃L2IN · 128(6d6 + 18d4L2 + 11d2L4 − 5L6)

(d2 + L2)3(d2 + 2L2)5/2
!

= 0

=⇒ 6d6 + 18d4L2 + 11d2L4 − 5L6 = 0

=⇒ d ≈ L/1.8365 = 0.5445 · L

(2.17)

2.3.3 Inductance

The self-inductance L of a coil sets the relationship between changes in current I and induced
voltage U to the coil:

U = L
dI

dt
(2.18)

Depending on the definition of the directions of current and voltage, this equation is sometimes
written with an additional minus sign, indicating that the induced voltage opposes the change
in current (Lenz’s law). The induced voltage will be relevant in the later setup, because it limits
the rate of change of the magnetic field of the coils (shifting time). L itself can be calculated
via:

L =
Ψ

I
(2.19)

with Ψ being the magnetic flux linkage, which is equal to the number of turns N , times the
magnetic flux Φ through the surface of one loop. Since Φ is proportional to I and N itself,
L is constant with respect to I and proportional to N2. For short coils the flux close to the
wire is significantly higher than the one in the center. This does not only make the calculations
difficult, but also leads to different mutual inductances between two loops depending on their
relative positions in the coil. Therefore calculations of L are nontrivial and there exist a lot of
different approximations, depending on the shape of the coil. To approximate the inductance
of circular coils, Wheeler’s formula is used in this work:

L =
0.8a2N2

6a+ 9b+ 10c
(2.20)

with a being the mean radius, b the length and c the thickness of the coil. All lengths are given
in inches (1 cm ≈ 0.3937 inches) and the result is given in microhenries. Whereas for square
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2.3 Magnetic Properties of Circular and Square Coils 17

Figure 2.6 Schematic of the LC-Circuit. The circuit consists of a capacitor (C = 15 nF ±10 %) in
parallel connection with the coil to be measured and a resistor (R = 1.5 kΩ) in series connection. In the
actual setup the current source (left) is a frequency generator and the voltage measurement (right) is
done by an oscilloscope.

coils with sidelength l the following formula, which is attained via series expansion, is used
[22]:

L = 0.008lN2

(
ln
l

b
+ 0.72599 +

b

3l
− 0.007149

b2

l2
+O(b4)

)
(2.21)

Although this formula does not take into account the thickness of the coil, but places all loops
within one line, it should be more accurate than not accounting for mutual inductances and
therefore be sufficient for an approximation. To measure inductances an LC-circuit can be used.
It consists of an additional capacitance C, which in the case of the built circuit is connected
in parallel to the coil (Fig. 2.6). When driven with alternating current its effective resistance
changes depending on the frequency (complex AC analysis can be looked up in [23]). This
can be measured when a resistance R is in series connection. Then the coils (or equally the
capacitors) potential difference rises, as one gets closer to the resonance frequency ω of the
circuit.

ω =
1√
LC

=⇒ L =
1

ω2C
=

1

(2πf)2C
(2.22)

17



18

3 Multicoils

The multicoils are water-cooled coils with a pancake geometry. They got produced by Oswald
and are wound from a copper tube with a quadratic profile of 0.5 cm. This allows for the
cooling water to run directly through the coil. To isolate and fix the coils they are molded in
transparent epoxy resin. Each coil consists of two layers with eight turns each (see Fig. 3.1).
Two coils per side form the Helmholtz or quadrupole pair. The coils are mounted along the
z-axis on brass posts (see Fig. 3.3), which were produced by the institutes workshop. These
guarantee an inner distance of 5 cm, which corresponds to 7.6 cm mean distance. This matches
with the coils mean radius and is therefore the Helmholtz distance. In the experiment the coils
serve multiple purposes. They produce the magnetic field gradient of in the MOT stage and for
the magnetic trap. For the BEC in the dipole-trap the coils produce a uniform magnetic field
in the regime of the Feshbach-resonance around 403 G, to adjusts the scattering length. For
the MOT configuration the upper and lower coils have to be operated with opposite currents
for which anti-Helmholtz configuration (corresponding to 8.6 cm mean distance) would be
ideal to get a constant magnetic field gradient. Nevertheless this should not affect the cooling
process in the MOT too much, while a uniform magnetic field is crucial for experiments in the
vicinity of a Feshbach resonance. As one can see in Fig. 3.1 the windings of the coil seem
irregular. To some extend this is unavoidable since one has to realize the transition between
the two layers, but its impact on the fields uniformity has to be examined. It was not possible
to measure the magnetic field directly because the resolution of the measurement needs to be
very high to see its impact on the trapping region, which is only about 100 µm wide in each
direction. Thats why the coils fields got simulated to estimate the effects of the nonuniformities.
Most simulations are done for xy-planes, parallel to the coils (which means the z-axis is their
common axis). This allows to check for unanticipated asymmetries.

3.1 Simulation of the Magnetic Field

To simulate the magnetic field of the multicoils their shapes had to be estimated as exactly as
possible. Therefore both sides of the coils got scanned in a flat bed scanner to have a high
quality picture of both layers and minimized effects of parallaxes. These scans got digitalized
with Engauge Digitizer [24], which also interpolates between the points set by hand. This gives
around 1900 points per layer to work with. After setting up the coils in the simulation like they
are in the experiment (see Fig. 3.2 and 3.3) the magnetic field is calculated with the Biot-Savart
formula (Eq. 2.7) by making it a discrete sum over the vectors connecting the points (for the
code see appendix A). The center of the field was first set to the plane at the midpoint between
upper and lower layers, which should be exact due to the digitized layers being 2D and then
optimized for a symmetric field in the center of the simulated region. This means in x- and
y- direction the field point was set to the maximum of the field and in z-direction to the local
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3.1 Simulation of the Magnetic Field 19

Figure 3.1 Example of a scan of one of the four multicoils. One can see the points set by hand on the
tube of the coil and the interpolation done by Engauge Digitizer. This yields a total of about 1900 points
per layer. A coordinate system is defined based on the edges of the epoxy resin (red crosses). The
transition between the top and bottom layer is visible too. It is one of the reasons if not the main reason
for asymmetries in the coils.

(a) (b)

Figure 3.2 (a) Single coil and (b) complete setup in the simulation. In (b) one can see that two coils are
on top and two at the bottom, each consisting of two layers. This results in a total of eight layers, which
are accounted for in each calculation within the simulation. While the coordinate plane in (a) is the
coordinate system introduced while digitizing the coils (see Fig. 3.1), the one in (b) has its center point
at the center of the Helmholtz configuration.
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20 3 Multicoils

Figure 3.3 Picture of the completed coil setup in the experiment. One can see the four multicoils in the
center, surrounded by the compensation coils. While the z-direction and coils (circular) are aligned with
the multicoils, the x- and y- coils and their respective direction can be distinguished via the larger size
of the x-coils. In the top left corner one can see the supply lines of the multicoils, consisting of four
solid copper rods, which allow the individual drive of the top and bottom coils.
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3.2 Resulting Properties 21

minimum, which in theory defines the center in all spatial directions. The fact that a local
minimum was found means that the coils are not mounted in their actual Helmholtz distance
(compare to Fig. 2.5), which differs from the one of the mean values due to the coils large
extensiveness. While one could argue that this approach of centering levels out some of the
asymmetries, this is the proper way for predicting influences on the experiments, since after all
optimizing is done, the trapping region should be in the vicinity of this point. The simulation
revealed that the center is about 210 µm shifted towards the upper coils in z-direction, which
can only be explained by asymmetries. This should be no issue for the experiments since this
is still well within the science chamber. What could be an issue, is the fact that the center point
of the quadrupole configuration for the magnetic trap was found to be off by −389 µm in x-,
149 µm in y- and−232 µm in z-direction with respect to the Helmholtz-configuration. The total
distance is therefore about 475 µm, which has to be either compensated before the transition
from magnetic (or hybrid) to pure dipole trap takes place, or the resulting nonuniformities have
to be accounted for (and can be approximated via Figs. 3.5 and 3.6).

3.2 Resulting Properties

Fig. 3.4 shows the z-component of the field relative to the one at the center point in the xy-plane
in the trapping region. The overall picture does not change significantly for the edges of the
trapping region in z-direction. Nevertheless the rise in magnetic field for the edges shows
that the coils are mounted at a larger distance than their Helmholtz distance (see Fig. 2.5).
The magnitude of the magnetic field of about 4.06 G/A is enough for all planned applications,
since the maximum current of the coils is in the range of 400 A. The relative nonuniformity in
the relevant region is not more than 4.2 · 10−7 within one layer and smaller than 10−6 for the
trapping region as a whole. In the vicinity of the Feshbach resonance located at (403.4±0.7) G,
which corresponds to a current of about 99.4 A this would correspond to a deviation of about
0.4 mG. For the total width of −52 G this is enough for simultaneous tuning of the scattering
length in the whole trapping region, even close to the resonance (for an approximation of the
errors of the scattering length see Fig. 3.6). One has to keep in mind that the accuracy of the
total value of the field is not known, which means in the later experiment one has to determine
the position of the resonance in terms of corresponding current, although one can be quite
confident to find it near 100 A. Theoretically the x- and y-component should vanish in the
center point and therefore be negligibly small for the trapping region as a whole. The total
value of the perpendicular component relative to the z-direction is indeed smaller than 3 · 10−4,
which corresponds to 4.5 · 10−8 in terms of relative contribution to the total field. Although
this is a clear sign for asymmetries in the coils, the resulting effects should be negligibly small.
Besides the tiny effect on the norm of the field the transverse field component would also
correspond to a tilt of the field of less than 0.02◦. Since perfect alignment of the dipole trap and
the center of the magnetic field might be not possible, in Fig. 3.5 the deviation of the absolute
field relative to the one at the center and its gradient for an extended region of ±5 mm around
the center in x- and y-direction are plotted. This can be used to approximate differences in
total field, which are smaller than 4 · 10−3 and can be compensated via adjusting the current.
Additionally from the total value of the gradient, which is given in units of 1/100 µm−1, one
can estimate the nonuniformity of the absolute field within the trapping region by multiplying
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(a) (b)

(c)

Figure 3.4 Z-component of the field in Helmholtz configuration relative to the center in the xy-plane at
(a) z = 0, (b) z = 50 µm and (c) z =−50 µm, which corresponds to the edges of the anticipated trapping
region. One can see that the center point is a maximum in x- and y- direction and a (local) minimum
in z-direction. This shows that the coils are mounted at a larger distance than their corresponding
Helmholtz distance (compare to Fig. 2.5). All deviations between any two points in the region are
smaller than 10−6.
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3.2 Resulting Properties 23

(a) (b)

Figure 3.5 (a) Relative deviation from the absolute field in the center and (b) total value of the gradient
of the absolute field relative to the center in 1/100 µm−1 for an extended region of 5 mm around the
center and the coils operating in Helmholtz configuration. One can see that the field in y-direction
decreases slightly faster in both plots. This is a sign for the the wire elements parallel to x having a
slightly bigger part in the generation of the field. While the magnitude in (a) has no units, the units
in (b) are chosen in a way, that fast approximations of the uniformity within the trapping region are
possible. Since the region extends about 100 µm to each side, one only has to multiply the value at a
given position with the field, to get the deviation of the field.

(a) (b)

Figure 3.6 Derivative of the scattering length a with respect to the magnetic field B for the Feshbach
resonance located at 403.4 G for (a) the vicinity of the zero crossing and (b) a wide range of the
scattering length. This can be used to approximate errors of the scattering length induced by errors of
the field when multiplied with the fields error. Note that this approximation gets worse for big errors of
the field, because the slope within the range of the error can not be approximated as constant in this
case. This is particularly important near the resonance corresponding to large absolute a.
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with the needed magnetic field for the desired scattering length. For example for the maximum
gradient of about 10−4·1/100 µm−1 and a scattering length of 100 a0 this would correspond to
an error of about 0.4 a0.

For opposite directions of current in the top and bottom coils, which is their quadrupole
configuration for the MOT and the magnetic trap, the magnetic field gradients in Tab. 3.1 were
found.

x-direction y-direction z-direction
normalized magnetic
field gradient

[
G

A cm

] 0.449 0.471 0.920

desired gradient [G/cm] 95 95 190
corresponding current [A] 212 202 207

Table 3.1 Magnetic field gradients of the multicoils in quadrupole configuration (aquired via simulation)
compared to gradients taken from [15] and their corresponding currents. The deviation of the gradients
in x- and y-direction is due to the asymmetries of the coils.

Deviations within the gradient of one direction were about two orders of magnitude smaller
than the last digit given in Tab. 3.1. Nevertheless the deviations in current needed for the
desired gradient show the discrepancy of the actual coils and ideal ones, especially for the x-
and y-component, which should be equivalent both in field gradient and current. Noticeable
is the fact that the currents for the x- and y- direction differ from the one for the z-direction
by the same amount, but opposite signs (accordingly their mean gradient is equal to half
the gradient of the z-direction). This is a clear sign for asymmetries in x- and y-direction
on the order of ±2.5 % and is consistent with the faster drop in field in y-direction in the
Helmholtz configuration (see Fig. 3.5). These asymmetries arise due to the connecting wires
and transition between the layers being in regions of the coil parallel to the y-direction and
therefore mostly weakening the x-direction (see Fig. 3.2). Especially the transition weakens
the x-direction, since it is close to the center but consists of one wire only instead of two (one
per layer). In addition to the transition itself, its presence also deforms the outer windings of
the coil. Asymmetries of the quadrupole configuration should however not lead to problems,
since neither for the MOT nor the magnetic trap a high uniformity is needed. Slightly different
shapes of the trapping potential should not make a notable difference.
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4 Compensation Coils

The compensation coils are used to deal with any undesired magnetic fields in the trap, such as
the earths magnetic field and magnetic fields produced by electrical equipment. To be able
to cancel field-components in all three spatial dimensions, a pair of coils is set up for each
axis (see Fig. 4.1). For a uniform field in the center the coils should be set up in Helmholtz-
configuration. As one can see in Fig. 3.3 this was possible for the z-coils only, since the mounts
of the multicoils and the paths of the MOT-beams limit the realizable geometries.

4.1 Design and Construction

Since already the earths magnetic field of ≈ 0.5 G is within the range of 1 G, the compensation
coils should be able to even out at least 1 G in their center. Due to limited space the dimensions
have been set such that the coils do not interfere with other equipment or the laser beams
(see Tab. 4.1). Also the diameter of the copper wire was chosen to be 1 mm, since tests with
a diameter of 0.5mm showed a relatively high heat development. This led to the number of
turns per coil N and the applied voltage U being the only degrees of freedom left as explained
below. On the one hand a low number of turns yields a low inductance L and is therefore
desirable, to keep shifting times short and avoid high mutual inductances with the multicoils.
On the other hand the coils should run at low power to keep ohmic heating at a minimum. The
available home-built voltage controlled current source has 3 outlets with an upper limit of 1 A
at 12 V. Each pair is connected in series to guarantee equal current. This means every pair has
a maximum power of 12 W.

From Eq. 2.10 one can calculate a factor NI , for the z-coils to produce 1 G in their center:

NI

B
=

(R2 + (d/2)2)3/2

4µ̃πR2
= 12.79 A/G (4.1)

So the number of turns in one coil N times current I has to be adjustable to this value. Since
the current is limited to 1A in the planned setup, this means every z-coil has to have at least 13

x-coil y-coil z-coil
shape square square circle

mean sidelength/diameter [mm] 235 203 230
mean Helmholtz distance [mm] 128 110 115

mean planned distance [mm] 220 160 115

Table 4.1 Dimensions of the compensation coils. Only the mean values are given, since they are the
relevant variable for most approximations. The corresponding inner sidelength/diameter is 1 cm smaller.

25



26 4 Compensation Coils

Figure 4.1 Compensation coils in the simulation. Positions and dimensions of the coils got modeled
like in the experiment, meaning each coil consists of five layers and ten turns making a total of N = 50
turns. One can see that each pair of coils is named after the direction of their common axis, which is
also the direction in which they compensate undesired fields.
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4.2 Experimental Results 27

turns. The resistance of copper is about 17.1 nΩ m, which leads to a resistance of the wire of
21.77 mΩ m−1. Therefore the resistance R/N of a single turn is 15.73 mΩ. This determines
the voltage U needed per Gauss, since the overall resistance is proportional to N , while I
is inversely proportional to N for a given field. A factor two is needed to include the series
connection of the coils:

U

B
=
NI

B

2R

N
= 402.2 mV/G (4.2)

This shows technically 13 turns per coil would be enough, to reach 1 G in z-direction. But
from the voltage one can see that the power supply can easily drive more turns, which was
therefore used to extend the range of the field, by making 50 turns per coil.

The same can be done for square coils by using Eq. 2.12.

x-coil y-coil z-coil
NI/B [A/G] 23.37 16.65 12.79
R/N [mΩ] 20.47 17.68 15.73
U/B [mV/G] 956.8 588.7 402.2

Table 4.2 Theoretical properties of the compensation coils. Note that the actual values differ. For
the highest accuracy for total current per field NI/B and voltage per field U/B see table 4.8, for the
resistance R table 4.3.

Based on Tab. 4.2 the x- and y-coils got also 50 turns, to extend their compensation ranges
as well. Note that the voltage per Gauss factor U/B while being useful in the experiment for a
first estimation of the voltage, depends on the actual resistance of the coils (Tab. 4.3) and their
feed cables.

Coil Winding

For the actual winding of the compensation coils, different methods were applied, depending
on the coils shape. For the circular coils a form, which was made by the institutes workshop,
was used (see Fig. 4.2). This guaranteed not only the round shape, but also held the wire in
place to limit the length of the coil. The square coils were only held on the edges, therefore the
resulting length is not limited at the sides. This resulted in a rounder shape of the wire bundle
at the sides. All coils are bundled with Kapton tape, which tightens their shape.

4.2 Experimental Results

To check the actual properties of the coils a series of measurements has been carried out. In
this section results for resistance, inductance and the magnetic field both in plane of the coils
and along the common axis of the pairs are presented.
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28 4 Compensation Coils

Figure 4.2 Form for circular coils, which can be mounted on a lathe, and the winding process of a
square coil. The form guarantees a round shape and limits the length of the resulting circular coil. It also
offers notches for zip ties. In this way the coil does not loose its shape between winding and bundling.
In the case of the square coil, only the edges were held in place by a form. This led to slightly loose
wire parts at the sides.

4.2.1 Resistance

The voltage drop of the coils was measured for six different currents in the range of 0.25 A to
3 A. Since this did not make a difference as one would expect, the mean results can be found in
Tab. 4.3.

x-coil 1 / 2 y-coil 1 / 2 z-coil 1 / 2
Rtheo [mΩ] 1023.5 884 786.5
Rexp [mΩ] 1087± 12/1080± 12 940± 12/938± 12 855± 11/856± 12

(U/B) [mV/G] 1013± 8 625± 6 438± 4

Table 4.3 Resistance of the compensation coils. From the experimental values of coil 1 and 2 a new
U/B factor was derived for each direction. For the final and most exact results see table 4.8.

The theoretical values did not take feed cables and transverse components of the windings
into account. Therefore the experimental resistances are significantly higher. From those and
the analytical (IN/B) factor a new (U/B) factor was derived.

4.2.2 Inductance

According to Eq. 2.21 and 2.20 one can approximate the inductances (see Tab. 4.4). For the
square coils b = 1 cm was assumed and for the circular coils c = 1 cm and b = 0.5 cm, since
the circular coils were wound on a form, which limited the resulting length to this value. To
gain a better feeling for the approximation of the coils, that have slightly changing thickness
and length within the loop, c and b got doubled for a second calculation (while radius and
sidelength remained the same). The results influenced the dimensioning of the LC-circuit,
since the resulting resonance frequency (see Eq. 2.22) should be in the lower kilohertz range to
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fit to the frequency generator as well as the oscilloscope. There were no significant differences
in the resonance frequencies of two coils of the same pair. Therefore only the mean values are
presented (see Tab. 4.4).

x-coil y-coil z-coil
Ltheo1 [mH] 1.83 1.52 1.25
Ltheo2 [mH] 1.51 1.25 1.06

resonance frequency f [kHz] 33.2 36.6 37.3
Lexp [mH] 1.53± 0.15 1.26± 0.13 1.21± 0.12

Table 4.4 Inductance of the compensation coils. The first theoretical value corresponds to the approxi-
mated dimensions of the coils, whereas the second one consists of doubled length b (and thickness c in
the case of the circular coils), but unchanged sidelength and radius. While the second one fits well to
the experimental values of the square coils, its merely a matter of demonstrating the influence of the
shape on the inductance. The errors of the experimentally obtained inductances consist entirely of the
10 % error of the capacitance C, since all other uncertainties are negligibly small relative to that.

From this one can approximate the maximum induced voltage Umax (Eq. 2.18), for changes
to the current I. One can assume that a field of 1 G in the center of one of the pair of coils shall
be switched off within τ = 0.5 ms. Assuming an exponential decay in current and the process
to be complete when the field has dropped under 5 % (≈ e−3) this yields:

Umax = −3I(2L)

τ
(4.3)

The 2L in brackets denote that the inductance of both coils connected in series is added. This
does not account for mutual inductances.

x-coil y-coil z-coil
I [A] 0.453 0.332 0.256

Umax [V] −8.3± 0.8 −4.9± 0.5 −3.7± 0.4

Table 4.5 Approximation for the induced voltage U for ramping down a field of 1 G in the center of the
field within 0.5 ms below 5 % of the initial value. The induced voltages are on a manageable level, even
for an order of magnitude faster switching. The current per Gauss ratio is taken from table 4.8

4.2.3 Magnetic Field
The coils were mounted at the distances they have in the experiment (see Tab. 4.1) and the
field along their common axes was measured (picture 4.3). In Fig. 4.4 the results are compared
to analytical ones based on Eq. 2.13 and Eq. 2.16 (as well as to the results of the numerical
simulation). While the analytical results describe the general shape quite nicely, there is still a
significant difference in the relative values. This can not be explained by positional offsets of
the probe only. The probe (Bartington Mag03-IE-1000) measures with very high precision, so
its error is negligible here. As one can see by looking at the results of the simulation (which
is explained in detail below), it does make a difference, that the analytical formula does not
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Figure 4.3 Experimental setup to measure the magnetic field along the coils common axis and in plane.
Since the optical table alters the measurements in plane as one would expect, these measurements were
done on top of a cardboard box.

take the shape of the coils into account. This can be understood based on Eq. 2.10 and Eq.
2.12, which makes clear that the field neither has a linear relation to the distance nor is it
antisymmetric around the mean distance in any other way.

The field of the individual coils got also measured in plane (see Fig. 4.3) at a current of
2 A. This was done for both coils of each of the three axes, but since there are no significant
differences between the identical coils the mean values are presented here in Fig. 4.6, where
their relative values are compared to the simulated ones. From Eq. 2.10 and Eq. 2.12 one can
calculate the fields normal component in the center of the planes (see Tab. 4.6). Except for the
y-Coils, this fits very well to the experimental results (see Tab. 4.6).

x-coil 1 / 2 y-coil 1 / 2 z-coil 1 / 2
Btheo [G] 4.81 5.57 5.46
Bexp [G] 4.79/4.80± 0.02 5.40/5.45± 0.03 5.47/5.44± 0.03

Table 4.6 Theoretical and measured field of the compensation coils in the center of their plane for
I = 2 A
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4.3 Simulation and Derived Properties in the Trapping
Region

Since it is not possible to measure the magnetic field produced by the coils directly in the
trapping region, one needs to simulate the coils. This does not only allow to check for
deviations from expected behavior on the large scales, but one can also extend the simulation
to the extremely small scales of the trap. The simulation works similar to the one for the
multicoils. The magnetic field is calculated by discretization of the Biot-Savart law, Eq. 2.7.
This time the coils did not get scanned in and digitalized because of the thin wire and the
number of layers. Instead their windings got parametrized (including positional offsets between
the turns due to the diameter of the wire) with a certain resolution per turn as a set of points.

4.3.1 Large Scales

At first the simulation was used to simulate the field along the coil axis for the distance the coils
will have in the final setup (see Figs. 4.1 and 3.3). As one can see in Fig. 4.4 the simulated
results reproduce the experimental ones slightly better than the analytical ones. There is
arguably an offset left, but since the simulation takes the shape into account it is smaller than
the one of the analytical results, especially for the square coils. Most likely some magnetic
susceptibilities in the mount of the probe (Fig. 4.3) led to this remaining offset. This means
the offset is of relative nature and one can account for that by adjusting the currents (which
corresponds to normalizing all results to their respective center points, which can be seen in
Fig. 4.5). Additionally the y- direction of the y-coils and the respective one of the z-coils has
been adjusted (by −2 mm and 5 mm), to match to the other results. Especially for the y-coils
the improvement between theory and simulation gets clear. All in all the simulated results
resemble the experimental ones quite good in terms of shape. This is good since in the end it is
merely a matter of uniformity of the field and not of its total value, since these can be adjusted
via the current.

The measurements in plane can also be simulated. In Fig. 4.6, the results are compared
to the measurements. While the shapes of simulations and measurements are similar and
the measured field values fit both to the analytical as well as to the simulated fields in the
center point (see Tab. 4.7), the measured values are significantly lower for the edges of the
region. This difference can be explained by the probe being slightly out of plane, which is to
some extend inevitable since the sensitive region of the probe is not pointlike. This leads to a
higher distance from the wire and since the components get summed up quadratically to get
the distance, the effect gets stronger as one approaches the wire. That is also why this effect is
the largest for the z-coils, for which the distance in plane between the outermost measuring
point and the wire is only about 2.5 cm.

4.3.2 Trapping Region

Since the simulated data resembles the experimental results, the simulation was in turn used to
make predictions for the field in the trapping region. Because the actual need for compensation
is unknown and can change while the experiment evolves, all pairs were normalized to produce
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(a) (b)

(c)

Figure 4.4 Measurement of the component of the magnetic field along the respective common axis
of the (a) x-, (b) y- and (c) z-coils and comparison to analytical and simulated results, relative to the
center point of the experiment. One can see that for square coils (a and b), the difference between the
theory and the simulation is noticeable. Since the simulation takes the shape of the coils into account,
its results should be closer to the real field distribution. Also a misalignment can be seen, especially for
the z-coils.
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(a) (b)

(c)

Figure 4.5 Measurement of the component of the magnetic field along the respective common axis of
the (a) x-, (b) y- and (c) z-coils and comparison to analytical and simulated results, each being relative to
its own center point and with adjusted positions, to visualize differences in shape. Differences between
simulation and analytical results are again small. One can be confident, that the shape of the simulated
magnetic field resembles the one of the actual coils.
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(a) (b)

(c)

Figure 4.6 Simulation (line) and measurement (points) of the component of the magnetic field, relative
to the experimental one at the center, of the (a) x- (b) y and (c) z-coil in their respective planes. For
clarity an offset of 0.5 was added between one line and the next, indicated by the black dashed lines,
which are the respective zero lines. While there is no notable difference between simulation and
experiment at the center points, differences arise close to the edges of the measured region. There the
simulated values are all higher than the experimental ones. This is an indication for the magnetic field
probe being slightly out of plane.
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x-coil 1 / 2 y-coil 1 / 2 z-coil 1 / 2
Btheo [G] 4.81 5.57 5.46
Bexp [G] 4.79/4.80± 0.02 5.40/5.45± 0.03 5.47/5.44± 0.03
Bsim [G] 4.81 5.57 5.45

Table 4.7 Theoretical, measured and simulated field of the compensation coils in their center for
I = 2 A. Theory and Simulation lead to the same results. This is not surprising since the influence of
the shape is minimal at the center point.

the same magnetic field in the center, in the direction of their common axis in the center of
the trap. While the actual settings will differ, this can still be used for approximating the
influence of nonuniformities induced by the coils. This also yields new values for I/B (which
corresponds to IN/B) and therefore (U/B), which should be the most accurate ones in this
work and therefore be used for a first setting (see Tab. 4.8).

x-coil y-coil z-coil
(IN/B)theo [A/G] 23.37 16.65 12.79
(IN/B)sim [A/G] 22.67± 0.02 16.10± 0.02 12.79± 0.04
(I/B)sim [mA/G] 453.4± 0.5 321.9± 0.3 255.7± 0.8
(U/B)sim [mV/G] 983± 8 605± 5 438± 4

Table 4.8 Current and corresponding voltage per Gauss of field in direction of the coil axis in the center
of the trap. Errors of the simulated values are explained below.

In addition to the center point the fields absolute values for the whole trapping region got
also simulated. Fig. 4.7 shows the results for the plane at z = 0 and the edges at z = ±50 µm.
Although all deviations are on the order of 10−7, the shape at the edges in z-direction reveals
that the symmetric center point in these planes is already outside the trapping region. This
is inevitable, since this effect is induced by the loss of symmetry, when leaving the shared
center point of all three pairs of coils. Only for the center point are the x-, y- and z-component
of the field entirely produced by their respective coils. While this does not make a notable
difference for deviations this small, especially when compared to the field of the multicoils, it
could be noticeable if the coils are not perfectly aligned or are not perfectly shaped like in the
simulation. By looking back at Fig. 4.4 one can see that proper alignment is crucial, especially
for the x- and y- coils, due to the fact that they are not mounted in Helmholtz-configuration.
Although the deviations of the individual components are also small (Fig. 4.8), one can see
especially for the z-component, that there are mutual interactions between the compensation
coils of different directions. Therefore the uniform area is compressed in one direction and
extended in the other one. For the x-, and y-component a similar effect can be seen as a tilt
of their axis of symmetry. This is due to the fact that the transverse field component of a coil
vanishes on its axis of symmetry only. Perfect alignment on the order of a few micrometer
is not possible. Not only would all the center points of the three pairs have to match, they
also had to match to the one of the multicoils. And to make matters worse the coils in the
simulation are also ideally wound. To estimate these effects one can consider an extended
region of 2 cm, for which the trapping region should be within in x- and y-direction. Since
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the z-coils are mounted directly on the multicoils and got wound on a form their alignment
error should be small. As Fig. 4.9 shows, the single components of the field change by about
10−2 within this region. In contrast to the nonuniformities within the trapping region one can
level out these offsets by readjusting the currents in the optimization process. The mutual
interactions can be seen very well for the z-component in the form of two maxima at the edges,
although they are very small in terms of actual rise in field. For the trapping region of 100 µm
in one direction the nonuniformities will be smaller than 10−3 for the x- and y-direction. Most
importantly the z-component, since its direction of the field matches the one of multicoils and
therefore adds directly to the absolute field, has nonuniformities on the order of 10−4 for the
extended region and therefore negligibly small deviations within the trapping region. All in all
neither the z-components nor the transverse components nonuniformity should have any major
influence on the Feshbach resonance. Therefore the compensation coils can be used to level
out undesired magnetic fields without having to worry about any unintentional effects on the
scattering lengths.
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(a) (b)

(c)

Figure 4.7 Simulation of the deviation of the field relative to the center point of the compensation coils
for each pair producing the same absolute field in the center at (a) z = 0, (b) z = 50 µm and (c) z =
−50 µm. While the symmetry at the center point in (a) is clearly visible, it gets worse for leaving the
plane. This arises from the field components perpendicular to the common axis (which corresponds to
the compensating axis) of each pair not vanishing aside this axis of symmetry.

37



38 4 Compensation Coils

(a) (b)

(c)

Figure 4.8 Simulation of the (a) x-component, (b) y-component and (c) z-component of the field of the
compensation coils for each pair producing equal absolute fields in the center at z = 0. For the x- and
y- component the mutual interactions between the coils of different directions can be seen in a tilt of
the axis of symmetry, whereas for the z-component the region of equal fields gets streched in one and
compressed in the other direction.
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(a) (b)

(c) (d)

Figure 4.9 Simulation of the (a) absolute value, (b) x-component, (c) y-component and (d) z-component
of the field of the compensation coils for each pair producing the same absoulte field in the center at
z = 0 for an extended region. Compared to Fig. 4.7 and Fig. 4.8, neither the shape of the absolute value
of the field, nor the one of the x- and y- component change significantly. By zooming out, two maxima
in the z-component became visible, which are a clear sign for the mutual interactions between the fields
of the different compensating directions.
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5 Conclusion and Outlook

This thesis analyzed the magnetic field properties needed for the preparation of a BEC of 39K
with tunable interactions. Water-cooled coils, the so called multicoils are used for the magnetic
field gradient of MOT and magnetic trap and to reach the Feshbach resonance of the |1, 1〉
hyperfine state located at (403.4 ± 0.7) G. Since it is not possible to measure the magnetic
field of the coils in the trapping region directly, it was simulated instead. A magnetic field of
4.06 G/A in the center of the Helmholtz configuration and a field gradient of 0.920 G/(cm A)
for the z-direction (and about half of this value in perpendicular direction) in the center of
the quadrupole configuration were obtained. The simulation also revealed an offset of 475 µm
between the center points of the quadrupole configuration and the Helmholtz configuration. It
was found that the coils are actually not mounted in Helmholtz configuration, but at a slightly
larger distance. The influence of coil imperfections on the fields uniformity and the resulting
deviations of the scattering length within the trapping region were investigated.

To compensate effects of any extrinsic fields, pairs of so called compensation coils were
designed and built and their magnetic field was both measured and compared to simulated
results. With a current of 1 A in each coil a field of 2.2 G in x-, 3.1 G in y- and 3.9 G in
z-direction can be applied. Resistance and inductance of the coils were found to be low enough
to avoid excessive heating and allow for fast switching of the fields. The uniformity of the
fields was studied for the trapping region as well as for an extended area. Mutual influences
of the different compensation directions outside the center were seen in the simulation, but
on orders small enough to not significantly influence the behavior of the trap or the scattering
lengths on the length scale of the condensate.

While this thesis was written, the 3D-MOT of 39K was achieved, which is one of the big
steps towards a successful setup for the planned experiments. The next step will be gray optical
molasses for sub-Doppler cooling, which requires the use of the compensation coils to cancel
the extrinsic fields. As soon as atoms are loaded into the optical dipole trap, the Feshbach
resonance at 403.4 G will be used to enhance the evaporation process and to tune to positive
scattering lengths, which is a prerequisite for successful Bose-Einstein condensation. After a
BEC is produced, RF-spectroscopy can be performed, which gives precise access to the field
distribution within the trapping region.

Based on this thesis, one can be quite confident, that the magnetic field setup is well suited
to reach a 39K BEC with precisely tunable interactions.
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A Code

Function for evaluation of the magnetic field in python:

@jit
def B_field(r,I,r_0):
v = 0
for i in range(len(r)-1):
dl = r[i+1]-r[i]
v = v + (np.cross(dl,r[i]-r_0)/(sum((r[i]-r_0)**2)**(3/2)))
B = 0.1*I*v
return B

The function takes the list of points from Engauge Digitizer r, the current I and the point at
which the field is calculated r_0. @jit is needed to use the numba package, which speeds up
the evaluation.
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B Resolution of the Magnetic Field
Simulation

The number of operations scales not only with number of points the field gets calculated for,
which goes already quadratic for the two-dimensional grids, but of course also with the chosen
resolution of the coils. Due to limited computing power one therefore has to make a trade-off
between accuracy of single results and grain size of the grid or chain. In Figs. B.1 and B.2 one
can see the results for the coil axis of the z- and y-direction, which represent a circular and
rectangular coil, for different resolutions. As one can see in both cases, the results converge
quite fast. Therefore the highest resolution of 2000 points per turn can be assumed to be exact
and one can calculate errors based on that. For resolutions higher than 80 points per turn the
relative error is already smaller than 10−3 and nearly constant. This means that the overall
shape remains unaffected by the resolution, which is great for the accuracy of the derived
results for the trapping region. Since the multicoils got simulated with over 200 points per turn,
one can be quite confident about the accuracy of their simulation as well.

To understand the errors one has to look at the changes, which arise by increasing the
resolution. If the wire element is divided in multiple smaller ones before evaluating, the
absolute distance gets more precise in the case of the square coils, since it is always taken
to the starting point of the element but in reality changes within. Also the angles precision
increases. In the case of the square coil the angles precision does not affect the total values
of the cross products, since these are always twice the area of the spanned triangle, which
is when summed up over one side the total area of the triangle spanned by the side and the
point, the field is evaluated for. Also the resulting field direction is unaffected, because it is
always perpendicular to the spanned triangle. This means the error for square coils consists
entirely of the precision of the weighting of these crossproducts by the distance. For circular
coils one gets a somewhat opposite picture. This time the distances are correct as long as one
calculates for points on the axis of symmetry, since the starting points of the wire elements
are always on the circle and the distance to the wire does not change. Instead the total values
of the crossproducts change. This can be understood easily by considering the center point
of the plane. Here the sum over all crossproducts yields twice the area of the polygon, which
approximates the circle. ‘poly’ represents the resolution of the wireloop and it is clear that
this area converges to 2πR2 for high resolution, while the sum over all wire elements goes to
2πR, which is the real length of the wire. When one goes out of plane, the area becomes the
surface of a cone. Then the direction of the normal vector changes, while going around the
cone. This means that the direction of the resulting field changes with the resolution. While
being on the axis of symmetry this effect levels out for summing over all directions, since the
distances which determine the weights of the sum are exact. Aside the axis of symmetry this is
not the case, but this relative distance errors vanish pretty fast with increasing resolution and
distance to the wire.
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(a) (b)

Figure B.1 Simulation of the magnetic field along z-axis relative to the center point for different
resolutions (a) and relative deviation from highest resolution (b) for a pair of circular coils. The results
in (a) converge quite fast. Although the highest resolution of 2000 points per turn is significantly higher
than all the others, the difference in resulting field can hardly be seen. The relative differences to the
highest resolution are nearly constant. This means the shape is nearly unaffected by the resolution.

(a) (b)

Figure B.2 Simulation of the magnetic field along y-axis relative to the center point for different
resolutions (a) and relative deviation from highest resolution (b) for a pair of square coils. Although the
range of the relative magnetic field axis is higher and therefore increases this effect, the results seem to
converge even faster than for the circular coils (see B.1). This is confirmed by the relative error which
is almost halved and also nearly constant. Errors for square coils consist entirely of the error of the
distance to the wire, since it is taken to the starting point of the wire element but changes within. The
fact that the sum over the cross products is independent of the resolution, seems to let the total results
converge faster.

44



45

C Lists

45



46

List of Figures

2.1 Schematic plot of a MOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Plot of the atomic wavefunctions for different resulting scattering lengths . . 10
2.3 Schematic plot of a Feshbach resonance . . . . . . . . . . . . . . . . . . . . 11
2.4 Feshbach resonance of the |1, 1〉 hyperfine state of 39K . . . . . . . . . . . . 12
2.5 Helmholtz confiuration of circular and square coils . . . . . . . . . . . . . . 15
2.6 Schematic of the LC-Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Scan of the multicoils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Single coil and complete setup in the simulation . . . . . . . . . . . . . . . . 19
3.3 Picture of the coil setup in the experiment . . . . . . . . . . . . . . . . . . . 20
3.4 Z-component of the field of the multicoils in Helmholtz configuration . . . . 22
3.5 Absolute field and its absolute gradient of the multicoils in Helmholtz config-

uration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Derivative of the scattering length for the Feshbach resonance located at 403.4 G 23

4.1 Compensation coils in the simulation . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Picture of the form and the winding process . . . . . . . . . . . . . . . . . . 28
4.3 Picture of the experimental setup to measure the magnetic field along the coils

common axis and in plane . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Field along the common axis of the compensation coils . . . . . . . . . . . . 32
4.5 Field along the common axis of the compensation coils normalized . . . . . . 33
4.6 Field in plane of the compensation coils . . . . . . . . . . . . . . . . . . . . 34
4.7 Deviation of the absolute field of the compensation coils in the trapping region 37
4.8 Single components of the field of the compensation coils in the trapping region 38
4.9 Field of the compensation coils for an extended region . . . . . . . . . . . . 39

B.1 Influence of the resolution on the simulation for circular coils . . . . . . . . . 44
B.2 Influence of the resolution on the simulation for squared coils . . . . . . . . . 44

46



47

List of Tables

3.1 Magnetic field gradients of the multicoils in quadrupole configuration . . . . 24

4.1 Dimensions of the compensation coils . . . . . . . . . . . . . . . . . . . . . 25
4.2 Theoretical properties of the compensation coils . . . . . . . . . . . . . . . . 27
4.3 Resistance of the compensation coils . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Inductance of the compensation coils . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Approximation for the induced voltage of the compensation coils . . . . . . . 29
4.6 Theoretical and measured field of the compensation coils in the center of their

plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.7 Field of the compensation coils in their center . . . . . . . . . . . . . . . . . 35
4.8 Current/voltage per Gauss of the compensation coils . . . . . . . . . . . . . 35

47



48

Bibliography

[1] A. Einstein. Quantentheorie des einatomigen idealen Gases. Sitzungsberichte der
Preussischen Akademie der Wissenschaften , 261–267 (1924).

[2] A. Einstein. Quantentheorie des einatomigen idealen Gases: Zweite Abhandlung.
Sitzungsberichte der Preussischen Akademie der Wissenschaften , 3–14 (1925).

[3] M. Anderson, J. Ensher, M. Matthews, C. Wieman, and E. Cornell. Observation of
Bose-Einstein Condensation in a Dilute Atomic Vapor. Science 269, 198–201 (1995).

[4] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. M. K. D. S. Durfee,
and W. Ketterle. Bose-Einstein Condensation in a Gas of Sodium Atoms. Phys. Rev. Lett.
75, 3969–3973 (1995).

[5] R. P. Feynman. Simulating physics with computers. International Journal of Theoretical
Physics 21, 467–488 (1982).

[6] C. D’Errico, M. Zaccanti, M. Fattori, G. Roati, M. Inguscio, G. Modugno, and A. Simoni.
Feshbach resonances in ultracold 39K. New Journal of Physics 9, 223 (2007).

[7] M. Landini, S. Roy, G. Roati, A. Simoni, M. Inguscio, G. Modugno, and M. Fattori.
Direct evaporative cooling of 39K atoms to Bose-Einstein condensation. Phys. Rev. A 86,
033421 (2012).

[8] G. Salomon, L. Fouché, P. Wang, A. Aspect, P. Bouyer, and T. Bourdel. Gray-molasses
cooling of 39 K to a high phase-space density. Europhysics Letters 104, 63002 (2013).

[9] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov. Optical dipole traps for neutral
atoms. Advances In Atomic, Molecular, and Optical Physics 42, 95–170 (2000).

[10] C. Dornes. 3D-focusing Spectrometer for a Reaction Microscope. Master’s thesis. Heidel-
berg University (2011).

[11] T. Tiecke. Feshbach resonances in ultracold mixtures of the fermionic quantum gases 6Li
and 40K. Ph.D. thesis. University of Amsterdam (2009).

[12] C. J. Foot. Atomphysik (Oldenbourg-Verl., München, 2011) pp. XV, 428 S.

[13] A. Bambini and A. Agresti. Radiative cooling force in atoms with multiplet structure.
Phys. Rev. A 56, 3040–3055 (1997).

[14] W. H. Wing. On neutral particle trapping in quasistatic electromagnetic fields. Progress
in Quantum Electronics 8, 181–199 (1984).

48



Bibliography 49

[15] D. Nath, R. K. Easwaran, G. Rajalakshmi, and C. Unnikrishnan. Accelerated Thermali-
sation of 39K atoms in a Magnetic Trap with Superimposed Optical Potential. Journal of
Physics B 46, 155303 (2013).

[16] D.M.Brink and C.V.Sukumar. Majorana spin-flip transitions in a magnetic trap. Phys.
Rev. A 74, 035401 (2006).

[17] J. L. Roberts, N. R. Claussen, S. L. Cornish, E. A. Donley, E. A. Cornell, and C. E.
Wieman. Controlled Collapse of a Bose-Einstein Condensate. Phys. Rev. Lett. 86, 4211–
4214 (2001).

[18] G. Roati, M. Zaccanti, C. D’Errico, J. Catani, M. Modugno, A. Simoni, M. Inguscio, and
G. Modugno. 39-K Bose-Einstein condensate with tunable interactions. Phys. Rev. Lett.
99, 010403 (2007).

[19] C. Pethick and H. Smith. Bose-Einstein condensation in dilute gases. 2nd ed. (Cambridge
University Press, Cambridge, 2008).

[20] T. Schuster. Feshbach resonances and periodic potentials in ultracold Bose-Fermi mix-
tures. Ph.D. thesis. Heidelberg, University. (2012).

[21] M. E. Rudd and J. R. Craig. Optimum Spacing of Square and Circular Coil Pairs. Review
of Scientific Instruments 39, 1372–1374 (1968).

[22] F. W. Grover. Formulas and tables for the calculation of the inductance of coils of
polygonal form. Scientific Papers of the Bureau of Standards 18, 737–762 (1922).

[23] J. D. Jackson. Classical electrodynamics. 3rd ed. (Wiley, New York, 1999).

[24] M. Mitchell, B. Muftakhidinov, and T. W. et al. Engauge Digitizer Software. Last
Accessed: August 16, 2017.

49

http://archiv.ub.uni-heidelberg.de/volltextserver/volltexte/2012/13458
http://markummitchell.github.io/engauge-digitizer


Danksagung

An dieser Stelle möchte ich allen danken, die mich während der vergangenen fünf Monate
unterstützt, und damit zum Gelingen dieser Arbeit beigetragen haben.

• Zuerst möchte ich Prof. Markus K. Oberthaler danken, der mich in seiner Gruppe
aufgenommen und damit diese Arbeit und die Zeit am BECK erst ermöglicht hat. Er
war immer optimistisch, was die Fortschritte am Experiment angeht und hat mit seiner
Begeisterung für Physik immer wieder angesteckt.

• Ebenso möchte mich bei Prof. Selim Jochim bedanken, der sich als Zweitkorrektor zur
Verfügung gestellt hat.

• Ganz besonders möchte ich mich bei Helmut Strobel für die intensive Betreuung dieser
Arbeit bedanken. Während meiner Zeit am BECK hat er mir unzählige Fragen beant-
wortet und mich so von seiner Expertise profitieren lassen. Außerdem stammt von ihm
und Maurus die Idee, die Multicoils zu scannen, was den Grundstein für diese Arbeit
gelegt hat.

• Daher gilt mein Dank auch Maurus Hans, der außerdem mit Diskussionen und Anregun-
gen rund um die Simulation geholfen hat und viel Zeit in der Werkstatt verbracht hat,
um Spulenwickeltools herzustellen.

• Celia Viermann möchte ich ebenfalls danken. Sie half mir bei den ersten Versuchen
runde Spulen zu wickeln und stand immer für Fragen zur Verfügung.

• Dem anderen Bachelorstudenten am BECK, Alexander Impertro, danke ich für viele
gute Diskussionen und die gemeinsame Zeit am Experiment.

• Ich danke auch den BEClern aus meinem Büro, von denen immer jemand für Fragen zur
Verfügung stand. Außerdem ermöglichten sie viele gute Gespräche und Diskussionen,
nicht nur fachlicher Natur.

• Der ganzen übrigen Matterwave-Gruppe danke ich für die gute Zeit, das Frühstück am
Freitag morgen, sowie eine Vielzahl kleinerer Hilfen und guter Gespräche.

• Zuletzt bedanke ich mich bei meinen Eltern, von denen die naturwissenschaftliche
Prägung stammt, sowie meinen Freunden, die mich alle während des gesamten Bache-
lorstudiums begleitet und unterstützt haben.



Erklärung

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 22.08.2017,


	Introduction
	Experimental and Theoretical Background
	Cooling and Trapping
	Magneto-Optical Trap
	Magnetic Trap and Evaporative Cooling

	Feshbach Resonance of ^39K
	Scattering Length
	Feshbach Resonance

	Magnetic Properties of Circular and Square Coils
	Magnetic Field
	Helmholtz Configuration
	Inductance


	Multicoils
	Simulation of the Magnetic Field
	Resulting Properties

	Compensation Coils
	Design and Construction
	Experimental Results
	Resistance
	Inductance
	Magnetic Field

	Simulation and Derived Properties in the Trapping Region
	Large Scales
	Trapping Region


	Conclusion and Outlook
	Appendix
	Code
	Resolution of the Magnetic Field Simulation
	Lists
	Bibliography

