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Zusammenfassung

Diese Bachelorarbeit behandelt ein bildgebendes System für ultrakalte Kalium Atome. Eine
neuartige Methode zur Abbildung wird diskutiert, welche durch theoretische Überlegungen
über die Natur der möglichen Zerfallskanäle motiviert ist. Ausgehend von der Betrachtung
der Dipolmatrixelemente mit angelegtem statischen Magnetfeld wird die zugehörige Master-
gleichung konstruiert und numerische Simulationen zur Optimierung von Streuprozessen im
atomaren Medium durchgeführt, welche auch experimentell untersucht werden. Das resultie-
rende geschlossene Viernievausystem wird im Populationsgleichgewicht mit einem effektivem
Zweiniveausystem indentifiziert. Zuletzt wird die Kalibration des Systems diskutiert, welche
eine präzise Bestimmung der atomaren Dichteverteilung erlaubt.

Abstract

This bachelor thesis treats the imaging of ultra-cold potassium atoms. A new imaging method
is employed, which is motivated by theoretical considerations on the nature of possible decay
channels. The master equation is constructed from the dipole matrix elements in presence of
magnetic fields and numerical simulations are executed to optimize scattering events, which
are compared to experimental findings. The resulting closed four-level system is identified in
the steady state limit with an effective two-level system. Finally, a calibration technique of the
imaging system is examined, which allows for a precise determination of the atomic density
distribution.
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Introduction

For the study of quantum many-body systems, there has been a surge in interest for well-
controlled experimental systems. With the rise of advanced cooling techniques for dilute
atomic gaseous samples [1] Bose-Einstein condensation was achieved [2][3], which provides a
powerful subject for investigations on the nature of quantum behaviour in macroscopic sys-
tems. Remarkably, Bose-Einstein condensates can be described as coherent quantum matter
fields, wherefore the inherent quantum attributes dictate the behaviour of the complete con-
densate. In mean-field approximation a non-linear differential equation, the Gross-Pitaevskii
equation (GPE), is used to describe the behaviour of the system. Since classical computing
methods lack the performance to compute time dynamics of complex quantum mechanical sys-
tems we perform physical computing. A precisely controllable initial condition can be evolved
with respect to time, such that we can execute simulation, that exceed the mean-field ap-
proximation. Our system therefore solves equations, which otherwise would not be efficiently
solvable by current numerical means. More specifically, we exploit a broad Feshbach resonance
of the potassium isotope 39K [4] in order to tune the interaction strength of the system, which
can therefore be modulated by an external homogeneous magnetic field. Furthermore, the
environment of the condensate is variable due to a tunable optical trapping potential. Thus
the experiment can be used to map the dynamics of structural formations, that obey the evol-
ution of the Gross-Pitaevieskii equation, but more interestingly the experiment incorporates
beyond mean-field effects and delivers a basis to investigate far from equilibrium physics [5].
Since Bose-Einstein condensation can occur in three dimensions one could in principle study
physical phenomena here, in the experiment however we can manipulate the density distri-
bution. With the installation of a digital micromirror device (DMD) a plethora of positional
distributions in three or less dimensions as initial conditions will be realisable [6]. In order to
evaluate the evolved systems state, we use absorption imaging, where we exploit the energy
level structure of potassium atoms.
In this thesis we will take a closer look into the imaging system used to investigate ultra-cold
potassium atoms. Especially, we will discuss problems that arise due to the complex energy
structure of potassium atoms at intermediate magnetic fields. We will confer upon the dipole
matrix elements that follow from considerations on a suitable set of basis vectors, that describe
the electronic wavefunction. With knowledge about all possible decay modes we are going to
write down the Hamiltonian for the atom photon interaction, that is needed to capture the
imaging process. Starting from this Hamiltonian we will construct the Lindblad master equa-
tion, in order to include spontaneous decays phenomenologically. Consequently, we present
a possible way to obtain a closed four-level imaging scheme and perform simulations on the
number of scattered photons, which is used to optimize the ratio between a binary laser ima-
ging system. Our ultimate goal is to present a technique, with which we can elongate imaging
times and increase scattering events during imaging. Finally, we will briefly describe a possible
calibration for this setup and argue for a precise determination of the atomic density.
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Chapter 1

Theoretical Framework

1.1 Bose Einstein Condensation

First, we will begin our theoretical discussion of imaging ultra-cold atomic samples by giving
a brief outline on Bose-Einstein condensates (BEC). BECs are sometimes referred to the
fifth state of matter and is the central object of study in our experiment. Bose-Einstein
condensation occurs when particles, that obey Bose statistics, reach a critical phase space
density of ρcrit ≥ 2.612, in this instance he thermal de-Broglie-wavelength λdB is on the order
of the typical interparticle spacing [7]. Further, it entails a plethora of phenomenona that
ought to be studied, as it is a many-body system, that despite its scale inhibits a significant
amount of quantum attributes. A BEC can be described as a quantum matter field, rather
than a classical gas in the framework of statistical thermodynamics. Interestingly a BEC
consists of Bosons, that occupy the same state, i.e. the ground state of the system and unite
to a coherent ensemble of particles, or to stay in the language of quantum fields, a coherent
field of matter. This fact has many implications on the system, e.g. that the entirety of the
condensate can be treated as one collective wavefunction. In the following we want to elaborate
shortly on the main conclusions drawn from qunatum field theory (QFT). The Hamiltonian
of the condensate is given by [8]:

Ĥ =
∑
ij

Hsp
ij â
†
i âj +

1

2

∑
ijkm

〈ij|V̂ |km〉â†i â†j âkâm (1.1)

Where âi and â†i are the creation and annihilation operators respectively, that obey the Bose
commutation rules [âi, â

†
j] = δij and [âi, âj] = [â†i , â

†
j] = 0, 〈ij|V̂ |km〉 is the matrix element

of the interaction potential V̂ (r) between particles and Hsp
ij is the matrix elements of the

single-particle Hamiltonian, which is given by:

Hsp
ij =

∫
d3rΦ̃∗i (r)ĤspΦ̃j(r) (1.2)
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1.2. FESHBACH RESONANCES

here we introduced the state wavefunctions Φ̃i(r) and the single-particle Hamiltonian is defined
via the trap potential Vtrap:

Hsp = − ~
2m
∇2 + Vtrap (1.3)

From the Hamiltonian all relations can be calculated, but we only want to present one promin-
ent result, which is the Gross-Pitaevieskii equation (GPE). One can arrive at this formula by
defining the Bose field operators Ψ̂†(r) =

∑
i â
†
i Φ̃
∗
i (r) and Ψ̂(r) =

∑
i âiΦ̃i(r) and employing a

mean field approximation. In order to stay concise we will only show the outcome here:

i~
∂

∂t
ψ(r, t) =

(
−~2∇2

2m
+ Vtrap(r) + U0|ψ(r, t)|2

)
ψ(r, t) (1.4)

This formula is written in terms of the complex function ψ(r, t), that is the expectation value
of the Bose field operator ψ(r, t) ≡ 〈Ψ̂(r, t)〉, which is also referred to as the order parameter of
the system. Further we have defined the parameter U0 ≡ 4π~2a/m, which considers only low
energy binary particle-particle collisions, such that s-wave scattering dominates over p-wave
or d-wave scattering. s-wave scattering described by the scattering length a.
The GPE can be thought of as the non-linear Schrödinger equation, which is not far-fetched,
as Eq. 1.4 reduces to said equation for U0 = 0. Moreover, it is noteworthy, that the a Bose-
Einstein condensate is still complex enough, such that it can produce plenty of phenomena even
in mean-field approximation. The Gross-Pitaevskii equation, should nonetheless therefore be
regarded essential to our experiment.

1.2 Feshbach Resonances

Since we wish to modulate the interaction strength of the bosonic field, which is represented
in Eq. 1.4 by U0 = 4π~2a/m, we may do so by changing the s-wave scattering length a. In the
experiment we have chosen the isotope 39K not only because it can be treated as an integer
spin particle, i.e. a boson, but also because it provides a broad Feshbach resonance, where the
scattering length can be tuned by an external magnetic field.
Feshbach resonances occur in many-body systems with exceptionally low kinetic energies,
such as BECs. Due to two-body collisions unstable molecule-like bound states form. In ultra-
cold system scattering reduces to s-wave scattering [9], which can be parametrized around a
Feshbach-resonance as:

a(B) = abg

(
1− ∆B

B −B0

)
(1.5)

where B0 is the position of the resonance, ∆B is the resonance width and abg is the background
scattering length. It should be noted that this formula is only valid on proximity to a Feshbach
resonance and describes a magnetically tuned resonance. Other forms of manipulation are
possible, e.g. by optical methods.
For magnetically tuned Feshbach resonances to occur, a difference in magnetic momenta

between the composite state and individual atoms is required. Since the magnetic field couples
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1.3. PROPERTIES OF 39K
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Figure 1.1: Feshbach Resonances between 0 and 700G of 39K. The color
coded resonances correspond to a specific combination of substates in the F -basis
for a binary resonance between atoms labeled a and b.

to these momenta, the energy of the coupled state can be tuned. In literature [10], the
occurrence of Feshbach resonances is often argued via molecular potential curves, where a
energetically open channel is given by the background potential Vbg(r) and closed channel
Vc(r), that describes bound states. In case of bipartite scattering with energy E, a Feshbach
resonance appears when the molecular state of the closed channel comes close to the scattering
state in the entrance channel.

1.3 Properties of 39K

1.3.1 Hyperfine Structure

Despite the rather broad Feshbach resonance at B = 562G an advantage of the potassium
isotope 39K is the single valence electron, which dramatically simplifies the energy substructure
of the atom. More specifically the electronic configuration is 1s22s22p63s23p64s1, such that
all inner orbitals are filled and cause a shielding effect on the nucleus electromagnetic field.
Usually calculation would be difficult, but for this reason we can treat the nuclear charge in
good approximation as an effective charge Zeff and also account for quantum defects, which
capture the discrepancy to an effective hydrogen spectrum. Moreover the total spin Ŝ and
electronic angular momenta L̂ of the inner orbitals add to zero. Hence the only contribution
comes form the valence electron and we define for the latter the total angular momentum Ĵ
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1.3. PROPERTIES OF 39K

as:

Ĵ = L̂ + Ŝ (1.6)

The quantum number J can take all values possible from the vector sum of Eq. 1.6: |L−S| ≤
J ≤ L + S. The corresponding energy splitting is the so-called fine structure. This however,
is not the only way the energy levels are split. Further coupling between the nuclear spin Î
and the total angular momentum Ĵ causes the hyperfine structure with:

F̂ = Ĵ + Î (1.7)

Similarly the respective quantum number F is between |J − I| ≤ F ≤ J + I. The nuclear
spin for 39K is I = 3/2 and will be treated fixed in this thesis, as we will not force nuclear
transitions in the experiment. In the ground state 42S1/2 L = 0 and S = 1/2, whereas the first
excited state 42P1/2 with L = 1 and the secondary is 42P3/2. The most significant transition
between (42S1/2 → 42P1/2) is the D1-line and the transition (42S1/2 → 42P3/2) is the D2-line.
In terms of the quantum number F the ground state for J = 1/2 is F = 1, 2, for states
with J = 3/2 we have F = 0, 1, 2, 3, which are displayed in Fig. 1.2. In order to illuminate
the underlying energy level structure in more detail, we are interested in the Hamiltonian of
system. The latter can be determined by evaluating [11]:

Hhfs =
∑
k

T(k) ·M(k) (1.8)

where T(k) and M(k) are spherical tensors of rank k, which describe the electronic and nuclear
interaction. Since the k = 0 term is not specific to the hyperfine structure, we will discard
it. However the k = 1 term is more interesting as it describes the magnetic dipole interaction
of the nuclear magnetic moment with the magnetic field created by the electron. Since all
further moments of the multipole expansion have minor contributions to the energy, we will
only consider contributions up to quartic order. As the involved calculation is rather lengthy
and has already been calculated by [12], we only present their result:

Ĥhfs =
ahfs

~2
Î · Ĵ +

bhfs

~2

3(Î · Ĵ)2 + 3
2
(Î · Ĵ)− Î2Ĵ2

2I(2I − 1)J(2J − 1)
(1.9)

1.3.2 Zeeman Effect

Since we want to study the behaviour of a BEC in presence of a magnetic field, because we
wish to modulate the interaction strength of the condensate via Feshbach resonances, we must
account for the presence of the external force in our Hamiltonian. To this end we may treat
the action of the magnetic field as first order perturbation of Ĥhfs, such that we can write the
combined Hamiltonian as:

Ĥtot = Ĥhfs + ĤZ , (1.10)
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Figure 1.2: Energy structure of 39K at zero magnetic field consisting of D1-
line with λD1 = 770.108nm and D2-line λD2 = 766.701nm. Throughout this thesis
the manifold of 2S1/2 will be labeled as ground state, 2P1/2 as intermediate state and
2P3/2 as excited state. On the right side each respective hyperfine submanifold with
degeneracy 2F + 1. To each substate a frequency is assigned, that denotes the shift
from the according fine structure energy level.
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1.3. PROPERTIES OF 39K

where the Zeeman contribution ĤZ is given by:

ĤZ = (1/~)
(
µBgJ Ĵ + µNgI Î

)
·B (1.11)

In order to evaluate the combined Hamiltonian, one can either treat the appearing operators
L̂, Ŝ, Ĵ, Î as operations on separate Hilbert spaces, such that the dot product in Eq. 1.9
translates to the tensor product, or one can choose a suitable basis and exploit the well known
action of the operators on said basis vectors.

To gain more insight into the fundamental mechanics of angular momenta, it is fruitful
to convince one self, that the orbital angular momenta span a Lie algebra on so(3) [13].
Mathematically all possible products and linear combinations together with the commutator
relation [Ĵi, Ĵj] = i~εijkĴk, where ({x, y, z} ↔ {i, j, k}), and the abstract unity 1 combine to
the Lie algebra. Remarkably each element of the corresponding Lie group can be recovered
by applying the exponential to an element of Lie algebra on so(3). Finally this group can be
identified with SO(3) which is the special orthogonal group on R3.

By further stating, that Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z , we can deduce that [Ĵi, Ĵ

2] = 0. Therefore each
basis element Ĵi commutes with Ĵ2, which is the so-called Casimir operator. Hence, a complete
and shared set of orthonormal eigenvectors exists for the Casimir operator and Ĵz. In the
following we will denote these eigenvectors with |J,mJ〉, where mJ is the respective magnetic
quantum number. To keep mJ dimensionless we introduce Planck’s reduced constant ~, which
also preserves the fact, that angular momenta have the dimension of an action. Subsequently
we can formulate the effects of Ĵz and Ĵ2 on said eigenvectors by:

Ĵz |J,mJ〉 = ~mJ |J,mJ〉 (1.12)

Ĵ2 |J,mJ〉 = ~2J(J + 1) |J,mJ〉 (1.13)

Here Ĵz is the z component of the vector operator Ĵ, which can be interchanged with any an-
gular momentum operator, as all relations are satisfied by this group of operators. The action
of Eq. 1.13 produces diagonal elements and since Ĵz can not be diagonalized simultaneously
with Ĵx,y it is often times more convenient to use the ladder operators Ĵ+ and Ĵ−, which are
defined by Ĵ± ≡ Ĵx ± iĴy and create off-diagonal elements according to:

Ĵ+ |J,mJ〉 = ~
√

(J −mJ) (J +mJ + 1) |J,mJ + 1〉
Ĵ− |J,mJ〉 = ~

√
(J +mJ) (J −mJ + 1) |J,mJ − 1〉 (1.14)

Eq. 1.13,1.14 will not be derived in the frame of this thesis, nonetheless one can be referred
to [13] to gain more understanding on the topic.
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Figure 1.3: Breit-Rabi diagrams for 2P3/2 and 2S1/2 manifolds. Lifting
of degenarcy is portrayed for energy eigenvalues of the excited state 2P3/2 (a) and
ground state 2S1/2 (b) manifold in presence of magnetic fields. The energy eigen-
basis F,mF is decoupled due to Zeeman splittings into groups of mJ , which together
with mI represent good quantum numbers for very high fields. The final ordering
of mI substates is not yet completed for the portrayed field strengths. The en-
ergyeigenvalues are calculated using tensor representation of the involved operators.
Diagonalizing the Hamiltonian yields the shown Breit-Rabi diagrams.
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1.4. DIPOLE MATRIX ELEMENTS

For the special case of Potassium 39K we calculate the energy eigenvalues for the excited
state of the D2-line 42P3/2, which consists of 16 substates. The effect of an external magnetic
field to the energy levels is typically named Zeeman effect, whose discoverer (Pieter Zeeman
in 1896) recorded the energy splitting of spectral lines [14]. For 39K this splitting is portrayed
in Fig. 1.3. At null field a good set of quantum numbers is given in the F,mF -basis. Already
at relatively low field strengths this basis ceases to provide a good set of quantum numbers,
which is to say that the operators to an arbitrary set of eigenvectors do not commute with
the Hamiltonian, i.e. the time evolution becomes non-trivial. By diagonalizing in the J, I-
basis, the eigenvectors contain the coefficents for a change of basis in to the eigenbasis of Eq.
1.10. Consequently, the ordinary approach, meaning that we describe energy eigenstates in
the F,mF -basis, could be applied here, but would over-complicate the problem. Furthermore
we observe a decoupling of Ĵ and Î into four disjoint groups ordered by J and internally by I
for the excited state and two groups for the ground state.

1.4 Dipole Matrix Elements

For now we have only discussed the internal energy structure of potassium. Here we will
examine the dipole matrix elements of Potassium 39K more closely, which determine which
decays are possible and quantify the probabilities with which these electronic decays do occur.
Considerations on the dipole matrix elements will enable us to further understand the nature
of interaction between atoms and photons.
As argued before it is of interest to study the atomic cloud at non-negligible magnetic fields.
If we consider the Hamiltonian from Sec. 1.3.2 we are faced with two problems. The first
is, that there are not always analytical solutions to the energy eigenstates. Moreover, in the
intermediate magnetic field regime most atomic states will not be pure energy eigenstates, but
compositions of multiple eigenstates. The latter poses a significant problem, as this means,
that there are a manifold of decay modes, which are not covered in our theory by remaining
in the F ,mF - basis. We must consider the states as the superposition and compute the dipole
matrix elements accordingly to obtain correct results.
We will start by introducing the Wigner-Eckart theorem [15] and its power for calculating
the dipole matrix elements. The theorem states, that for any spherical tensor T (k)

q the matrix
element, when expressed in terms of the eigenstates of the angular momentum operator fulfills
the following equation:

〈αjm|T (k)
q |α′j′m′〉 = (−1)2k〈αj|T(k)|α′j′〉〈jm | j′m′; kq〉 (1.15)

Here α contains all radial quantum numbers and j is a generalized angular momentum qun-
atum number with corresponding magnetic quantum number mj. k denotes the tensor rank
and q the q-th component of the tensor, in our case the polarisation state of the photon. An
important notation is the reduced matrix element 〈αj|T(k)|α′j′〉, which no longer depends on
mj and is thereby considered to be reduced. The theorem allows us to fully separate the an-
gular momentum part of the dipole matrix element from the radial part. Since all information
on the linewidth is contained in the radial part, we must determine the angular momentum
part, as it dictates the probability of any given decay. We will try to keep the formulae general
and thus only identify T (k)

q with the dipole operator in the end. Our states |Ψ〉 are, as already
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1.4. DIPOLE MATRIX ELEMENTS

mentioned, superpositions of all eigenstates of the basis B:

|Ψ〉 ≡
#B∑
p=1

Cp|α; Jpmp
J ; Ipmp

I〉 (1.16)

where #B is the length of our basis and Cp are the weights of each contributing eigenstate.
The excited state is given by:

〈Ψ′| ≡
#B′∑
b=1

(C ′b|α′; J ′bm′bJ ; I ′bm′bI 〉)
† (1.17)

Thus we can evaluate the action of an operator:

˜̃
T

(k)
q ≡ T̃

(k)
q(α,J) ⊗ 1(I) ≡ T

(k)
q(α,L) ⊗ 1(S) ⊗ 1(I), (1.18)

such that
˜̃
T

(k)
q only acts upon the Hilbert space spanned by the quantum numbers α and L.

This is not done by chance, but because we deliberately want to maintain the characteristics
of the dipole operator, which does not change the spin or its projection. Now we can write:

〈Ψ′|
˜̃
T

(k)
q |Ψ〉 = (

#B′∑
b=1

(C ′∗b 〈α′; J ′bm′bJ ; I ′bm′bI |)) (
˜̃
T

(k)
q (

#B∑
p=1

Cp|α; Jpmp
J ; Ipmp

I〉))︸ ︷︷ ︸
∗1

(1.19)

For now we only consider the right side of Eq. 1.19 ∗1:

∗1 =

#B∑
p=1

Cp(T̃ (k)
q(α,J) ⊗ 1(I))(|α; Jpmp

J〉 ⊗ |Ipmp
I〉) (1.20)

=

#B∑
p=1

Cp
∑
k,q

|α̃′, kq〉〈kq|Jpmp
J ; k′q′〉 ⊗ |Ipmp

I〉 (1.21)

Where we made use of the Wigner-Eckart theorem in Eq. 1.21. By now returning to our
original formula we yield:

(

#B′∑
b=1

(C ′∗b 〈α′; J ′bm′bJ ; I ′bm′bI |))(
#B∑
p=1

Cp
∑
k,q

|α̃′, kq〉〈kq|Jpmp
J ; k′q′〉 ⊗ |Ipmp

I〉) (1.22)

(

#B′∑
b=1

#B∑
p=1

C ′∗b 〈α′; J ′bm′bJ ; I ′bm′bI |(Cp
∑
k,q

|α̃′, kq〉〈kq|Jpmp
J ; k′q′〉 ⊗ |Ipmp

I〉)) (1.23)
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1.4. DIPOLE MATRIX ELEMENTS

(

#B′∑
b=1

#B∑
p=1

C ′∗b Cp〈α′; J ′bm′bJ |(
∑
k,q

|α̃′, kq〉〈kq|Jpmp
J ; k′q′〉 ⊗ 〈I ′bm′bI |Ipmp

I〉)) (1.24)

(

#B′∑
b=1

#B∑
p=1

C ′∗b Cp〈α′; J ′bm′bJ |α̃′, J ′bm′bJ 〉〈J ′bm′bJ |Jpmp
J ; k′q′〉〈I ′bm′bI |Ipmp

I〉) (1.25)

(

#B′∑
b=1

#B∑
p=1

C ′∗b Cp(−1)−2k〈α′J ′b||˜̃T(k)||αJ b〉〈J ′bm′bJ |Jpmp
J ; k′q′〉δI′b,Ipδm′b

I m
p
I
) (1.26)

This result reflects the proposition, that
˜̃
T

(k)
q only acts on the angular momentum Hilbert

space, as the Kronecker deltas forbid a magnetic spin flip. We must however, further re-

duce this statement since J is the composition of L and S, and since the operator
˜̃
T

(k)
q

does not couple to the Hilbert space of S either, we can further reduce the matrix element

〈α′J ′b||˜̃T(k)||αJ b〉. The calculations here fore follow closely to [16] and represent the action of

tensor operator on one component. Because we do not know the effect of
˜̃
T(k) on the compos-

ite state J , we perform a change of basis, using the well known Clebsch-Gordon coefficients,
into the uncoupled basis of L and S. Here we can apply the Wigner-Eckart theorem from Eq:
1.15:

〈J ′‖
˜̃
T

(k)
q ‖J〉 = (−1)2k

∑
mJq

〈J ′m′J |
˜̃
T

(k)
q |JmJ〉〈J ′m′J | JmJ ; kq〉

= (−1)2k
∑
mJq

m′
Lm

′
SmLmS

〈J ′m′J | L′m′L;S ′m′S〉〈L′m′L;S ′m′S|
˜̃
T

(k)
q |LmL;SmS〉〈LmL;SmS | JmJ〉

×〈J ′m′J | JmJ ; kq〉

= (−1)2kδS′S

∑
mJq

m′
Lm

′
SmLmS

〈J ′m′J | L′m′L;S ′m′S〉〈LmL;SmS | JmJ〉〈J ′m′J | JmJ ; kq〉

×〈L′m′L|
˜̃
T

(k)
q |LmL〉δmS′mS

= (−1)2kδS′S

∑
mJq

m′
Lm

′
SmLmS

〈J ′m′J | L′m′L;S ′m′S〉〈LmL;S ′m′S | JmJ〉〈J ′m′J | JmJ ; kq〉

×〈L′m′L|
˜̃
T

(k)
q |LmL〉

(1.27)

12



1.4. DIPOLE MATRIX ELEMENTS

In Eq. 1.27 we executed this change of basis and used the known behaviour of
˜̃
T

(k)
q , which is

completely analogous to Eq. 1.21. In the following we will exploit the symmetry of Clebsch-
Gordan coefficients, that is valid for any angular momentum operator, that satisfies Ĵ1 + Ĵ2 =
Ĵ3:

〈J1m1; J2m2 | J3m3〉 = (−1)J1+J2−J3〈J2m2; J1m1 | J3m3〉 (1.28)

Now we can apply the Wigner-Eckart theorem:

〈J ′‖
˜̃
T

(k)
q ‖J〉 = (−1)2kδS′S

∑
mJq

m′
Lm

′
SmLmS

〈J ′m′J | L′m′L;S ′m′S〉〈LmL;S ′m′S | JmJ〉〈J ′m′J | JmJ ; kq〉

×(−1)2k〈L′‖
˜̃
T

(k)
q ‖L〉〈L′m′L | LmL; kq〉

= δS′S

∑
mJq

m′
Lm

′
SmLmS

〈L′m′L;S ′m′S | J ′m′J〉〈LmL;S ′m′S | JmJ〉

×〈JmJ ; kq | J ′m′J〉〈LmL; kq | L′m′L〉〈L′‖
˜̃
T

(k)
q ‖L〉

= δS′S

∑
mJq

m′
Lm

′
SmLmS

〈L′m′L;S ′m′S|J ′m′J〉〈LmL;S ′m′S | JmJ〉

×(−1)J+k−J ′
(−1)L+k−L′〈kq; JmJ | J ′m′J〉〈kq;LmL | L′m′L〉〈L′‖

˜̃
T

(k)
q ‖L〉

(1.29)

Clebsch-Gordon coefficients are closely related to the Wigner symbols [17], as both describe
the coupling of angular momenta. We are especially interested in the Wigner 6j symbol, which
describes the coupling of three momenta, here according to Ĵ1 + Ĵ2 + Ĵ3 = Ĵ with further
coupling between Ĵ1 + Ĵ2 = Ĵ12 and Ĵ2 + Ĵ3 = Ĵ23 (other combinations are possible too). The
6j symbol is thus defined by:{

J1 J2 J12

J3 J J23

}
≡ (−1)J1+J2+J3+J√

(2J12 + 1)(2J23 + 1)

∑
m1m2m3m12m23

〈J12m12; J3m3 | Jm〉 (1.30)

×〈J1m1; J2m2 | J12m12〉〈J1m1; J23m23 | Jm〉〈J2m2; J3m3 | J23m23〉 (1.31)

The Wigner 6j symbol obeys the following symmetries:{
J1 J2 J3

L1 L2 L3

}
=

{
J2 J1 J3

L2 L1 L3

}
=

{
J3 J2 J1

L3 L2 L1

}
=

{
J1 J3 J2

L1 L3 L2

}
(1.32)

Eq. 1.33 displays the invariance under permutations in the columns, whereas Eq. 1.33 show-
cases the flipping of two elements in one column with respect to their row:{

J1 J2 J3

L1 L2 L3

}
=

{
L1 L2 J3

J1 J2 L3

}
=

{
L1 J2 L3

J1 L2 J3

}
=

{
J1 L2 L3

L1 J2 J3

}
(1.33)
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1.4. DIPOLE MATRIX ELEMENTS

This we can use to rewrite the last expression of Eq. 1.29 into a 6j symbol, where we set
({J, J1, J2, J3, J12, J23})↔ ({J ′, k, L, S ′, L′, J}) and use the symmetry relations to obtain:

〈J ′‖
˜̃
T

(k)
q ‖J〉 = δS′S(−1)J+k−J ′

(−1)L+k−L′
(−1)−k−L−S

′−J ′√
(2L′ + 1)(2J + 1){

k L L′

S ′ J ′ J

}
〈L′‖

˜̃
T

(k)
q ‖L〉

= δS′S(−1)J−L
′+k−S′−2J ′√

(2J + 1)(2L′ + 1)

{
L′ L k
J J ′ S ′

}
〈L′‖

˜̃
T

(k)
q ‖L〉

(1.34)

where we also used the fact, that L + S + J ∈ Z is an integer. By using the action of the
operator on one component, we now have arrived at the irreducible matrix element, that can
be embedded into Eq. 1.26:

〈Ψ′|T̃ (k)
q |Ψ〉 =

#B′∑
b=1

#B∑
p=1

C ′∗b Cp(−1)−2k
(
δS′

bSp(−1)Jp+L′
b+k+S′

b

√
(2Jp + 1)(2L′b + 1)

·
{
L′b Lp k′b
Jp J ′b S ′b

}
〈L′||T (k)||L〉

)
〈J ′bmj

′b|Jpmj
p; k′q′〉 δI′bIp δm′b

i m
p
i
)

(1.35)

Finally we can identify T̃ (k)
q with dipole operator d̂q, which is a rank one operator, such that

k = 1. Since there are for the Potassium atom 16 eigenstates for the excited state of the
D2-line and 8 for the corresponding ground state, the sum in Eq. 1.35 can have up to 128
constituents. However not all contributions are equally significant, wherefore this sum reduces
considerably when we filter minor weighing factors. The latter can be found by diagonalising
the Hamiltonian and extracting the eigenvectors as discussed in Sec. 1.3.2. The eigenvectors
deliver the factors C ′b(B) and Cp(B) needed to change into the eigenbasis of the system at a
given magnetic field strength. We will emphasize at this point, that this implies, that the
number of significant terms in Eq. 1.35 depends on the strength of the applied magnetic field.
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e1 e2 e3 e4

e5 e6 e7 e8

e9 e10 e11 e12

e13 e14 e15 e16

g1 g2 g3 g4

g5 g6 g7 g8

D2-line :
2S1/2 → 2P3/2

Group 1 : mJ = −3/2

Group 2 : mJ = −1/2

Group 3 : mJ = +1/2

Group 4 : mJ = +3/2

Group 1 : mJ = −1/2

Group 2 : mJ = +1/2

σ−

π

σ+

(a) Dipole matrix elements for B = 0G
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g1 g2 g3 g4

g5 g6 g7 g8

D2-line :
2S1/2 → 2P3/2

Group 1 : mJ = −3/2

Group 2 : mJ = −1/2

Group 3 : mJ = +1/2

Group 4 : mJ = +3/2

Group 1 : mJ = −1/2

Group 2 : mJ = +1/2

σ−
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(b) Dipole matrix elements for B = 562G
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e1 e2 e3 e4

e5 e6 e7 e8

e9 e10 e11 e12

e13 e14 e15 e16

g1 g2 g3 g4

g5 g6 g7 g8

D2-line :
2S1/2 → 2P3/2

Group 1 : mJ = −3/2

Group 2 : mJ = −1/2

Group 3 : mJ = +1/2

Group 4 : mJ = +3/2

Group 1 : mJ = −1/2

Group 2 : mJ = +1/2

σ−

π

σ+

(c) Dipole matrix elements for B = 7000G

Figure 1.4: Dipole matrix elements of D2-line. Dipole transitions for vari-
ous magnetic fields shown in the eigenbasis of the Hamiltonian. Groups consist of
eigenstates with predominant mJ contribution. Transition strengths are portrayed
logarithmic in width and transitions with a decay probabilities smaller than 10−6

are neglected. The first subfigure (a) is at zero field in the Basis as described in Eq.
1.16. It can be seen, that here this is an unfavorable basis choice. In proximity to
the Feshbach resonance at B = 562G the decay structure (b) reduces considerably.
In the high field limit (c) the used basis vectors have only one dominant contribution
from the respective I, J-state.

In Fig. 1.4 we used Eq. 1.35 to calculate the dipole matrix elements for the D2-line of
39K. We portrayed three scenarios, which are zero magnetic field, intermediate and strong
magnetic fields. We can see that for no field the I, J-basis is a bad choice and results in
plenty of decay modes, which can better be described using the F,mF -basis. For intermediate
magnetic field, the I, J-basis produces the additional decay modes, that cause dark state
formations. We chose a magnetic field strength of B = 562G because the Feshbach resonance,
that we exploit in the experiment is located here. For the high field regime the additional
decay modes disappear and the I, J-basis can be approximated as being pure.
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1.5. ATOM PHOTON INTERACTION

1.5 Atom Photon Interaction

In this section we want to give an overview on the interaction between photons and potassium
atoms, that occur during the imaging process and thus are of key importance to us. To this
end it is instructive for the reader to first understand the dynamics in a two level atom and
then generalise for the multilevel structure that is inherent to potassium atoms (shown in Fig.
1.5) as used in the experiment. Here we will directly start with the multilevel structure, since
we are not interested in the two level atom. The system consists of energy eigenstates |i〉 with
energy Ei. Therefore the corresponding Hilbert space is spanned by the basis B = {|i〉} with
i ∈ 1, ..., N . We may thus construct the atomic Hamiltonian as:

Ĥ0 =
N∑
i=1

~ωi|i〉〈i| , |i〉 ∈ B (1.36)

The complete Hamiltonian can be derived from considerations on the nature of the in-
teraction. To this end we will treat the incident light beam as classical electric field, rather
than quantised excitations of the electromagnetic field in QED, as one my initially expect in
the frame work of quantum optics, however the classical treatment is sufficient. For now the
interaction Hamiltonian in dipole approximation is [16]:

H′ = −d · E (1.37)

Here d = −e · r is the dipole operator and E is electric field operator. We can use the parity
operator Π to specify Eq. 1.37, which is defined by the action upon the position operator r
with ΠrΠ† = −r. Therefore we can write for the anticommutator: {Π, r} = 0, which leads us
to conclude that:

〈i|{Π, r}|j〉 = 0 (1.38)

This argument obviously requires the atomic states to be parity eigenstates. However we can
assume this, because the inner orbital angular momenta sum to zero, such that we can treat
the atom as a central force problem, which in return is the case for the hydrogen atom, that has
energyeigenfunctions, which are parity eigenstates. This true since the angular momentum
part of the hydrogen eigenstates, the spherical harmonics Ylm, are parity eigenstates and
transform identically under action of the parity operator: ΠYlm = Ylm(π − ϑ, π + ϕ) =
(−1)l · Ylm(ϑ, ϕ) as required for our argument. Since Π2 = 1 and is a unitary transformation,
we can deduce that:

〈i|{Π, r}|j〉 = 〈i|Πr + rΠ|j〉 = (πi + πj)〈i|r|j〉 (1.39)

with πi, πj being the eigenvalues of Π. By recalling that Π2 = 1 we can conclude that all
possible eigenvalues are ±1, that correspond to even and odd parity respectively, and thus,
that either (πi + πj) = 0 or 〈i|r|j〉 = 0. Because πi, πj are nonzero, we know that for the
dipole operator, which is proportional to r, only opposite parity eigenstates are coupled by
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Ee,ne

Ee,1

Eg,ng

Eg,1

|ene
〉

|e1〉

|gng
〉

|g1〉

ωei,gj

Ωei,gj
Γei,gj

Figure 1.5: Atomic multilevel structure. Excited levels are coupled to ground
states via decays with rate Γei,gj , frequency ωei,gj and Rabi-frequency Ωei,gj .

the Hamiltonian. Now the electric field is treated, as previously mentioned, classically:

~E(~r, t) = E0~ε cos
(
~k · ~r − ω · t

)
(1.40)

With this form for the electric field we obtain for all energy levels:

H′ = −
∑
i 6=j

eE0 cos
(
~k · ~r − ωlt

)
〈i|~̂ε · ~̂r|j〉|i〉〈j| (1.41)

=
~
2

∑
i 6=j

cos
(
~k · ~r − ωlt

)
(Ωij|i〉〈j|+ Ω∗ij|j〉〈i|) (1.42)

Where we have just defined the Rabi frequency Ω as:

Ωij = −E0

~
〈i|~̂ε · ~̂d|j〉 (1.43)

The summation in Eq. 1.42 reflects our conclusions on the contributing matrix elements, such
that i, j ∈ {1, . . . , ne,g} respectively:

Ĥ′ =
ne∑
i=1

N∑
j=ne+1

~ cos (−ωlt)
(
Ωij|i〉

〈
j
∣∣+Ω∗ij

∣∣ j〉 〈i|) (1.44)

By now boosting into the interaction frame, which is to say that we transform H′ according
to:

ĤI = exp

(
i

~
Ĥ0t

)
Ĥ′ exp

(
− i
~
Ĥ0t

)
(1.45)
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we obtain our final formula for the Hamiltonian, while also using the so-called rotating wave
approximation (RWA). In the approximation we seek a form, that decomposes the cosine in
Eq. 1.44 into a positive and negative rotation, i.e. the exponential function. By discarding
fast oscillations, we can simplify our formulae significantly. The calculations follow closely to
[18] and are presented here:

ĤI =
N∑
n=1

eiωnt|n〉〈n|
ne∑
i=1

N∑
j=ne+1

~ cos(−ωlt)(Ωij|i〉〈j|+ Ω∗ij|j〉〈i|)
N∑
m=1

e−iωmt|m〉〈m|

=
N∑

n,m=1

ne∑
i=1

N∑
j=ne+1

ei(ωn−ωm)t~ cos(−ωlt)[Ωij|n〉〈n | i〉〈j | m〉〈m|+ Ω∗ij|n〉〈n | j〉〈i | m〉〈m|]

=
N∑

n,m=1

ne∑
i=1

N∑
j=ne+1

ei(ωn−ωm)t~ cos(−ωlt)[Ωijδniδjm|n〉〈m|+ Ω∗ijδnjδim|n〉〈m|]

=
ne∑
i=1

N∑
j=ne+1

~ cos(−ωlt)[Ωije
iωijt|i〉〈j|+ Ω∗ije

−iωijt|j〉〈i|]

≈
ne∑
i=1

N∑
j=ne+1

~
2

[Ωije
−iδijt|i〉〈j|+ Ω∗ije

iδijt|j〉〈i|]

(1.46)

1.6 Lindblad Master Equation

In this section we will look closer at the concept of master equations and motivate the use of
the Lindbladian to describe our system. Since we are interested in the time evolution of the
imaging process we must investigate the states that the atoms will have. Usually in quantum
dynamics, one would now take the initial state of the system and evolve it with a unitary
time evolution according to the Schrödinger equation. However the unitary dynamics do not
account for processes like decays and thus require a constant phase coherence. Therefore we
need a different approach, which is the evolution of the density matrix by non-unitary time
evolution operators. This step is crucial to analyse the system since spontaneous decays and
coherences are of central interest. By allowing interactions between the system and its envir-
onment we effectively model an open quantum system.
We will however remain in the field of classical quantum dynamics and only include QED
effects in an effective approach, where we introduce them as phenomenological terms as Lin-
blad superoperator. We already discussed the interaction between the atoms and photons in
section 1.5 and therefore can simply define the Lindblad equation as [19]:

dρ̂

dt
= − i

~

[
ĤI , ρ̂

]
+ Lphen(ρ̂) (1.47)

19



1.6. LINDBLAD MASTER EQUATION

The brackets in Eq. 1.47 represent the commutator and without the phenomenological term,
the Lindbladian is equivalent to the von-Neumann equation. The density matrix is:

ρ̂ =
∑
k

pk |ψk〉 〈ψk| (1.48)

where pk represent the probability to find the system in a pure state |ψk〉. In our case the
phenomenological part is given by:

Lphen (ρ̂) = D[ĉ]ρ̂

D[ĉ]ρ̂ = ĉρ̂ĉ† − 1

2

(
ĉ†ĉρ̂+ ρ̂ĉ†ĉ

) (1.49)

Here D[ĉ]ρ̂ is the so-called superoperator and ĉ is the collapse operator:

ĉ|ei〉→|gj〉 = |gj〉 〈ei|
√

Γ|ei〉→|gj〉 (1.50)

The rate with which this decay channel occurs is defined by Γ. With Eq. 1.47 we can
now access the populations and coherences of the system. It should be mentioned, that the
Lindblad equation only describes a single atom and its evolution, but does not describe the
entire ensemble of atoms in the BEC.

1.6.1 Maxwell-Bloch Equations

From the Lindblad equation we will now derive the Maxwell-Bloch equations, which typic-
ally describe the dynamics of a two level system, we must however expand to the four level
structure, because it will be used for the proposed imaging scheme. The resulting differen-
tial equations represent the evolution of the mean populations and coherences. The density
operator ρ̂ can represented in this approximation by the 4× 4 matrix:

ρ̂ =


ρe1e1 ρe1e2 ρe1g1 ρe1g2
ρe2e1 ρe2e2 ρe2g1 ρe2g2
ρg1e1 ρg1e2 ρg1g1 ρg1g2
ρg2e1 ρg2e2 ρg2g1 ρg2g2

 (1.51)

The Hamiltonian can be calculated from Eq. 1.46. For imaging purposes we are only interested
in shining two light frequencies on the atomic sample, such that only two different Rabi
frequencies will appear:

ĤI =
~
2


0 0 Ωe1g1e

−iδe1g1 t 0
0 0 0 Ωe2g2e

−iδe2g2 t

Ω∗e1g1e
+iδe1g1 t 0 0 0
0 Ω∗e2g2e

+iδe2g2 t 0 0

 (1.52)
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From the calculations of Sec. 1.4 we know, that there are four main decay modes, that need
to be considered:

ĉ|e1〉→|g1〉 = |g1〉 〈e1|
√

Γ|e1〉→|g1〉, ĉ|e2〉→|g1〉 = |g1〉 〈e2|
√

Γ|e2〉→|g1〉

ĉ|e1〉→|g2〉 = |g2〉 〈e1|
√

Γ|e1〉→|g2〉, ĉ|e2〉→|g2〉 = |g2〉 〈e2|
√

Γ|e2〉→|g2〉
(1.53)

Together with the collapse operators, we are able to calculate all entries of Eq. 1.47. The
resulting Maxwell-Bloch Equations contain information on the coherences which are the non-
diagonal elements of the ρ̂. The diagonal elements are the populations of each energy eigenstate
of the system. The reader should be reminded, that the size of the density matrix scales with
N2, wherefore we have a system of sixteen coupled differential equation:

ρ̇e1e1 = −Γe1g1ρe1e1 − Γe1g2ρe1e1 − i
2

(
−ρe1g1Ω∗e1g1e+iδe1g1 t + ρg1e1Ωe1g1e

−iδe1g1 t
)

ρ̇e1e2 = −1
2
Γe1g1ρe1e2 − 1

2
Γe1g2ρe1e2 − 1

2
Γe2g1ρe1e2 − 1

2
Γe2g2ρe1e2

− i
2

(
−ρe1g2Ω∗e2g2e+iδe2g2 t + ρg1e2Ωe1g1e

−iδe1g1 t
)

ρ̇e1g1 = −1
2
Γe1g1ρe1g1 − 1

2
Γe1g2ρe1g1 − i

2

(
−ρe1e1Ωe1g1e

−iδe1g1 t + ρg1g1Ωe1g1e
−iδe1g1 t

)
ρ̇e1g2 = −1

2
Γe1g1ρe1g2 − 1

2
Γe1g2ρe1g2 − i

2

(
−ρe1e2Ωe2g2e

−iδe2g2 t + ρg1g2Ωe1g1e
−iδe1g1 t

)
ρ̇e2e1 = −1

2
Γe1g1ρe2e1 − 1

2
Γe1g2ρe2e1 − 1

2
Γe2g1ρe2e1 − 1

2
Γe2g2ρe2e1

− i
2

(
−ρe2g1Ω∗e1g1e+iδe1g1 t + ρg2e1Ωe2g2e

−iδe2g2 t
)

ρ̇e2e2 = −Γe2g1ρe2e2 − Γe2g2ρe2e2 − i
2

(
−ρe2g2Ω∗e2g2e+iδe2g2 t + ρg2e2Ωe2g2e

−iδe2g2 t
)

ρ̇e2g1 = −1
2
Γe2g1ρe2g1 − 1

2
Γe2g2ρe2g1 − i

2

(
−ρe2e1Ωe1g1e

−iδe1g1 t + ρg2g1Ωe2g2e
−iδe2g2 t

)
ρ̇e2g2 = −1

2
Γe2g1ρe2g2 − 1

2
Γe2g2ρe2g2 − i

2

(
−ρe2e2Ωe2g2e

−iδe2g2 t + ρg2g2Ωe2g2e
−iδe2g2 t

)
ρ̇g1e1 = −1

2
Γe1g1ρg1e1 − 1

2
Γe1g2ρg1e1 − i

2

(
ρe1e1Ω

∗
e1g1

e+iδe1g1 t − ρg1g1Ω∗e1g1e+iδe1g1 t
)

ρ̇g1e2 = −1
2
Γe2g1ρg1e2 − 1

2
Γe2g2ρg1e2 − i

2

(
ρe1e2Ω

∗
e1g1

e+iδe1g1 t − ρg1g2Ω∗e2g2e+iδe2g2 t
)

ρ̇g1g1 = Γe1g1ρe1e1 + Γe2g1ρe2e2 − i
2

(
ρe1g1Ω

∗
e1g1

e+iδe1g1 t − ρg1e1Ωe1g1e
−iδe1g1 t

)
ρ̇g1g2 = − i

2

(
ρe1g2Ω

∗
eig1

e+iδe1g1 t − ρg1e2Ωe2g2e
−iδe2g2 t

)
ρ̇g2e1 = −1

2
Γe1g1ρg2e1 − 1

2
Γe1g2ρg2e1 − i

2

(
ρe2e1Ω

∗
e2g2

e+iδe2g2 t − ρg2g1Ω∗e1g1e+iδe1g1 t
)

ρ̇g2e2 = −1
2
Γe2g1ρg2e2 − 1

2
Γe2g2ρg2e2 − i

2

(
ρe2e2Ω

∗
e2g2

e+iδe2g2 t − ρg2g2Ω∗e2g2e+iδe2g2 t
)

ρ̇g2g1 = − i
2

(
ρe2g1Ω

∗
e2g2

e+iδe2g2 t − ρg2e1Ωe1g1e
−iδe1g1 t

)
ρ̇g2g2 = Γe1g2ρeee1 + Γe2g2ρe2e2 − i

2

(
ρe2g2Ω

∗
e2g2

e+iδe2g2 t − ρg2e2Ωe2g2e
−iδe2g2 t

)

(1.54)
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1.6.2 Scattering Cross Section

From the optical Bloch equations we can derive properties of the system such as the scattering
cross section σ and the saturation intensity Isat. For both parameters will prove important
to the description of the imaging technique in Sec. 1.7. The following calculations are only
valid in the steady state scenario and are oriented on [16]. If one wanted to obtain the correct
values, the coupled differential equations would have to be solved numerically. We may start
the derivation of the scattering cross section by making simplifications to our formulae in Eq.
1.54. In pursuit of generality we will exploit the symmetry of our level structure and define
for now ρ̇e1e1 = ρ̇e2e2 = ρ̇ee and Γe1g1 + Γe1g2 = Γe2g1 + Γe2g2 = Γ and proceed analogously
for the coherences, δ and Ω. An important note to make here is, that we have just reduced
each branch in our four level system into an effective two level system, which is only possible
because of the before mentioned symmetry. Since an appropriate measure for scattering is
given by the populations in the excited state, we are interested in the behaviour of ρ̇ee, which
in general terms for both ρ̇e1e1 = ρ̇e2e2 is defined by:

ρ̇ee = −Γρee + i
Ω

2
(ρege

iδt − ρgee−iδt) (1.55)

The respective coherences are:

ρ̇eg = −Γ

2
ρeg + i

Ω

2
(ρeee

−iδt − ρgge−iδt) (1.56)

ρ̇ge = −Γ

2
ρge + i

Ω

2
(ρgge

iδt − ρeeeiδt) (1.57)

We can boost into the rotating frame of the light by employing the definitions ρ̄ge ≡ ρgee
−iδt

and ρ̄eg ≡ ρege
iδt and obtain:

˙̄ρeg = −(
Γ

2
− iδ)ρ̄eg + i

Ω

2
(ρee − ρgg) (1.58)

˙̄ρge = −(
Γ

2
+ iδ)ρ̄ge + i

Ω

2
(ρgg − ρee) (1.59)

If we assume that the coherences settle quickly compared to the evolution of the populations,
we can use this decoupling of time scales to motivate an adiabatic approximation resulting in:(

Γ

2
− iδ

)
ρ̄eg = i

Ω

2
(ρee − ρgg) (for ∂tρ̄eg ≈ 0) (1.60)(

Γ

2
+ iδ

)
ρ̄ge = −iΩ

2
(ρee − ρgg) (for ∂tρ̄ge ≈ 0) (1.61)

By combining these relations we get:

Γ

2

(
1 +

δ2

Γ
2

2

)
(ρ̄eg − ρ̄ge) = iΩ (ρee − ρgg) (1.62)
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which we can insert into the excited state populations function to yield:

∂tρee = −Γρee −
Ω2

2Γ
2

(
1 + δ2/Γ

2

2
) (ρee − ρgg) (1.63)

We will not derive the complete steady state solution (∂tρee = 0) here, but only present the
result for the two-level system, which was taken from [16]. It should be mentioned, that this
is a significant assumption, since we will see in Sec. 2.2 that both imaging branches influence
each other. In order to recover this fact, one has to use numerical means (Sec. 2.1).

lim
t→∞

ρee =
Ω2/Γ2

1 +
(

2δ
Γ

)2
+ 2Ω2

Γ2

(1.64)

From the steady state solution we can define the scattering rate and the total scattered power:

Rsc = Γ lim
t→∞

ρee and Psc = ~ω0Γ lim
t→∞

ρee (1.65)

From Eq. 1.43 we know that Ωij is proportional to the light intensity I, thus the definition
from the saturation intensity Isat is logical:

I

Isat

≡ 2Ω2

Γ2
(1.66)

With this relation we can rewrite the steady state solution for the excited state to:

lim
t→∞

ρee =
1

2

I/Isat

1 + 4δ2/Γ2 + I/Isat

(1.67)

This expression can be compared to the radiated power from Eq. 1.65, while also using
Psc = σscI in order to obtain the scattering cross section:

σsc =
σ0

1 + 4δ2/Γ2 + I/Isat

, (1.68)

where the resonant cross section σ0 = ~ω0Γ/2Isat has been defined. The saturation intensity
Isat in return can be recovered from Eq. 1.67 by calculating the Rabi frequency and determ-
ining the decay rate Γ. For the D2-line of 39K the saturation intensity is Isat = 1.75mW/cm2

[9]. Why and when this reduction to a two-level system is justified, will be shown in Sec. 2.3.

1.7 Absorption Imaging in Multilevel Structure

In the course of this thesis our main target is the description of a closed cycle imaging scheme
for potassium at intermediate magnetic fields. Here we define the intermediate field regime
as the range, in which the excited states are approximately pure mI and mJ states and the
ground states can be mixed. The cooling procedure needed to achieve condensation produces
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1.7. ABSORPTION IMAGING IN MULTILEVEL STRUCTURE

atoms in the ground state |g3〉 from Fig. 1.4. Now one could simply lower the magnetic
fields before imaging the atoms, but as we have seen in Sec. 1.2 there are several Feshbach
resonance obstructing the way to zero magnetic field, which would unintentionally modulate
the interaction strength. Therefore we remain at this magnetic field. The four-level system,
that appears from considerations in Sec. 1.4, spans between two hyperfine states of the S1/2

ground state manifold and two hyperfine states of the P3/2 excited state manifold. Usually

|g3〉

|g5〉

|e3〉

|e13〉

σ− σ+

Figure 1.6: Closed four level system for imaging. The atomic ground state of
our system is |g3〉 and the cooler imaging transition (σ−) transfers atoms the excited
state |e3〉. Because of the decay from this state the (dark) state |g5〉 is populated and
atoms are thereby lost from |e3〉. To overcome this, a repumper imaging transition
(σ+) is introduced. It couples the state |g5〉 to the excited state |e13〉 from where the
atoms can decay back into |g3〉 and the system becomes closed.

imaging occurs between the before mentioned ground state |g3〉 and the excited state |e3〉
using an imaging beam, which is the so-called cooler. Now the excited state |e3〉 posses two
decay modes, one that is dominant with a probability of 98% and decays back into |g3〉. The
other decay with 2% decays into |g5〉, while both decays are σ−-light. This state will populate
and thus form a dark state. The typical timescale is very fast (∼ 2µs for a loss of half the
population into the dark state). To achieve the sought after closed imaging scheme, we use
a secondary laser light, the so-called repumper, which is σ+-light. The corresponding excited
state in the P3/2 manifold is the state |e13〉, which dominantly decays back to the ground state
|g5〉, but also weakly to the original ground state |g3〉. Thus we have closed imaging scheme.
Interestingly, the repumper branch exhibits almost prefect symmetry to the cooler branch,
meaning that the decay probabilities are approximately the same.
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Chapter 2

Numerical Results

2.1 Evolution of Multilevel Atom Populations

In order to analyse the temporal evolution of the populations in the multilevel atom, we can
solve the Lindblad equation (1.47). Since solutions are far from simple to guess, we employ
numerical integrators, that can find solutions for this type of equation. Specifically we define a
basis for the multilevel system and use this to construct the Lindblad master equation, which
together with a set of appropriate collapse operators forms the Liouvillian superoperator in
matrix form. This matrix is projected onto the initial state and integrated with respect to time
using scipy.integrate.ode 1. The described process is equivalent to the temporal evolution of
the density matrix on a given time grid. In principle one could investigate any multilevel atom
in the described manner and make predictions on the interaction with light quanta. Instead
we will womanly focus on the four level structure, as described in Sec. 1.7, since it is most
important to our understanding of the repumping scheme.

The advantage from using a repumping laser becomes clear, when we present the dark state
formation of the system during the imaging process. To simulate the loss into the dark state
g5, we include only the light from the cooler beam and set this arbitrarily to an intensity of
Icool = Isat. The resulting evolution is shown in Fig. 2.1a. The initial state is prepared in the
ground state g3 and evolves. We can observe the loss into the state g5, which asymptotically
approaches the maximal probability in circa texp = 12µs and has a half value time of about
texp = 2µs. This means that the imaged sample becomes transparent to the imaging light
rather quickly and after this time no further investigation is possible. This illustrates the
need for an additional laser, that shifts the populations back into the original resonant energy
state and vice versa. The portrayed dynamics in Fig. 2.1b are computed under assumption
of no detuning and an incoming flux of Icool = Irep = Isat. The behaviour of the system
can be described by stating, that after beginning in the initial state, the probability to find
the atom in the corresponding excited state e3 increases rapidly, is however superseded by
the transfer into the secondary branch of g5 and e13, where an approximate steady state is
reached at about texp = 6µs. At this point no more significant changes take place and the
populations sustain a constant value. This proves in theory the idea behind a repumping laser.
It should be mentioned that the name repumper is in some sense misleading, as it does not

1The used code is linked here: https://github.com/finnscm/bachelor-thesis-code-LME-.git
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(a) Dark state formation during imaging.
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(b) Evolution with addition of repumping laser.

Figure 2.1: Evolution of populations in imaging scheme. Temporal evolu-
tion of four-level system using numerical integrators for Lindblad master equation.
In 2.1a evolutions were calculated using Irep = Isat. For the second figure 2.1b
Irep = Icool = Isat were used to compute the populations. The benefit from adding
a secondary laser (b) is clear due to constant non-zero steady states of the excited
states, as the populations are proportional to the number of scattered photons, when
comparing to (a).

only transfer the lost atoms back into the primary imaging branch, but further serves as a
secondary imaging light.

2.2 Number of Scattered Photons

With these simulations at hand, we have a powerful tool to make predictions for the exper-
iment, e.g. we can calculate the number of scattering processes Nsc, which is the optimal
parameter to optimize the ratio between the cooler and repumper light. To this end we must
find a measure that contains information about the number of incoherent scattering events,
that take place. We can do this by defining an appropriate measure µ(t) to be:

µ(t) =
∑
j

Γjρejej(t) (2.1)

Hence the scattering number Nsc is the integral of this measure over time, which is logical, as
the decay of an excited state of the atom, corresponds to a previous scattering event, which
populated said state:

Nsc =

∫ texp

0

µ(t) dt =

∫ texp

0

∑
j

Γjρejej(t) dt (2.2)
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Figure 2.2: Simulation on number of scattered photons for different ra-
tios between Icool and Irep. Calculations are performed by integrating the Lindblad
equation for a given combination of light intensities, which is used to compute the
number of scattered photons (Eq. 2.2). The formation of a broad plateau is visible,
with a slight asymmetry due to the initial preparation of the atoms in |g3〉. An
approx. optimal ratio between both light sources is given by equal contributions.

The resulting plot is presented in Fig. 2.2 and was calculated for an exposure time of
texp = 12µs. From the simulation we can now extract information on the optimal ratio
between the two imaging light and observe, where the saturation plateau of the medium
begins. The former reflects the symmetry of the closed atomic energy structure, which implies
that an optimal ratio between Icool and Irep is reached at approximately equal contribution.
Furthermore, we can distinguish the limits of the ratio between both light beams. On the one
hand we have at Icool = Itot some scattering, which manifests our notion, that we begin the
simulation in ground state |g3〉. In other words, if the ratio is r = 0 we recover the dark state
formation scenario, where scattering events do occur until all populations are shifted into the
secondary ground state |g5〉. The second boundary is Irep = Itot, where no scattering events do
and can take place, since there are no atoms prepared in the according state, that would allow
for resonant interactions with light. We conclude, that the predictions of the simulations agree
with our expectations on the system, that are motivated from symmetry arguments. Despite
that, the central result we can take from Fig. 2.2 is the optimal and approximately equal
ratio between both imaging beams, which is accompanied by a broad saturation plateau, that
allows for a range of good ratios.
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2.3. EFFECTIVE SATURATION INTENSITY

2.3 Effective Saturation Intensity

For now we have reduced the saturation intensity to the two-level system value Isat = 1.75mW/cm2.
This however is a strong assumption, which can easily be proven to be wrong, e.g. for an un-
balanced contribution of both light beams in the closed imaging system (Fig. 1.6). Therefore
it is necessary to define an effective saturation intensity Ieff

sat. The saturation intensity is typ-
ically defined as the intensity at which the absorption coefficient drops to half its value. This
translates in case of the two-level system to the before mentioned numerical value for Isat.
We can however provide an estimate for the effective saturation intensity Ieff

sat of the imaging
system, by comparing when the number of scattered photons of the four-level system reaches
the same value, as for the two-level system at its saturation intensity for a given exposure
time. The corresponding intensity value, will show by which factor Isat has to be scaled. This
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Figure 2.3: Scale adjusted four-level system. The portrayed figure shows the
number of scattered photons plotted against the incident light intensity. The solid
line represents the two-level system and dashed line is the scaled four-level system
with 1:3 ratio in light intensity. Both are integrated for 12µs exposure time and the
steady state limit is employed. The inset shows that for Ieff

sat = 2.67 Isat the systems
coincide almost perfectly, such that the difference in scattered photons is relatively
small.
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2.3. EFFECTIVE SATURATION INTENSITY

has been done in Fig. 2.3. We found a value of Ieff
sat ≈ 2 Isat, while using an equal ratio between

the binary laser system. Thus by scaling the total intensity by a factor of 2, we are able to
reduce the four-level system to a two-level system. For the calculations we used the steady
state limit. For other ratios such as 1 : 3, where it does not matter which value corresponds
to which light beam, because the system becomes fully symmetric in the used limit, we obtain
Ieff

sat ≈ 2.67 Isat. For a very unbalanced ratio of 1 : 9 we yield Ieff
sat ≈ 5.5 Isat. This means,

that we can identify our closed imaging system with a saturation intensity adjusted two-level
system by defining Ieff

sat for a given ratio. It should be noted, that for this identification to be
valid we must have a separation of time scales, i.e. the initial oscillation time of the system
must be smaller, than the time needed for the time derivative of the populations to vanish.
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Chapter 3

Experimental Imaging Results

3.1 Image Processing

In the experiment we use a charge coupled device (CCD) camera to obeserve the atomic cloud.
The camera is a Princeton Instruments ProEMTMand is the central measuring device in our
setup. As all real semiconductors the individual pixels of the chip are no ideal measuring
instruments, but rather exhibit thermal fluctuations and contain imperfections, that result in
noise and a lower efficiency. Thus we must treat the device carefully and compensate for these
characteristics. Especially, not every photon that hits the device is transformed via the photo-
electric effect [20] into one single electron, also the absorption depends on the wavelength
of the incident photon. The former phenomenon is associated with the quantum efficiency
QE(λ) of the camera, such that one photon can cause on average less than one photo-electron
to be excited into the conduction band. Taking an image implies exposing the pixels during
a specific amount of time to a flux of light, that causes electrons to be transferred into the
conduction band. Since we are interested in the number of electrons per pixel, that have been
created, readout electronics are used to amplify the accumulated charges pixel by pixel. The
signal then is converted to a digital signal, that can be used for analysis. In this instance
the term counts is used, which is a measure for the integrated electrons. Despite that there
is no equivalence between the two, rather a linear relation, that is governed by the so-called
gain g, which represents the proportionality factor, that ought to be determined to retrieve
the photo-electron number, created in the imaging process. The readout procedure further
adds to the total noise of the image. Because the analog-to-digital converter produces only
positive values, an offset charge is added electronically to each pixel before conversion. This
is subtracted from each images by the mean value of the image Idark(x, y), that exposes but
does not open the cameras shutter to be hit by external photons. Furthermore debris and
non-uniformity in the optical path will lead to interference patterns and shadows on the final
image, which can be removed by taking a reference picture Iwo(x, y) with full exposure, that
doesn’t include atoms, which we usually would want to observe in the atom picture Iw(x, y).
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γ′s

39K

Incident Light Flux
Lens System

CCD

Figure 3.1: Simplified imaging setup. The incident Light flux consisting of
cooler and repumper light interacts with the trapped BEC. Due to resonant absorp-
tion and spontaneous decay of electrons only a small fraction of the initial light is
captured via the lens system in the region of the condensate, which is surrounded by
the non-absorbed light. Thus an absorption image is created on the CCD camera.

The corrected picture can then be expressed via:

Icor(x, y) =
g

QE(λ)
· 4π

4π − Ω
· (n · (Iwo(x, y)− 〈Idark(x, y)〉)− (Iw(x, y)− 〈Idark(x, y)〉)) (3.1)

Here we assigned g to the gain of the CCD camera and Ω is the solid angle, which can be
captured by the imaging lense. Since there can be differences in the total light intensities,
we must normalize the reference image Iwo on the picture with atoms Iw. This is done by
selecting a region around the region of interest (ROI) in both images, which is box-shaped
and approximately 100px wide, subtracting the offset and summing over said area and dividing
the resulting values in the following manner:

n =

∑
x,y Iw(x, y)− 〈Idark(x, y)〉∑
x,y Iwo(x, y)− 〈Idark(x, y)〉 (3.2)

3.2 CCD Gain

Since the gain of the CCD is camera-specific, we must measure g to be able to make use of
Eq. 3.1. But because this quantity can not be measured directly, we will discuss a possible
technique of acquiring its value.

As mentioned in Sec. 3.1 there are various sources for uncertainties, which can be exploited
to calculate the gain. First, we will define the signal of the CCD Image by SC , which is
measured in counts. The signal in electrons on the other hand is given by SE. Furthermore,
we introduce the total noise in the image by σtot,C & σtot,E. The total noise consists of three
main contributions, which are as discussed before the readout noise σR, but also pixel response
non-uniformity σPRNU and photon shot noise σSN . By stating, that the different noise sources
are independent of each other, we can apply Gaussian propagation of uncertainties, such that
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we yield [21]:

σ2
tot,E = σ2

SN,E + σ2
PRNU,E + σ2

R,E (3.3)

As previously noted, the gain is simply the multiplying factor between counts and electrons,
wherefore we can write:

SE = g · SC and NE = g ·NC , (3.4)

where S is the recorded signal and N is the corresponding noise. It is especially important to
note, that photon shot noise is Poisson distributed, because photonic detection is a random
process, where light is considered as discretized quanta and interacts with the measuring device
independently, this is logical. Therefore, we can express the probability distribution by:

Pλ(k) =
λk

k!
e−λ (3.5)

Where λ is the expectation value, that assigns k ∈ N0 the probability P . A short calculation,
will prove that the variance of any Poisson distribution is equivalent to the expectation value
λ:

Var(X) = E
(
X2
)
− (E(X))2 = λ2 + λ− λ2 = λ (3.6)

This remarkable result can be employed in Eq. 3.3. While also using Eq. 3.4 we can rearrange
to:

N2
C =

1

g
SC + (σ2

R,C + σ2
PRNU,C) (3.7)

This means the gain is the inverse slope and can be measured via the count number. For
the experiment, this means we are taking a set of images for a range of different intensities.
More specifically we took ten images at a given intensity and repeated this for ten different
intensities. As a light source we used an ordinary lamp, which was flat field adjusted, in such
manner, that there were only minimal gradients and inhomogeneities. More specifically, this
means that we placed white paper in front of the light source. This is done to scatter the
lamps light more diffusely and suppress irregularities in the light signal, which are caused
by light diffraction from the glass enclosure of the lamp. From each individual picture we
calculated the variance in a squared box of length 20px. The variance, which is averaged for
each intensity, is then plotted against the number of mean counts in the square and a linear
equation is fitted to the data points using the least square method. The corresponding graph
is shown in Fig. 3.2. This estimate of g assumes the absence of flat field effects, since a slight
curvature can be seen in Fig. 3.2. This especially implies a neglection and underestimation
of contributions originating from σPRNU , which scales quadratically with the signal. A more
precise measurement in the future would account for flat field effects. For now our best
estimate is g = 1.878± 0.041.
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Figure 3.2: Gain estimation. Using the method described in Sec. 3.2. The vari-
ance in signal is plotted against the mean counts in an approximately homogeneous
square with a length of 20px. A linear function is fitted to the data points using the
least square method. For the gain we find a value of g = 1.878± 0.041.

3.3 Dark State Formation and Repumping Laser

The loss phenomenon, caused by the superposition of I, J-states, will now be tested in the
experiment, which is the experimental equivalent to Sec. 2.1. In order to illustrate the
significance of the secondary laser we performed two measurements, where the usage of a
repumping laser is compared to the use of a solitary laser imaging system. We expect to see
a flattening of the curve in the latter scenario, whereas we suspect a longer regime, in which
the number of scattered photons does not saturate as quickly, when considering the addition
of the secondary laser, since this scenario is in theory a closed optical cycling scheme.
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Figure 3.3: Number of scattered photons plotted against imaging pulse
times. Dark state formation is shown with fast saturation, when using the single
cooler light beam (red). Imaging including the secondary repumping laser beam, the
number of scattering events can be increased significantly (blue). The final image of
the BEC is shown for both scenarios. The inset portrays the imaging scheme inside
the energy structure, where C represents cooler and R repumping light.

The corresponding behaviour is shown in Fig. 3.3, where both experiments meet our
expectations. We can see, that a repumping laser significantly increases the possible imaging
duration. Without this laser however, we can detect an asymptotic curvature, which fits nicely
to our interpretation, that all populations are shifted into the dark state and thus become non-
resonant. The curves begin to differ even for the smallest imaging pulse times, such that the
employment of this technique is worthwhile for most imaging durations. Eventually the linear
regime is superseded by a saturation plateau, which predominantly is caused by the momentum
transfer of photons to the atomic cloud, which leads to the sample being blown out of focus.

3.4 Number of Scattered Photons

Finally we will optimize the ratio between Icool and Irep. A good measure is the number
of scattered photons, as we want to enhance the absorption by the atomic cloud. In the
experiment, we use AOMs to control the contribution of the light beams to the total imaging
power. This ratio is then tuned from zero to one, where a value of one marks the point at which
only Icool is present. By repeating this procedure for different total intensities, we reproduce
Fig. 2.2 experimentally.
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Figure 3.4: Number of scattered photons plotted against different ima-
ging light ratios for different total intensities. The imaging intensities are
3.6mW/cm2 (blue circles), 6.1mW/cm2 (red squares), 11.2mW/cm2 (yellow dia-
monds), 21.3mW/cm2 (purple triangles) and the solid lines are numerical solutions
computed using results from Sec. 2.2 for the four level system. An optimal ratio
was found to be r ≈ 0.55.

In Fig. 3.4 the described measurement are portrayed. As expected from theory, in a given
intensity class the scattering events start at zero, since no cooler light implies no resonant
light to be present that can be absorbed by the atoms. The optimal ratio is reached at
r ≈ 0.55. The number of scattered photons drops to a non-zero value, when only cooler
light is present. This behaviour is clear, as we know that this case represents the dark state
formation scenario, where the atoms are resonant initially and transfer into state |g5〉. For
larger intensities these characteristics repeat, with the only difference being, that the overall
number of scattered photons rises. These findings agree with our simulations, where we could
state similar results for the system. To the experimental data points we fitted lines, which
are also shown in Fig. 3.4. Here a group of data points is fitted individually with the results
from the simulation for a given intensity. The most compelling conclusion we can draw from
this measurement is, that our assumption on the optimal ratio have been confirmed, such that
we can say with confidence, that an approximate equipartition between the both light sources
yields optimal absorption characteristics. A way to improve absorption even more might be
by changing the intensities dynamically, in such a manner, that first the cooler constitutes
the main light source, where the atoms are prepared in either way, followed by a gradual
addition of repumper intensity. However, one should be reminded, that signal to noise is the
most important quantity to maximize and therefore only increasing scattering events will not
suffice.
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3.5 Atom Number

Finally, we want to give an outlook on a possibility for measuring the absolute number of
atoms in the condensate. To do so, we have to calibrate our imaging system in order to obtain
correct spatial optical densities n(x, y, z). One calibration method is given by [22], which we
will use in the following. The Lambert-Beer law, which describes absorption processes can be
applied here by accounting for saturation effects:

dI

dz
= −nσ0

α∗
1

1 + I/Isat
eff

I ≡ −nσ(I)I (3.8)

Here I is the incident light beams intensity, σ0 = 3λ2/2π the resonant cross section and
Isat

eff = α∗Isat the effective saturation intensity, which depends on the saturation intensity, here
Isat = 1.75mW/cm2. Form this equation we can derive the optical depth and define it by:

od0(x, y) ≡ σ0

∫
n(x, y, z)dz = f (x, y;α∗) (3.9)

where the function f(x, y, α∗) is given by:

f (x, y;α∗) = −α∗ ln

(
If(x, y)

Ii(x, y)

)
+
Ii(x, y)− If(x, y)

Isat

(3.10)

Here we define Ii(x, y) = Iwo(x, y) − 〈Idark(x, y)〉 and If(x, y) = Iw(x, y) − 〈Idark(x, y)〉. The
logarithmic term in Eq. 3.10 can be identified with the optical density δ0(x, y). Now the crux
of this calibration is to find an optimal parameter α∗ at which the standard deviation of the
optical depth ∆(od) is minimized. Experimentally this means, one has to calculate the od for
varying initial light intensities and try different α’s. For each tested α the standard deviation
∆(od) is calculated, until one finds the value of α for which ∆(od) is minimal. Specifically
this means, that the an α∗ has to be found for which the two terms in Eq. 3.9 add up to a
constant value, which then is the calibrated optical depth. However, this method assumes a
two-level system, which in our experiment is not the case. Nonetheless, as we have shown in
Sec. 2.3 we can reduce our imaging scheme to the two-level system by adjusting the saturation
intensity, provided that imaging times are long enough, such that the steady state solutions
become a good approximation. Hence this scaling can be incorporated in the parameter α∗.
From the calibrated densities, we can now determine the number of atoms. In the experiment
we take images in the described way of Sec. 3.1, where we use high light intensities, such that
the imaging is nearly linear even for higher densities. The resulting density distribution is
then compared to numerical values from the Gross-Pitaevskii equation, where the number of
atoms is varied. The simulation of the density distribution, which fits best to our data, then
contains our estimate for the number of atoms in the atomic sample. In case of a harmonic
trap, we have to calibrate the magnification of the lens system (Fig. 3.1) and measure the
trapping frequency [23].
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Conclusion

In conclusion, we have analyzed the imaging system used to investigate ultra-cold potassium
39K atoms. We refined the theoretical framework, that is used to describe interactions between
light quanta and atomic clouds. In this context we presented a closed optical cycle imaging
technique. This method uses a binary laser system, that compensates for loss effects due to a
non-pure energy structure. Further, we performed simulations, that used the Lindblad master
equation to optimize scattering events during the imaging process. Finally, we compared our
theory to experimental data and elaborated on how images are processed to obtain quantitative
results.

(i) Since the isotope 39K has a broad Feshbach resonance at B = 562G we argued for
this atom species as a suitable subject for investigation. We demonstrated, that in the
intermediate magnetic field regime, we have decay modes, that have not been considered
previously. In order to quantify these decay channels, we calculated the dipole matrix
elements by exploiting the Wigner-Eckart theorem. We derived a general expression for
the dipole matrix elements for alkali metals, that was evaluated for the used potassium
isotope (Fig. 1.4). The predominant result here is, that the decays strongly depend on
the applied external magnetic field. Therefore the consideration of these decay modes
becomes important for any alkali metal in the respective intermediate field regime.

(ii) For our open dissipative system we build the Hamiltonian in the interaction frame in
order to construct the Lindblad master equation. From the resulting Maxwell-Bloch
equation we could quantify the loss phenomenon using the evolution of the populations.
Together with the dipole matrix elements, we argued for the existence of a closed cycle
imaging system, that utilizes a binary laser setup. For this scheme we were able to
argue for the benefits of adding the secondary laser, which suppressed the dark state
formation (Fig. 2.1b).

(iii) Since a second laser directly poses the question of an optimal ratio in intensity between
both frequencies, we optimized this parameter numerically. Specifically we found that
by using the number of scattered photons as measure for good absorption characteristics
of the atomic medium we could optimize the contributions well. We found from these
simulations (Sec. 2.2) that the optimal ratio is given at approximately equal ratio.
Furthermore we could detect a slight asymmetry here, which is a manifest to the initial
condition, such that the primary laser light scatters more, since the medium is prepared
in its resonant state. These findings were substantiated from experimental results.
Experimentally a contribution of r ≈ 0.55 of the cooler light showed optimal scattering
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properties. Moreover the previously found asymmetry was reproduced in the experiment
(Fig. 3.4).

(iv) Finally, we provided a brief description on a method for calibrating the imaging system
and determining the number of atoms in the medium. In this context we were able to
reduce the four-level system to an effective two-level system by employing the steady
state approximation. Furthermore we defined an effective saturation intensity for the
atomic cloud Ieff

sat. This quantity allowed to scale the number of scattered photons in
dependence of the incident light intensity identically to an effective two-level system
(Fig. 2.3). The implications are, that if we define a new saturation intensity for our
imaging scheme we can calibrate our system equivalently to a two-level system, provided
that imaging times are longer than the initial oscillations in populations, i.e. that the
steady states are reached quickly.
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