
Department of Physics and Astronomy

Heidelberg University

Bachelor Thesis in Physics

submitted by

Jakob Benjamin Huhle

born in Munich (Germany)

2024

Reproduction of AdEx dynamics on neuromorphic

hardware through data embedding and

simulation-based inference

This Bachelor Thesis has been carried out by Jakob Benjamin Huhle at the

Kirchhoff-Institute for Physics in Heidelberg

under the supervision of

Dr. Johannes Schemmel

Abstract

When attempting to replicate a specific observation in modeling, identifying

the appropriate parameterization for the system is often challenging. In this

thesis, we conducted experiments on the neuromorphic hardware BrainScaleS-

2. The objective of this study was to identify suitable hardware parameters

that enable the successful emulation of a given voltage trace on the hard-

ware. Previously, the SNPE algorithm has proven to be suitable for handling

noisy observational data. To this end, we employed different data embed-

ding techniques to compress the original observed data, particularly focusing

on autoencoders. The pre-trained encoder is designed to transform the ob-

served data into a lower-dimensional representation, which is then fed into

the SNPE algorithm. The algorithm is tasked with approximating the poste-

rior distributions of the model parameters, which are subsequently analyzed

and compared. The methodology was first tested for simulations and then

for emulations on hardware. Inference was performed on two, four, and eight

hardware parameters. Results have shown that inference is successful for up

to four dimensions, while the outcomes for eight dimensions seem promising

but require further investigation.

Zusammenfassung

Bei dem Versuch, eine spezifische Beobachtung im Modellieren zu replizieren,

ist es oft eine Herausforderung, die geeignete Parametrisierung für das System

zu bestimmen. In dieser Arbeit führten wir Experimente auf der neuromor-

phen Hardware BrainScaleS-2 durch. Das Ziel dieser Untersuchung bestand

darin, geeignete Hardwareparameter zu identifizieren, mit denen eine zuvor

gegebene Spannungszeitreihe erfolgreich auf der Hardware emuliert werden

kann. Wie zuvor gezeigt wurde, kann der SNPE-Algorithmus mit rauschbe-

hafteten Beobachtungsdaten umgehen. Wir wendeten mehrere Methoden an,

um die Dimensionalität unserer beobachteten Daten zu reduzieren. Dabei leg-

ten wir einen besonderen Fokus auf Autoencoder. Der vortrainierte Encoder

ist darauf konzipiert, die beobachteten Daten in eine niederdimensionale Dar-

stellung zu komprimieren, die dann dem SNPE-Algorithmus übergeben wird.

Der Algorithmus hat dann die Aufgabe, die Wahrscheinlichkeitsverteilung der

Modellparameter zu approximieren. Die resultierenden Verteilungen wurden

anschließend analysiert und verglichen. Die Methodologie wurde zunächst für

Simulationen und anschließend für Emulationen auf der Hardware getestet.

Die Inferenz wurde für zwei, vier und acht Hardwareparameter durchgeführt.

Unsere Ergebnisse zeigten, dass die Inferenz bis zu vier Dimensionen erfolgreich

ist, während die Resultate für acht Dimensionen vielversprechend erscheinen,

jedoch weiterer Untersuchungen bedürfen.

Contents

1. Introduction 1

2. Background 3

2.1. Biological neuron . 3

2.2. AdEx . 4

2.3. Analog neuromorphic hardware: the BrainScaleS-2 system . . . 6

2.4. Simulation-based inference . 9

2.4.1. SNPE algorithm . 10

2.4.2. Data embedding . 13

3. Methods 19

3.1. Experiment setup . 19

3.2. Datasets . 20

3.3. Data embedding . 21

3.4. Simulation-based Inference . 25

4. Results 27

4.1. Datasets . 27

4.2. Data embedding . 27

4.3. Simulation-based inference . 35

4.3.1. SNPE on simulated data 35

4.3.2. SNPE on emulated data 42

5. Summary and Discussion 60

5.1. Datasets . 60

5.2. Data embedding . 61

5.3. Simulation-based inference . 62

6. Outlook 66

A. Appendix 75

A.1. Fixed hardware parameters . 75

A.2. Model architectures . 76

A.3. Datasets . 78

A.4. Autoencoder training . 80

A.5. Simulation-based inference . 82

A.6. Experiment environment and data 85

1. Introduction

”The first and simplest emotion which we discover in the human

mind, is curiosity.”

– Edmund Burke

Curiosity of the human mind about itself has been present in numerous cul-

tures throughout history. Even the ancient Egyptians engaged in early forms

of neuroscience research (Mart́ın-Araguz et al., 2002). However, they did lack

the adequate means to gain knowledge about the brain, leading to inaccurate

assumptions. Since then, humanity has come a long way. Today, we even build

computer architectures which aim to replicate and mimic the human brain.

Those architectures are called “neuromophic hardware”.

One major advantage of this kind of hardware is its ability to emulate the

dynamics observed in biological nerve cells, or neurons. If the hardware can

accurately replicate the physical properties, such as the membrane voltage, of

biological neurons under different conditions, this indicates that it has been

successfully designed in alignment with biological principles and effectively in-

corporates key aspects of brain functions. Furthermore, emulations on neuro-

morphic hardware are often faster and more energy-efficient than traditional

simulations (Hasler and Marr, 2013). By accurately emulating neural sys-

tems, researchers can study neuronal behavior in various scenarios without

needing to run resource-intensive simulations. This also reduces the need for

time-consuming lab experiments, making it a powerful tool for neuroscience

research.

In this thesis, the central objective is: given a target voltage trace, we want

to find the most probable hardware parameters with which that trace can be

replicated on the BrainScaleS-2 system (Pehle et al., 2022).

Therefore, we leverage the sequential neural posterior estimation (SNPE) al-

gorithm (Greenberg, Nonnenmacher, and Macke, 2019). The SNPE algorithm

aims to approximate the posterior distribution of the parameters by perform-

ing multiple emulations on the hardware itself. In neuroscience, the SNPE

algorithm has primarily been applied to simulations of mathematical models

of neural systems (Lueckmann, Pedro J Goncalves, et al., 2017). Furthermore,

it has also been utilized on the BrainScaleS-2 system before, although for a

different research question (Kaiser et al., 2023). Thus, this thesis presents the

first approach to leveraging the SNPE algorithm for extracting possible hard-

ware parameters from complete membrane voltage traces on BrainScaleS-2.

1

1. Introduction

We aim to infer two, four, and eight parameters simultaneously and evaluate

the algorithm’s performance. Access to the posterior allows us to quantify

the confidence in parameter estimations and unveil correlations, which might

provide valuable insights into the properties of the hardware implementation.

To perform parameter inference, it is often essential to compress the data

before passing it to the SNPE algorithm, as fewer input data can improve

inference results (Pedro J Goncalves et al., 2020). Thus, we explore various

methods of data embedding which can learn a low-dimensional representation

of the time series data. In this regard, we place a strong focus on autoencoders.

As a proof of concept, we first conduct our investigations on simulations before

moving on to emulations using the hardware. This stepwise approach ensures

that our inference pipeline is functioning correctly before transitioning to ex-

periments on the BrainScaleS-2 system.

2

2. Background

2.1. Biological neuron

Neurons, or nerve cells, are the fundamental building blocks of biological com-

puting systems, such as the brain. The human brain consists of approximately

100 billion neurons, which form a highly intricate neural network with trillions

of connections between them (Gulati, 2015). A neuron’s anatomy can be seen

in figure 1. Generally speaking, it consists of dendrites, the soma, or cell body,

and an axon. Through dendrites, the neuron receives information from other

neurons, while it can send its own information through the axon and axon

terminals to neighboring nerve cells. The cell body contains the nucleus with

its genetic material and cellular organelles (Martin, 2021).

Communication between different cells occurs through so-called action poten-

tials (see figure 1). These action potentials are significant local changes in the

membrane voltage, caused by the exchange of ions between the outside (extra-

cellular space) and the inside (intracellular space) of the cell. Under resting

conditions, the membrane voltage remains at a constant resting potential of

around −70mV. An action potential results from transient changes, primarily

due to the exchange of sodium (Na+) and potassium (K+) ions. With suffi-

cient stimulation, the voltage can reach a critical threshold. At this point,

the depolarization phase begins, where the membrane voltage rapidly shifts

from around −70mV to 40mV. In the second phase, called repolarization, the

voltage difference returns toward the resting potential. However, it can dip

below the resting potential before rising back up to it. This phase is known

as the refractory period. On the other hand, if the stimulus fails to raise

the voltage above the critical threshold, no action potential will be triggered

(Mark W Barnett, 2007).

Through the dendrites, a neuron receives information of action potentials from

neighboring cells. These inputs are integrated, and if the cumulative change in

membrane voltage reaches a threshold of approximately −55mV, the neuron

generates its own action potential. The depolarization of the membrane during

the action potential creates local currents that depolarize adjacent sections of

the axon membrane. In this way, the action potential propagates down the

axon. At the end of the axon, at the axon terminals, the electrical pulse can

be converted into the release of chemical neurotransmitters and transmitted

via synapses1 to the next neuron (Mark W Barnett, 2007).

1A synapse is the junction between two neurons, where the transfer of information occurs,
typically through neurotransmitters that bridge the gap between the neurons.

3

2. Background

Dendrites

Axon
Soma

Axon Terminals

V
o
lt

a
g
e

(m
V

)

D
e
p
o
la

ri
za

ti
o
n R

e
p
o
la

riza
tio

n
Threshold

Stimulus

Action
potential

Failed
initiations

Refractory
period

Resting state

+40

0

-55

-70

0 1 2 3 4 5

Time (ms)

Figure 1: Left: generalized anatomy of a nerve cell; Right: Different phases
of an action potential. If the membrane voltage reaches a threshold
of about −55mV, an action potential will be created. The voltage
will then rapidly rise in the depolarization phase. After reaching
the maximum value of about 40mV, it will decrease again in the
repolarization phase. Lastly, it can further decrease in the refrac-
tory period, before reaching the value of the resting potential again.
Source: adjusted from Iberri, 2007; Jarosz, 2009.

Through this process, signals can be exchanged, facilitating interaction be-

tween neurons. The form of an action potential is mostly identical. Therefore,

much information is encoded in the sequence of multiple action potentials,

forming a spike train or firing pattern (Bialek et al., 1991; Campo, 2020).

Knowing about a neuron’s spiking activity can teach us much about how a

neuron processes and transmits information. Spiking patterns are linked to be-

havior and cognitive functions. Analyzing these patterns can provide insights

into how specific neural circuits contribute to sensory perception, motor con-

trol, decision-making, and other cognitive processes (Shinomoto et al., 2009).

2.2. AdEx

Neuronal modeling holds profound importance in the realm of the neuro-

sciences. It is the process of representing a biological neuron through a math-

ematical structure that incorporates its biophysical and geometrical charac-

teristics. This structure is referred to as the neuron’s model. The aims of

developing accurate models include, for instance, estimating the biophysical

parameters of real neurons or shedding light on how the information-processing

properties of real neurons might function (Windhorst and Johansson, 1999).

Numerous models have been developed to capture a neuron’s behavior un-

der different circumstances. These models include, for instance, the Leaky

4

2.2. AdEx

Integrate-and-Fire model, Hodgkin-Huxley models, and more complex bio-

physical conductance-based models (Gerstner and Kistler, 2002). A good

model should preferably be simple in order to be computationally efficient

to simulate and interpret. On the other hand, it should still be sophisticated

enough to model diverse behaviors and types of neurons to closely approximate

biological reality.

A suitable model that meets both of these criteria is the adaptive exponential

integrate-and-fire (AdEx) model (Brette and Gerstner, 2005). While remain-

ing relatively simple with only two differential equations and a reset condition,

it is capable of modeling diverse neuronal firing patterns (Naud et al., 2008).

Additionally, it has been shown that it can closely match direct measurements

in cortical neurons (Jolivet et al., 2008).

The AdEx model is an advancement of the leaky integrate-and-fire model.

The key differences lie in an additional exponential term and an adaptation

variable. The exponential term allows the model to effectively handle fast in-

put signals, while the adaptation is crucial for modeling the neuron’s response

to sustained stimuli (Fourcaud-Trocmé et al., 2003; Izhikevich, 2003). Adap-

tation refers to the neuron’s ability to reduce or increase its firing rate over

time, even when the input remains constant, mimicking real neural behavior.

These adjustments make the model more biologically realistic.

The model consists of the following two differential equations:

C
dV

dt
= −gL(V − EL) + gL∆T exp

(
V − VT

∆T

)
+ I − w, (1)

and

τw
dw

dt
= a(V − EL)− w. (2)

In addition, a reset condition ensures the updating of the relevant variables

after a spike has occurred:

If V > Vth, then

V → Vr

w → wr = w + b.
(3)

The model thus simulates the evolution of the membrane potential V and the

adaptation current w over time when a constant current I is injected. Param-

5

2. Background

eters of the model are the total capacitance C, the total leak conductance gL,

the effective rest potential EL, the threshold slope factor ∆T and the effective

threshold potential VT. These parameters are also known as scaling parame-

ters because they affect the scaling of the time axis as well as the stretch and

offset of the state variables. We can express C and gL in terms of the time

scale τm = C
gL
. After applying additional scaling, the two equations (1) and

(2) can be simplified into a system of dimensionless variables and only four

parameters (J. Touboul, 2008). These four parameters are called the bifurca-

tion parameters and are directly proportional to the conductance a, the time

constant τw, the spike-triggered adaptation b, and the reset potential Vr. By

modifying these parameters, different firing patterns can emerge, which may,

for example, vary in the inter-spike intervals2 or in the form of the reset after

a spike (Naud et al., 2008).

If the injected current I is strong enough to drive the membrane potential

V above VT, the potential diverges to infinity in finite time. In numerical

simulations, the integration is halted when the membrane potential reaches

the threshold Vth and the potential is reset to a value Vr.

Equation (2) describes the evolution of the adaptation current w. It incorpo-

rates both spike-triggered adaptation, achieved through the reset w → w + b,

and a linear coupling of the effective reset potential EL with the voltage, me-

diated by the parameter a. Hence, the larger the adaptation variable b, the

more difficult it becomes for the neuron to spike over time, even if the injected

stimulus remains unchanged. The parameter a with a positive value may

model ionic channels that tend to hyperpolarize the membrane. In contrast,

a depolarizing effect occurs for negative values of a.

2.3. Analog neuromorphic hardware: the BrainScaleS-2 system

Brain-inspired computing has been a promising approach to explore alternative

computer architectures beyond the standard von Neumann architecture (In-

diveri et al., 2011). The general goal of constructing neuromorphic hardware

consists of taking the biological brain as a model for computing. Compared

to classical approaches, it can excel in several areas, such as high-speed mod-

eling of large-scale neural systems and machine learning-inspired training of

spiking neural networks (Billaudelle et al., 2022). Furthermore, it can offer

more energy-efficient AI solutions (Mueller, 2014).

One realization of such neuromorphic hardware is the BrainScaleS-2 system

(Pehle et al., 2022). This computing platform aims to replicate the biological

2An inter-spike interval is the time interval between two subsequent spikes.

6

2.3. Analog neuromorphic hardware: the BrainScaleS-2 system

brain by constructing a network of in-silicon neurons interconnected through

plastic synapses. Instead of representing biological processes by changing a

multitude of bits, the temporal evolution of physical quantities, such as cur-

rent and voltage, directly corresponds to neuronal dynamics, enabling the

analog hardware to emulate spiking neural networks. On the BrainScaleS-2

hardware, emulation operates at a 1000-fold accelerated time scale compared

to the biological time domain.

The heart of this system is the HICANN chip (see figure 2). The chip consists

of four quadrants, each containing 128 neurons and a synaptic crossbar with

256 rows and 128 columns. In total, the chip hosts 512 neuron circuits. Digital

processors are located at both the top and bottom of the chip, capable of

reading and writing the digital state of their respective halves of the synaptic

crossbar. Through field-programmable gate arrays (FPGAs), the chip can

be configured in real time from a host computer. This allows experiments

designed in software to be easily executed on the hardware. Observables like

the emulated membrane voltage can be accessed via the FPGA on the host

side. BrainScaleS-2 extensions for common frameworks like PyNN (Davison

et al., 2009) and PyTorch (Paszke et al., 2019) exist, simplifying experiment

design.

The system is designed to faithfully emulate the AdEx equations (see chapter

2.2). However, some deviations exist. For instance, the adaptation current w

of equation (1) is implemented as a voltage on the hardware instead of as a

current. For more details, see Billaudelle et al., 2022.

An on-chip Digital-to-Analog Converter provides 24 analog parameters for

each neuron circuit, enabling precise tuning of experiments. It has a 10 bit3

resolution, allowing most parameters to be configured with 1024 distinct val-

ues. All potentials and conductances from equation (1) can be controlled by

these 24 parameters, allowing for the creation of rich neuronal dynamics.

Analog neuromorphic systems always suffer from temporal noise, fixed-pattern

parameter deviations, and divergence from the original model equations. Vari-

ations in manufacturing conditions and materials used in the production im-

pact those discrepancies. Calibration is employed to mitigate these disadvan-

tages. Nevertheless, it cannot fully compensate for them, and variations in

different neuron circuits may occur even on the same chip.

3Parameters are adjustable from 0 to 1022.

7

2. Background

Figure 2: The HICANN chip. Left: photograph of the chip. Right: the
schematic floorplan of the chip: two processor cores with access to
the synaptic crossbar array are located on the top and bottom. In
the middle, the 512 neuron circuits and analog parameter storage are
arranged. Events generated by the neurons and external events are
routed to the synapse drivers and to/from the digital I/O located on
the left edge of the chip with the help of the event router. Source:
Pehle et al., 2022.

8

2.4. Simulation-based inference

2.4. Simulation-based inference

In our world, most observations, such as temperature readings or recordings

of seismic and acoustic sound waves, are relatively easy to obtain. A com-

mon interest is understanding the pattern of creation for specific observations.

However, determining the underlying cause of those observations can be a

challenging task. In science, this problem is referred to as an “inverse prob-

lem”. It is assumed that there exists a known mapping T : Θ → X between

the parameter space Θ and the observation space X that models a physical

law or device. Unlike a direct problem, which involves computing an effect

T (θ ∈ Θ), the inverse problem involves identifying the specific cause θ respon-

sible for creating the observed result x ∈ X (Richter, 2020). In the context

of this thesis, the observation x would be a voltage trace from a simulated or

in-silicon neuron. The mapping T would involve simulating the AdEx equa-

tions or emulating them on the BrainScaleS-2 hardware using the relevant set

of model or hardware parameters, which represent the cause θ.

Multiple algorithms have been developed to solve inverse problems computa-

tionally, e.g. evolutionary algorithms or particle swarm algorithms (Van Geit,

De Schutter, and Achard, 2008). With the advancements in deep learning in

recent years, simulation-based inference algorithms have become a prominent

candidate for solving these types of problems (Cranmer, Brehmer, and Louppe,

2020). Given an observation x, these algorithms can be used to obtain the

posterior distribution p(θ|x) to find the most probable parameters that could

have generated this observation. A key component in these algorithms is the

use of a simulator. The simulator takes a vector of parameters θ as input,

calculates a series of internal states or latent variables zi ∼ pi(zi|θ, z<i) and

outputs a data vector x ∼ p(x|θ, z) (Cranmer, Brehmer, and Louppe, 2020).

Normally, Bayesian inference is leveraged to calculate the posterior:

p(θ|x) = p(x|θ)p(θ)∫
dz p(x|θ′)p(θ′)

. (4)

However, it can be too expensive or even impossible to compute the likelihood

p(x|θ) in some cases. The likelihood could be obtained by integrating over all

possible trajectories through the latent space of the simulator

p(x|θ) =
∫

dz p(x, z|θ). (5)

For a sequential data generation procedure, the joint probability density p(x|θ)

9

2. Background

of the data x and the latent variables z can be rewritten into

p(x, z|θ) = p(x|θ, z)
∏
i

pi(zi|θ, z<i). (6)

Thus, because of the immense number of possible latent variables z, it is

impossible to compute the integral in equation (5) for simulators with large

latent spaces. Instead, some simulation-based inference algorithms aim to

approximate the posterior directly, bypassing the need for the likelihood, which

leads to their classification as likelihood-free algorithms.

2.4.1. SNPE algorithm

One type of likelihood-free algorithm is the SNPE algorithm (Greenberg, Non-

nenmacher, and Macke, 2019). It utilizes active learning, where the model

itself selects the data it needs most to improve its performance. Given an

observation x̂, the SNPE algorithm allows for finding an approximation of

the posterior distribution p(θ|x̂). Ideally, the most probable parameters θ of

that posterior can reproduce the observation x̂, when fed into the simulator.

A target observation x̂, a prior p(θ) and a model or simulator are taken as

inputs. Similar to standard parameter search methods, the algorithm utilizes

simulations. However, instead of filtering out specific simulations, it uses all

of them to train artificial neural networks for conditional density estimation

(Papamakarios, Pavlakou, and Murray, 2017). In the first step, the algorithm

samples random parameters from the prior θ′ ∼ p(θ). The simulator then uses

these parameters to generate observations x′, which is similar to sampling

from the likelihood x′ ∼ p(x|θ). Next, a neural density estimator (NDE) is

trained to learn the mapping between the sampled parameters and the gen-

erated observations, thereby approximating the posterior distribution. The

NDE is a flexible set of probability distributions parameterized by a neural

network, typically trained by minimizing the negative log-likelihood of the

previously drawn samples. At this stage, one obtains a posterior distribution

of the parameters for any observation x.

If one is only interested in a specific observation x̂, the inference procedure can

be repeated several times, making the algorithm sequential. In this case, the

approximated posterior from the previous round is used as the proposal prior

for the next round, which enhances the results. However, the posterior is then

no longer amortized, meaning it cannot be reused for another observation

x. If one wants to obtain the posterior for a new observation x, the entire

procedure must be repeated from the beginning for that new observation.

10

2.4. Simulation-based inference

Figure 3: The functionality of the SNPE algorithm. The algorithm takes a
mechanistic model, a prior for the model parameters, and the (em-
bedded) data as inputs. SNPE then (1) draws random samples from
the prior and performs simulation with those parameters; (2) trains
a neural density estimator which should learn the correlation of the
data and the model’s parameters; (3) can approximate the posterior;
(4) uses an initial estimate of the posterior as the new prior in sub-
sequent inference rounds. Source: Pedro J Goncalves et al., 2020.

The functionality of the SNPE algorithm is displayed in figure 3.

Truncated Sequential Neural Posterior Estimation A potential improve-

ment method for the parameter inference involves drawing samples from a

truncated posterior (Deistler, Pedro J. Goncalves, and Macke, 2022). During

the training of the NDE, there is a chance that the learned posterior approxi-

mation may extend beyond the support of the given prior. Consequently, many

samples drawn from the posterior during the sampling step may fall outside

the prior boundaries and must be rejected. This can considerably prolong

the sampling process. To address this issue, one can choose to sample from a

truncated posterior, where samples drawn from the prior are rejected if they

do not lie within the support of the posterior. This approach ensures that the

resulting proposals are proportional to the prior, allowing the neural network

to be trained with maximum likelihood in each round. The functioning of the

truncated SNPE algorithm is displayed in figure 4.

Posterior analysis After obtaining the approximated posterior, various tech-

niques can be applied to assess its quality. One example are posterior pre-

dictive checkss (PPCs) (Berkhof, Mechelen, and Hoijtink, 2000). PPCs are a

common safety check to verify that the approximated posterior is not poor.

However, they do not confirm that the posterior is necessarily good, as it

11

2. Background

Figure 4: Truncated Sequential Neural Posterior Estimation. The algorithm
begins by sampling from the prior distribution, running the sim-
ulator, and training a neural density estimator to approximate the
posterior. In the standard SNPE algorithm, parameters are sampled
from the approximate posterior but are rejected if they fall outside
the support of the prior. Here, proposals are truncated versions of
the prior and the neural density estimator can be trained with maxi-
mum likelihood in each round. Source: Deistler, Pedro J. Goncalves,
and Macke, 2022.

can still be overconfident4. A PPC compares the data xgen, generated using

posterior samples θposterior, with the observed data x̂. If the inference was suc-

cessful, the simulated data xgen should resemble the observed data x̂. PPCs

help identify if any bias was introduced during inference and whether xgen

systematically differs from x̂.

With the obtained posterior, one can not only infer the best parameters re-

sponsible for the specific observations but also detect correlations between

different parameters. This allows us to analyze whether certain parameters

can vary or need to be finely tuned, as compensation mechanisms may exist

between them (Marder and Taylor, 2011). Pearson correlation coefficients can

be calculated to quantify the strength and direction of linear relationships

between parameters (Benesty et al., 2009). Additionally, conditional distri-

butions can be extracted to further investigate parameter correlations and

dependencies.

Another method for conducting posterior diagnostics is sensitivity analysis.

Sensitivity analysis is a method used to determine which parameters signifi-

cantly influence the behavior of a system. These parameters require precise

tuning. By examining the posterior distribution, we can assess how uncertain

or sensitive the model is to specific parameters, gaining deeper insights into

the underlying dynamics of the system. This is done by making use of the

Active Subspace (Constantine, Dow, and Q. Wang, 2014). In essence, we aim

to identify directions in the parameter space where the posterior probability

4This means the posterior might underestimate uncertainty, resulting in predictions that
appear more certain than they actually are.

12

2.4. Simulation-based inference

exhibits significant changes. This is accomplished by computing the matrix

M = Ep(θ|x̂)
[
∇θp(θ|x̂)T∇θp(θ|x̂)

]
(7)

with the posterior p(θ|x̂) and then performing eigendecomposition. Strong

eigenvalues resulting from this process indicate that the gradient of the pos-

terior density is large along the corresponding eigenvector directions.

2.4.2. Data embedding

Time series voltage traces from in-silicon neurons serve as our observations

for the parameter inference procedure. Hence, the NDE is supposed to learn

the relationship between the model parameters and the resulting time series

data. When dealing with such high-dimensional data (i.e. voltage traces with

many datapoints) in deep learning, dimensionality reduction techniques are

often applied to reduce computational costs. This approach offers several ad-

vantages. Firstly, a large amount of data increases the model’s complexity,

often requiring more layers, which in turn increases training time as more pa-

rameters need to be learned. Furthermore, high-dimensional data frequently

contains redundant or irrelevant information, referred to as noise. By reducing

the data to its most relevant features in a lower-dimensional space, noise is

less likely to confuse the model. Additionally, dimensionality reduction helps

reduce overfitting5 and improves generalization, as the model focuses on es-

sential features rather than learning noisy details.

This step is pivotal in striking the right balance between reducing information

redundancy while retaining the relevant features essential for effective param-

eter inference. It ensures that the encoded features capture the crucial aspects

of the data most useful for density estimation in simulation-based inference. In

computational neuroscience, handcrafted summary statistics are often applied,

extracting features such as the spike shape or the firing frequency, among oth-

ers (Pedro J Goncalves et al., 2020). However, there is a risk that important

characteristics of the data may be overlooked with such predefined features.

Additionally, designing and implementing relevant features for new or different

types of data can be time-consuming and labor-intensive.

Many algorithms and techniques have been developed to compress time series

data. Typical choices are making use of different kinds of principle component

5The model learns the training data too well, capturing not only the underlying patterns
but also the noise and irrelevant details, leading to poor generalization to new, unseen
data.

13

2. Background

analysis, singular value decomposition, maximum value unfolding or fourier

or wavelet transforms, just to name a few (Ashraf et al., 2023; Oliveira et al.,

2023; Chiarot and Silvestri, 2023). Another approach is to use deep learning

methods for reducing the data size. We aim to have a dimensionality reduction

technique that is highly flexible and can be applied to various types of time

series data without having to adjust many parameters. Thus, in this thesis, we

focused on unsupervised deep learning techniques, which are responsible for

extracting the most relevant features of the data and encoding them into a low-

dimensional feature space. For our purposes, autoencoders were implemented

to encode the data.

Autoencoder An autoencoder (P. Li, Pei, and J. Li, 2023) is an unsuper-

vised6 deep learning model that learns a lower-dimensional representation of

data given a large number of samples. Generally speaking, it consists of two

main components: an encoder and a decoder (see figure 5). Both the encoder

and the decoder are composed of neural networks. The specific architecture

can vary significantly depending on the particular task. The encoder is re-

sponsible for learning the key features of the input data, thereby reducing the

dimensionality of the data into a lower-dimensional space, which is referred

to as the latent space. The decoder, on the other hand, is tasked with re-

constructing the original signal solely from this latent space representation.

Ideally, the output of the autoencoder should be as close as possible to the

original input data.

To achieve this, the autoencoder is typically trained by minimizing the Mean

Squared Error (MSE):

MSE =
1

n

n∑
i=1

(xi − x̂i)
2 , (8)

with xi being the datapoint at index i of the original time series and x̂i the

datapoint at index i of the reconstructed time series. The MSE thus measures

the mean squared deviation between the original data and the reconstructed

data, indicating how well the autoencoder reproduces the input data.

Autoencoders are a common method used to tackle a multitude of problems.

They are applied in tasks such as classification (Zheng et al., 2016), anomaly

detection (Guo et al., 2018; Chen et al., 2020), forecasting (Sagheer and Kotb,

2019), and synthetic data generation (Wan, Zhang, and He, 2017). Depending

6Unsupervised learning refers to a type of machine learning where the model learns from
unlabeled data, without explicit guidance on the correct output.

14

2.4. Simulation-based inference

Latent Space

Encoder Decoder

Original trace Reconstructed trace

Figure 5: Structure and functionality of an autoencoder. Data is fed into the
encoder and thus broken down into the most relevant features in
the latent space. The decoder tries to reconstruct the original data
solely from the latent space representation. The MSE loss is often
used to evaluate its performance.

on the specific problem at hand, their design, training, and architecture can

vary greatly.

In this thesis, both a convolutional autoencoder and a combination of a convo-

lutional and a recurrent autoencoder were implemented. As the names suggest,

convolutional and recurrent layers are used in the encoder and decoder parts

of the architecture.

A convolutional layer performs matrix multiplication which uses filters on the

input data. The inputs are convolved with the learnable kernels and added

with biases to generate the output features. The following equation describes

a single 1-dimensional convolutional layer for the jth output feature X l
j in

layer l (F. Wang et al., 2019):

X l
j = f

∑
i∈Mj

X l−1
i ∗W l

ij + blj

 . (9)

W l
ij resembles the weight that connects X l

j and X l−1
i . Mj is the connection

between X l
j and the output features of the previous layer. The convolution

operation, which generates the high-level representations of the input, is repre-

sented by ∗. Lastly, blj is the corresponding bias. The resulting output is then

passed into an activation function f(·), which, among other things, introduces

non-linearity and controls the output range. Small kernels are able to extract

local and more detailed features while bigger kernels can extract more holistic

features (Schmidhuber, 2015).

Another prominent layer architecture for time series data, where the ordering

of the datapoints is relevant, are recurrent layers. One example of a recurrent

layer is the long short-term memory (LSTM) layer (Hochreiter and Schmid-

huber, 1997). The typical structure of a LSTM block is displayed in figure

6.

15

2. Background

The LSTM contains so called gates which are separate neural networks. They

can learn the important information in the sequential data and thus regulate

the flow of information. The three gates are the input gate It, the output gate

Ot and the forget gate Ft. In addition, two states exist, the long term cell

state ct and the short term cell state ht. The gates decide which information

is allowed in the cells states and which information can be forgotten. Hence,

the cell states are carefully regulated by the gates. An LSTM block can be

described by the following equations (Dasan and Panneerselvam, 2021):

It = σ(WxIxt +WhIht−1 +WcIct−1 +BI)

Ft = σ(WxFxt +WhFht−1 +WcF ct−1 +BF)

ct = Ftct−1 + It tanh(Wxcxt +Whcht−1 +Bc)

Ot = σ(WxOxt +WhOht−1 +WcOct +BO)

ht = Ot tanh(ct).

(10)

Here, WxI , WxF , WxO and Wxc represent the weight matrices of the different

gates and long-term cell state to the input xt. WhI , WhF , Whc, and WhO

represent matrices of weights from the input gate, forget gate, long-term cell

state, and output gate to the intermediate output ht−1. Similarly, WcI , WcF ,

and WcO represent matrices of weights from the input gate, forget gate, and

output gate to the cell state ct. B are the bias vectors, and σ(·) represents the
sigmoid function, defined as:

σ(x) =
1

1 + e−x
. (11)

To compare different designs of autoencoders, several metrics can be calculated

to quantify their performance (Dasan and Panneerselvam, 2021; Yildirim, Tan,

and Acharya, 2018).

The compression CR determines how strong the model can compress the data.

It is calculated from the size of the original data Sori and the size of the encoded

data Senc:

CR =
Sori
Senc

. (12)

A bigger value of CR hence indicates a stronger compression.

The variance between the output predicted by the model and the actual output

can be measured by the root mean squared error (RMSE) which is just taking

16

2.4. Simulation-based inference

Figure 6: Structure of an LSTM block with the long-term state ct, the short-
term state ht, the input gate It, the forget gate Ft and the output
gate Ot. Source: Dasan and Panneerselvam, 2021.

the square root of the MSE:

RMSE =

√√√√ 1

N

N∑
i=1

(xi − x̂i)2. (13)

Another often used metric is the percentage root mean square difference (PRD):

PRD =

√∑N
i=1(xi − x̂i)2√∑N

i=1 x
2
i

× 100. (14)

The PRD determines the quality of the reconstructed data and should be as

low as possible for a high compression quality. The normalized PRD (PRDN)

is hence given by subtracting the mean x of the original trace in the denomi-

nator:

PRDN =

√∑N
i=1(xi − x̂i)2√∑N
i=1(xi − x)2

× 100. (15)

Finally, the Quality-Score (QS) determines the effectiveness of compression

17

2. Background

algorithms. It is the ratio of the CR and the PRD:

QS =
CR

PRD
. (16)

Furthermore, the autoencoder can additionally serve as a denoising mecha-

nism. Given that the broader objective is to emulate biological traces on the

BrainScaleS-2 hardware, it is important to note that measurements of biolog-

ical neurons typically contain some level of noise. The autoencoder can be

trained to ignore this noise. Assuming the noise is Gaussian-distributed, the

idea behind training a denoising autoencoder is to synthetically add Gaussian

noise to the voltage traces in the training dataset. These noisy traces are then

passed through the model during training. However, the loss is computed

based on the reconstruction of the clean signal, not the artificially created

noisy signal. In this way, the autoencoder learns features from the noisy traces

that enable it to reconstruct the original clean signal. To assess the model’s

denoising performance, we examine the difference in the signal-to-noise ratio

SNRimp between the input signal and the output signal of the autoencoder:

SNRimp = SNRout − SNRin. (17)

Here, SNRin and SNRout are defined by:

SNRin = 10× log10

(∑N
i=1 x

2
i∑N

i=1(x̃i − xi)2

)
(18)

and

SNRout = 10× log10

(∑N
i=1 x

2
i∑N

i=1(x̂i − xi)2

)
. (19)

In these equations, xi represents the value of sampling point i in the original

signal, x̃i the value of sampling point i in the noisy signal, and x̂i the value

of sampling point i in the denoised time series. N is the length of the whole

signal (Chiang et al., 2019).

18

3. Methods

3.1. Experiment setup

The experiments were conducted in two phases. First, the entire inference

pipeline was tested using numerical simulations as a proof of concept. Follow-

ing this, the inference was implemented with emulation on the BrainScaleS-2

hardware.

Simulation The simulations involved integrating the AdEx equations (1) and

(2). A step current was injected into the simulated neuron, causing it to emit

spikes. As a result, the distinct spike patterns that emerged differed only due

to variations in the model parameters.

The simulated runtime of 100ms was fixed throughout all experiments in this

thesis, as was the time offset of 0.1ms. Before each simulation, a waiting pe-

riod equal to the time offset is applied before the constant current is set. Only

then will the experiment run for the duration of the runtime. Similarly, after

the runtime, the current will be set to zero, and another period of time offset

will be waited. This is done to ignore any initial transients at the beginning

or end when setting the parameters. A simulation timestep of 0.01ms was

consistently employed throughout all simulations, which resembles the time

interval in which each variable gets updated.

The simulation was implemented in Python using the Brian framework (Stim-

berg, Brette, and Goodman, 2019). Brian is a Python package with a C++

backend for faster computation.

Emulation The emulations, on the other hand, were conducted by mimick-

ing the AdEx equations on the BrainScaleS-2 hardware. The procedure was

similar to that of the simulations, with an external constant current applied to

induce spiking. The runtime was set to 1ms on hardware, which corresponds

to 1000ms in biological time due to the acceleration factor. Additionally, the

time offset was set to 0.3ms, which converts to 300ms in biological time.

Certain hardware parameters were set to fixed values and not altered in the

course of this thesis. The specific settings can be seen in table 7 in the ap-

pendix.

It is crucial to conduct all experiments on the same neuron circuit, as dif-

19

3. Methods

ferent circuits may exhibit varying properties due to production differences7.

Consequently, if an experiment is performed on another circuit with the same

parameters, the results could vary significantly. Furthermore, the same cali-

bration was loaded before each experiment to ensure consistency.

The emulation was coded with the BrainScaleS-2 extension of PyNN (Davison

et al., 2009).

3.2. Datasets

In order to train and assess the autoencoder models, training, validation and

test data is needed. Thus, we began by constructing appropriate datasets.

We opted for a relatively large dataset size of 200,000 voltage traces. This

size can be reduced depending on the specific task at hand. However, if the

number of variable parameters increases, it is essential to keep the curse of

dimensionality8 in mind when selecting an appropriate dataset size (Aremu,

Hyland-Wood, and McAree, 2020).

We automated the creation of datasets, which can now be generated with a

variety of different settings. Datasets can be built using simulation or em-

ulation. However, parallelization for the trace generation is only supported

for datasets created through simulations, as the same neuron circuit must be

maintained on the hardware (see chapter 3.1). The creation process is gener-

ated in chunks of 20 samples and then saved in an HDF5 file to avoid memory

overflow. In addition, the resulting data can already be interpolated9 to fewer

datapoints at this stage to drastically reduce storage space.

Parameters for the resulting voltage traces can be configured. Furthermore,

the ranges of parameters that should vary in the voltage traces of the dataset

can be specified. The program then draws random samples from a uniform

distribution, constrained by the specified limits, and simulates or emulates the

voltage traces for these selected parameters. This process yields a dataset of

voltage traces that differ solely based on the specific parameters chosen within

the given ranges. The fixed values were selected to ensure that well-defined

spiking patterns emerged.

7We used wafer 72 FPGA 0 on the BrainScaleS-2 hardware for all our experiments. At the
time of these experiments the setup was equipped with chip number 82.

8In high-dimensional spaces, data points become sparse, meaning that the available data
may not cover the space adequately and thus making it difficult for the model to learn
relationships effectively.

9Estimating unknown values that fall between known data points using mathematical func-
tions.

20

3.3. Data embedding

We built three datasets with emulated data and one with simulated data.

Table 1 and table 2 display the chosen parameters and parameter ranges for

the created datasets. Note that not all hardware parameters are relatable

to model parameters from the AdEx equations. For more information see

Billaudelle et al., 2022.

Table 1: Parameter settings for the datasets consisting of emulated voltage
traces on the BrainScaleS-2 hardware. The symbol ✓ means the
parameter was varied between the boundaries 0 to 1022 in discrete
values with arbitrary units.

parameter fixed value 2D 4D 8D

Eadapt
l 500 ✗ ✗ ✗

Vref 492 ✗ ✗ ✗

I 618 ✗ ✗ ✗

gL 68 ✗ ✗ ✗

C 63 ✗ ✗ ✗

greset 742 ✗ ✗ ✗

a 160 ✓ ✓ ✓

τw 107 ✓ ✓ ✓

b 509 ✗ ✓ ✓

Vr 636 ✗ ✓ ✓

∆T 560 ✗ ✗ ✓

VT 774 ✗ ✗ ✓

EL 836 ✗ ✗ ✓

Vth 516 ✗ ✗ ✓

Table 2: Parameter settings for the single dataset consisting of simulated volt-
age traces.

parameter fixed value boundaries

C (pF) 100 -
∆τ (mV) 2 -
EL (mV) -70 -
VT (mV) -50 -
gL (nS) 10 -
Vr (mV) - -70 to -50
a (nS) - 30 to 1000
b (pA) - 0 to 200
τw (ms) - 30 to 800

3.3. Data embedding

We implemented two different autoencoder models to compress our time series

data. One model is a fully convolutional autoencoder (CONV-AE), while the

21

3. Methods

other includes a single LSTM layer as the final layer in the encoder, which we

call a convolutional-LSTM autoencoder (CONV-LSTM-AE). The key idea in

that model is that the LSTM layer should account for the temporal sequence

of features learned by the preceding convolutional layers. We based our work

on the models proposed in Yildirim, Tan, and Acharya, 2018 and Dasan and

Panneerselvam, 2021, adjusting the architectures to meet our specific require-

ments, such as modifying the number of layers, layer dimensions, bottleneck10

size, and activation functions. The final model architectures are provided in

tables 8 and 9 in the appendix.

The core principle behind the data reduction in the encoder is the use of

max-pooling operations after the convolutional layers. Max-pooling is a down-

sampling technique that reduces the spatial dimensions of the input by select-

ing the maximum value from a set of neighboring values, thereby preserving

important features while reducing data size. In contrast, the decoder uses

up-sampling operations, which duplicate the values from the previous layer to

expand the data size back to its original dimensions. The subsequent convo-

lutional layers adjust these values appropriately.

Batch normalization was used to stabilize and accelerate training by normal-

izing the activations within each mini-batch, reducing internal covariate shift.

The CONV-AE employed ReLU activation functions after each convolutional

layer, except for the last layer where a sigmoid activation function was used

to normalize the output to a range from 0 to 1. The CONV-LSTM-AE, on

the other hand, utilized tanh activation functions, with a sigmoid activation

on the final layer as well.

Dropout was used in the CONV-LSTM-AE to prevent overfitting. Dropout

randomly deactivates a certain percentage of neurons during training, which

helps prevent the model from becoming too reliant on specific neurons and

encourages it to generalize better to unseen data.

The dataset was split into training, validation, and test sets with a ratio of

8:1:1. Before feeding the data into the model, several transformations were

applied. If necessary, the traces were cut down to 10,000 data points. Ad-

ditionally, the traces were interpolated to further reduce the data to 1024

datapoints. It should be noted that excessive interpolation will destroy the

structure of our data. Furthermore, the traces were normalized as well. Mul-

tiple methods for normalization exist (Lima and Souza, 2023), and we opted

for min-max-scaling:

10The bottleneck is the last layer of the encoder which typically the smallest dimension.

22

3.3. Data embedding

x′i =
xi −min(T)

max(T)−min(T)
. (20)

Here, x′i resembles the normalized data point of the time series T at position i.

We used the global maximum and minimum of the attainable voltage values,

which were −70mV and 0mV for simulations, and 0MADC and 1022MADC

for emulations. Afterwards, Gaussian noise could be added to the traces to

train a denoising autoencoder. We conducted training without added noise,

as well as with a signal-to-noise ratio (SNR) of 20 dB.

After preprocessing the data, the training was conducted on a GPU, as con-

volutions are significantly faster on such hardware, greatly accelerating the

process and reducing training time. We used a batch size of 32, and a seed of

213 was set to ensure the results could be reproduced. Furthermore, we chose

the mean squared error as a loss function (see equation 8). The training was

conducted for a maximum of 150 epochs.

For certain training runs where the model’s performance plateaued, likely due

to being stuck in a local minimum of the loss landscape, a weighted loss func-

tion was applied. A selected number of data points were randomly sampled

from the trace, and their reconstruction errors were multiplied by a predeter-

mined weight. Essentially, this method applied a random weighted mask to

the reconstruction error, encouraging the model to escape the local minimum.

Additionally, to help the model learn the peaks in the voltage traces more

effectively, points at peaks could be randomly selected. A sliding window ap-

proach was implemented for this purpose: the window, with a defined size,

moved across the trace and identified the minimum and maximum values (i.e.

the peaks and troughs). These points could then be weighted further using an

additional weight value.

We employed the Adam optimizer to adjust the model weights (Kingma and

Ba, 2014). However, we opted for a learning rate of 10−4 which is smaller than

the default value, as our models exhibited heightened sensitivity to larger

learning rates. Consequently, we implemented a learning rate schedule for

the training process (see figure 7). It is a common practice to incorporate

a learning rate warm-up at the beginning of training (Kalra and Barkeshli,

2024). During the warm-up phase, the learning rate starts from a small value

and increases linearly every 100 batches until the base learning rate is reached.

This approach helps to stabilize training by preventing large weight updates

early on, which can lead to instability. Given that our dataset is relatively

large, we limited the warm-up period to the first 2000 training batches. After

the warm-up, the learning rate remained constant until the onset of the decay

23

3. Methods

Figure 7: Learning rate schedule during the training. Note the different x
scales for the right and left panel.

schedule, which we set to begin at epoch 70. We opted for an exponential decay

of the learning rate after each epoch (Z. Li and Arora, 2019). A decaying

learning rate in the later stages of training helps the model converge more

effectively by allowing for finer updates to the weights, thereby enhancing

performance as it approaches the optimal solution.

After each training epoch, the loss was calculated and averaged over the

entire validation dataset to assess hyperparameter choices and evaluate the

model’s ability to generalize and perform on data which it was not trained

on. To streamline the training process, an early stopping mechanism was

implemented, which takes a patience and a minimum threshold as inputs.

If the validation error does not improve over a specified number of patience

epochs beyond the threshold, training will be terminated. We set a patience

of 20 epochs and the threshold to 0, as we were comfortable with even mi-

nor improvements in performance on the validation set. We assumed that the

model’s performance would not increase further after the validation error failed

to improve for 20 consecutive epochs. This mechanism conserves unnecessary

training time when no significant improvements in results are anticipated.

After the training was completed, the test loss was calculated over the entire

test dataset to quantify the model’s performance on new, unseen data. Addi-

tionally, the other metrics from chapter 2.4.2 were also computed for further

evaluation.

The creation and training of the models were conducted using the PyTorch

2.4.0. framework (Paszke et al., 2019).

24

3.4. Simulation-based Inference

3.4. Simulation-based Inference

The central question of this thesis was whether the SNPE algorithm is able

to infer the correct hardware parameters for a given observation. To test

this, an observation was created by emulating a specific voltage trace. Thus,

knowing the correct parameters, we could asses the algorithm’s performance.

To conduct the inference, we utilized the algorithm developed by Greenberg,

Nonnenmacher, and Macke, 2019, which is implemented in the Python package

sbi (Tejero-Canteroe et al., 2020).

The generated voltage traces were interpolated down to 1024 values and then

normalized as well. Afterward, the traces were compressed using different

embedding techniques, including passing them through the encoder of a pre-

trained autoencoder, compression via wavelet transform (Weeks and Bayoumi,

2002) (appendix), or a fully connected neural network (FCNN) simultaneously

trained with the NDE of the SNPE algorithm.

The FCNN consisted of 5 layers with dimensions [800, 400, 300, 100, 30].

Similarly, we experimented with retraining the pretrained encoder of the au-

toencoder simultaneously with the NDE of the SNPE algorithm. This trans-

fer learning approach aimed to fine-tune the encoder’s model weights further,

seeking to obtain even more optimal summary features for parameter inference.

Additionally, we tested feeding the traces directly into the SNPE algorithm

without any additional compression techniques, using only the interpolated

1024 values.

For each inference round, 1000 samples were drawn. However, in the first

round of the SNPE algorithm, more samples can be drawn than in subsequent

rounds, as this initial round requires a broad exploration of the entire param-

eter space to capture the full range of possible values. A total of 20 rounds

of inference were performed to enable investigation of the posterior distribu-

tion at different stages and to analyze the effects of additional rounds on the

inference process.

We used a masked autoregressive flow (MAF) as our NDE (Papamakarios,

Pavlakou, and Murray, 2017). A MAF transforms a normal distribution into

other probability distributions. In our case, we used five transformations, with

each transformation consisting of two blocks, each containing 50 hidden units.

These transformations are chained together sequentially. For further details,

see Papamakarios, Nalisnick, et al., 2021.

The training of the NDE and embedding networks was executed on a GPU, as

this significantly accelerated the training process. A seed value of 42 was set

25

3. Methods

to ensure the reproducibility of our results. Inference was performed using the

same parameter settings as outlined in table 1 and table 2. As a result, the

inference pipeline was tasked with inferring two, four, and eight parameters

simultaneously.

We sampled from a truncated posterior in an example where eight parameters

needed to be inferred, as standard sampling was too slow to achieve sufficient

rounds of inference. Additionally, an analysis of the approximated posteriors

has been conducted for a selection of the results.

26

10 ms 30
 m

V
Figure 8: Voltage traces of the simulated dataset with parameter setting from

table 2. The traces were interpolated down to 1024 datapoints and
only the first 300 datapoints are displayed for visualization purposes.

4. Results

4.1. Datasets

Samples of the simulated dataset with parameter setting from table 2 are

displayed in figure 8, whereas samples from the 4D dataset with hardware

parameters from table 1 are displayed in figure 9. Samples form the other

emulated datasets can be seen in the appendix in figure 38 and 39.

4.2. Data embedding

We trained both models, introduced in chapter 3.3, using the same training

routine and compared their performance. Figure 10 shows the losses on the

27

4. Results

100 s 20
0

M
AD

C

Figure 9: Voltage traces of the 4D dataset with parameter setting from table
1. The traces were interpolated down to 1024 datapoints and only
the first 300 datapoints are displayed for visualization purposes.

28

4.2. Data embedding

0 25 50 75 100 125 150
epochs

10 2

0 25 50 75 100 125 150
epochs

training
validation

M
SE

Figure 10: Comparison between the average training and validation losses of
two autoencoder models. One standard deviation of the validation
loss is shown, too. Left: CONV-LSTM-AE; Right: CONV-AE;
the training for both models was conducted on the 4D emulation
dataset with parameter settings of table 1.

training and validation sets during training. It quickly becomes apparent that

the CONV-AE outperformed the CONV-LSTM-AE in both training and val-

idation losses. In fact, the training of the CONV-LSTM-AE was terminated

at epoch 126 due to the early stopping mechanism, as the validation loss has

not improved over the last 20 epochs, even though the training loss contin-

ued to decrease slightly. This indicates that the CONV-LSTM-AE is much

more prone to overfitting. This is also why we implemented dropout with a

probability of 0.5, whereas we did not use any dropout in the CONV-AE.

Reconstructions and their corresponding true traces are shown in figure 11. It

is clearly visible that the CONV-AE performs better than the CONV-LSTM-

AE in reconstructing the original voltage traces.

Knowing that we clearly have a superior candidate among our two models,

we then needed to identify and adjust the optimal hyperparameters11, such

as learning rate, layer dimensions, number of layers and activation functions.

The choice of the correct hyperparameters is crucial for the model’s perfor-

mance. Therefore, we conducted extensive testing. A selection of the results

is presented below.

11Hyperparameters refer to model settings that are determined before training and cannot
be learned during the process.

29

4. Results

Conv-LSTM Conv

100 strue
reconstructed

Figure 11: Reconstructed traces after a forward pass through the autoencoder
models are shown along with their corresponding true traces from
the test set. Left: CONV-LSTM-AE; Right: CONV-AE. The
model parameters learned during training, as displayed in Figure
10, were used.

30

4.2. Data embedding

0 25 50 75 100 125 150
epochs

10 4

10 3

10 2

0 25 50 75 100 125 150
epochs

training
validation

M
SE

Figure 12: Comparison between the average training and validation losses of
two autoencoder models. One standard deviation of the validation
loss is shown, too. Left: CONV-AE with latent space dimen-
sion of 64; Right: CONV-AE with latent space dimension of 32;
the training for both models was conducted on the 4D emulation
dataset with parameter settings of table 1.

Obviously, the size of the bottleneck has a significant impact on the quality

of the reconstruction. If the latent space dimension is too small, the autoen-

coder cannot learn all the necessary features that define the trace. On the

other hand, if the latent space is too large, the autoencoder loses the effect

of compression. Additionally, it is more prone to overfitting, as it can cap-

ture more irrelevant features that are specific to the training data. Figure 12

shows the difference in loss for latent space sizes of 64 and 32 of the CONV-

AE. While it is evident that the model with the larger latent space performs

better, we chose to use the smaller model with a latent space dimension of 32.

This decision prioritizes achieving higher compression over better reconstruc-

tion quality, as the reconstructions of the model with the smaller latent space

dimension were already quite satisfactory. Our goal was to capture only the

most essential features of the trace for later use in the SNPE algorithm.

However, one should always keep the complexity of the dataset in mind when

constructing a suitable model architecture. A higher-dimensional dataset,

characterized by more variable parameters, likely has more features that need

to be learned. Thus, it might be necessary to increase the bottleneck size of

the autoencoder when training on such a dataset. Figure 41 in the appendix

demonstrates this problem. The loss curves of the same model architecture

on a 2D and 8D dataset, as shown in table 1, are presented. The loss for the

31

4. Results

smaller-dimensional dataset is lower since the 32-dimensional latent space is

able to capture the most relevant features. However, a latent space dimension

of 32 might not capture all relevant features for the 8D dataset, resulting in a

higher loss.

During the testing process, we encountered a performance issue with the au-

toencoder on datasets where individual samples did not vary significantly from

each other. These datasets had small parameter ranges for the varying param-

eters. As a result, the loss got stuck and remained constant over the training

epochs while reconstructions of samples were poor. To address this, we imple-

mented the option of training with a randomized weighted loss, as described

in chapter 3.3. This forced the model to explore different environments of

the parameter space, thereby escaping the local minima in the loss landscape.

However, when the training data varied significantly, as seen in the 4D em-

ulation dataset of table 1, the training with weighted loss performed slightly

worse than without the additional weights (see figure 40 in the appendix).

Therefore, we chose to train without those additional weights for all presented

datasets in chapter 3.2.

Since the denoising ability of autoencoders can be beneficial for inferring hard-

ware parameters from real biological neuron traces in the long run, we tested

that as well. To do this, we introduced artificial Gaussian noise with a SNR

of 20 dB to the voltage traces. The loss curve during training is displayed

in Figure 13. Compared to the training run without artificially added noise,

both the training and validation losses are higher, which was to be expected.

Figure 14 demonstrates the functionality of the denoising autoencoder, which

successfully reduces most of the noise.

Finally, we calculated the test metrics described in Chapter 2.4.2 to further

quantify the performance of our models (see Table 3). The compression ratio

(CR) of the CONV-LSTM-AE is nearly half that of the CONV-AE, as the

CONV-LSTM-AE has a latent space size of 60, while the CONV-AE has a

latent space of size 32. The percentage root mean square difference (PRD)

and quality score (QS) also strongly favors the latter model. Furthermore, the

CONV-LSTM-AE exhibits higher variance in the reconstructions, which can

be measured by the root mean square error (RMSE). As expected, the mean

squared error (MSEtest) calculated on the test set is also significantly smaller

for the CONV-AE.

32

4.2. Data embedding

Figure 13: Comparison between the average training and validation losses of
two autoencoder models. One standard deviation of the validation
loss is shown, too. Left: CONV-AE without added noise dur-
ing training; Right: CONV-AE with added noise during training
resulting in a SNR of 20 dB. The training for both models was
conducted on the 4D emulation dataset with parameter settings of
table 1.

Table 3: Test metrics of the two proposed models. Calculations were per-
formed on the test set.

Metric CONV-LSTM-AE CONV-AE denoising CONV-AE

CR 17.067 32.000 32.000
PRD % 20.434 7.928 8.384
PRDN % 352.300 54.884 80.802
QS 0.835 4.035 3.816
RMSE 0.003 0.001 0.001
MSEtest 0.0098 0.0016 0.0017
SNRimp dB - - 4.685

As a result of our experiments, we selected the CONV-AE as our model to

compress the voltage time series from 1024 datapoints to just 32, before feeding

them into the SNPE algorithm.

33

4. Results

Noisy trace Clean trace

100 snoisy/true
reconstructed

Figure 14: Effect of the denoising autoencoder. Left: voltage traces with
artificially added noise which were fed into the autoencoder; Right:
clean original traces and denoised corresponding reconstructions
from the autoencoder.

34

4.3. Simulation-based inference

0 200 400 600 800 1000
datapoints

70

65

60

55

50

45

40
V

(m
V)

Figure 15: Simulated observation for which accurate model parameters need
to be inferred. The search parameters for this trace are shown in
table 4.

4.3. Simulation-based inference

To validate our inference pipeline, we first conducted inference on simulated

data to ensure the accuracy and robustness of the method before applying

it to infer hardware parameters. This initial step allowed us to identify any

potential issues and fine-tune the model, ensuring that it performs optimally

on emulated data.

4.3.1. SNPE on simulated data

We implemented multiple methods for embedding the data, including the en-

coder from a pretrained autoencoder, FCNNs, wavelet transforms, and feeding

raw data directly into the SNPE algorithm without embedding. Each of these

methods was initially tested on simulated data as a proof of concept. The

observation plots shown here illustrate the results.

The starting point was the observation displayed in Figure 15, and we aimed

to infer the accurate model parameters of the AdEx equations 1 and 2 that can

replicate this trace. The algorithm was aware of all model parameters except

for four. The four unknown parameters of that observation are presented in

Table 4.

35

4. Results

Table 4: Parameter settings of the simulated observation. Other model values
are equivalent to those in table 2.

Parameter Value

a (nS) 80
b (pA) 80
Vr (mV) -55
τw (ms) 50

First, a pretrained encoder is used to embed the data. The CONV-AE for

this purpose was trained on the dataset with the parameter settings specified

in table 2. The results of the inference across the entire parameter range are

displayed in figure 16, while figure 17 provides a zoomed-in view for more

detail. It can be observed that the inferred parameters closely match the

target values, demonstrating the effectiveness of our method.

In order to assess whether the posterior is a meaningful approximation, sam-

ples were drawn from it and plotted alongside the original observation in figure

18. As expected, some of the drawn samples deviate slightly more from the

original observation, while others show a very close alignment with the original

voltage trace.

Similar results were obtained for other embedding techniques. Samples drawn

from the approximated posteriors of the FCNN are shown in figure 19, while

those from the wavelet embedding are displayed in figure 42. Even directly

inputting the interpolated dataset of 1,024 points into the SNPE algorithm

yielded promising results, as shown in figure 20. These consistently satisfying

results confirm that our implementation of the inference pipeline is correct

and functioning as expected.

Interestingly, depending on the specific type of data embedding technique

used, the shape of the resulting approximated posterior can vary. The shape

of the posterior can provide insights into correlations between parameters.

However, it appears that the specific type of embedding technique employed

can influence the results in this regard.

36

4.3. Simulation-based inference

500 1000
a (nS)

0

200

b
(p

A)

400 800
w (ms)

500

1000

a
(n

S)

70 60 50
Vr (mV)

400

800

w
 (m

s)

Figure 16: Pair plot of 1000 drawn samples from the approximated posterior.
The true parameters are located at the intersection of the grey lines
and are set according to the values in table 4. The encoder of a
pretrained CONV-AE was used as the data embedding technique.
20 rounds of inference with 1000 simulations each were performed.
A zoomed-in version is displayed in figure 17.

37

4. Results

72 80
a (nS)

78

81

b
(p

A)

48 52
w (ms)

72

80

a
(n

S)

55.15 55.00 54.85
Vr (mV)

48

52

w
 (m

s)

Figure 17: Pair plot of 1000 drawn samples from the approximated posterior.
The true parameters are located at the intersection of the grey lines
and are set according to the values in table 4. The encoder of a
pretrained CONV-AE was used as the data embedding technique.
20 rounds of inference with 1000 simulations each were performed.

38

4.3. Simulation-based inference

30 msobservation
posterior sample
observation
posterior sample

Figure 18: Comparison of the original observation with simulations of drawn
posterior samples of the posterior displayed in the figure 17.

39

4. Results

80 82
a (nS)

78

84

b
(p

A)

45 60
w (ms)

80

82

a
(n

S)

55.1 55.0 54.9
Vr (mV)

45

60

w
 (m

s)

Figure 19: Pair plot of 1000 drawn samples from the approximated posterior.
The true parameters are located at the intersection of the grey
lines and are set according to the values in table 4. A FCNN
simultaneously trained with the NDE of the SNPE algorithm was
used as the data embedding technique. 20 rounds of inference with
1000 simulations each were performed.

40

4.3. Simulation-based inference

78 84
a (nS)

78

81

b
(p

A)

48 51
w (ms)

78

84

a
(n

S)

55.2 55.0
Vr (mV)

48

51

w
 (m

s)

Figure 20: Pair plot of 1000 drawn samples from the approximated posterior.
The true parameters are located at the intersection of the grey
lines and are set according to the values in table 4. No additional
data embedding was used at all. 20 rounds of inference with 1000
simulations each were performed.

41

4. Results

0 500 1000
datapoints

400

500

600
V

(a
.u

.)

0 500 1000
datapoints

Figure 21: The observed voltage traces to whom accurate parameters should
be inferred. Left: slow spiking observation x̂slow; Right: fast
spiking observation x̂fast. Both traces only differ between each other
in their a and τw values which are shown in table 5. The other
parameters are the same as the fixed parameters displayed in table
1.

4.3.2. SNPE on emulated data

Since our inference tests were successful on simulated data, we then conducted

tests on hardware emulations. To achieve this, two observations with different

parameter settings shown in table 5 were created and are displayed in figure 21.

We were interested in whether the specific type of observation would impact

the inference results. Thus, both traces were fed into our inference pipeline.

Table 5: Differing parameter values of observations x̂slow and x̂fast.

parameters x̂slow x̂fast

a 350 160
τw 200 107

2D inference We began by attempting to infer two parameters, specifically a

and τw, from the slower spiking observation x̂slow. To achieve this, we utilized

the encoder of the pretrained CONV-AE as our embedding technique. We

did not perform further training of the encoder at this point. Samples drawn

from the two-dimensional approximated posterior are plotted in figure 22.

It can be observed that the general region of the true parameters could be

found within the parameter space. However, most of the posterior samples

are systematically shifted and do not accurately reflect the true location in

the parameter space.

42

4.3. Simulation-based inference

0 1000
a

0

1000
w

300 450
a

200

240

w

Figure 22: Samples drawn from the 2D posterior for the target observation
x̂slow with parameter settings in tables 1 and 5. The encoder of
the CONV-AE without additional retraining was used as the em-
bedding technique. 20 inference rounds with 1000 simulations each
were performed. Left: view of the whole parameter range; Right:
zoomed-in view of the plotted samples.

Naturally, we were interested in how the inference procedure could possibly

be improved. Therefore, we chose to retrain the encoder, this time simultane-

ously with the NDE of the SNPE algorithm. We loaded the previously learned

weights, hypothesizing that they would be further fine-tuned through the ad-

ditional training. The rationale for beginning the training with the previously

learned weights as initialization, rather than using random initialization, was

to potentially reduce the overall training time, as the encoder already had a

solid starting point. The result of the inference with this embedding technique

is presented in figure 43. However, no significant improvement in the approxi-

mated posterior was observed. Nevertheless, when plotting the log-probability

of the posterior over multiple rounds, we noticed that training converged faster

when the encoder was trained alongside the SNPE algorithm compared to the

scenario without this training (see figures 23 and 24). In fact, with the ad-

ditional training of the encoder, the posterior becomes narrower and more

defined in earlier rounds. We conclude that without additional training, the

SNPE algorithm requires more rounds to achieve the same results. By training

the embedding network concurrently, we need fewer rounds, as the inference

process becomes more effective due to the extraction of better features that

facilitate inference. However, ultimately approximated posterior is still quite

similar.

We want to use this relatively simple 2D example to demonstrate a posterior di-

agnostics technique by examining the sensitivity of the posterior to parameter

changes. As described in chapter 2.4.1, when performing sensitivity analysis,

43

4. Results

Round 1 Round 5 Round 10

lo
w

hi
gh

Po
st

er
io

r p
(

x)

Figure 23: Log-probability of the approximated posterior displayed in figure 22
over different inference rounds. The red dot resembles the parame-
ters of the target observation x̂slow. The encoder of the CONV-AE
without additional retraining was used as the data embedding tech-
nique.

Round 1 Round 5 Round 10

lo
w

hi
gh

Po
st

er
io

r p
(

x)

Figure 24: Log-probability of the approximated posterior displayed in figure
43 over different inference rounds. The red dot resembles the pa-
rameters of the target observation x̂slow. For the data embedding,
the encoder of the CONV-AE was simultaneously retrained with
the NDE of the SNPE algorithm.

44

4.3. Simulation-based inference

Table 6: Eigenvalues and eigenvectors from the posterior sensitivity analysis
of the approximated posterior displayed in figure 22.

Eigenvalues Eigenvectors

λ1 = 0.0003 v1 =

[
−0.9688
−0.2480

]

λ2 = 0.0019 v2 =

[
−0.2480
+0.9688

]

one leverages the Active Subspace method (Constantine, Dow, and Q. Wang,

2014). Fundamentally, one calculates the gradient of the posterior density

with respect to the parameters. This process yields two eigenvalues and their

corresponding eigenvectors. A strong eigenvalue indicates that the gradient of

the posterior density is large. This means that the posterior is more sensitive

to changes in the parameters along the corresponding eigenvector. By calcu-

lating these for our approximated posterior displayed in figure 22, we obtain

the results shown in table 6.

The eigenvalue λ2 is significantly larger than λ1, leading us to conclude that

we obtain more varied results when simulating parameters which were varied

along the direction of v2 compared to varying the parameters along v1. This

result was also anticipated from the posterior plot in figure 22. Thus, this

example is quite trivial. However, this example serves as a proof of concept

and can be applied to high-dimensional posteriors, where it is challenging to

develop intuition about the sensitivity of the posterior through pair plots.

Additionally, this method allows us to explore variations in specific features

of the embedded data rather than examining all inputs at once.

4D inference In the next step, the goal was to infer four parameters simul-

taneously. The algorithm was supposed to find the parameters a, b, τw and

Vr of observation x̂fast, using the encoder of our CONV-AE as the embedding

technique without additional retraining. The posterior samples drawn from

the approximated posterior are shown in figure 25, covering the entire possible

parameter range for the 4D dataset described in table 1.

The true parameters could not be determined precisely. The approximated

posterior exhibits a high level of inaccuracy. However, the two-dimensional

posterior view does not always have to follow a Gaussian distribution and be

point-like. It remains unclear whether the algorithm has learned a poor ap-

proximation of the true posterior or if the parameters exhibit correlations and

compensation mechanisms. It is still possible that the same trace could be

45

4. Results

0 1000
a

0

1000

V r

0 1000
b

0

1000

a

0 1000
w

0

1000

b

Figure 25: Samples drawn from the 4D posterior for the target observation
x̂slow with parameter settings in tables 1 and 5. The encoder of
the CONV-AE without additional retraining was used as the em-
bedding technique. 20 inference rounds with 1000 simulations each
were performed.

46

4.3. Simulation-based inference

300 strue
posterior sample

Figure 26: Generated voltage traces with drawn parameters from the posterior
displayed in figure 25. x̂slow with parameter settings in tables 1 and
5 served as the target observation which is shown in black.

generated by a different combination of parameters. To investigate this, we

generated voltage traces with randomly drawn posterior samples (see figure

26). We observe that the overall structure is mostly similar to the original

observation. Nevertheless, systematic shifts and variations in inter-spike in-

tervals and voltages are notably present, leading to inaccurate results.

Next, we tried feeding the data directly into the SNPE algorithm without any

embedding (see figure 27). This approach could decently identify the values

of Vr, a and τw, but the algorithm struggled to infer the value of b precisely.

In order to investigate why the inference on hardware performs worse than

on simulated data, we performed multiple emulations with the exact same

parameters and compared the results. Figure 28 displays several emulations

of the observation x̂slow.

47

4. Results

0 1000
a

0

1000

V r

0 1000
b

0

1000

a

0 1000
w

0

1000

b

Figure 27: Samples drawn from the 4D posterior for the target observation
x̂slow with parameter settings in tables 1 and 5. No additional data
embedding technique was leveraged. 20 inference rounds with 1000
simulations each were performed.

48

4.3. Simulation-based inference

300 sobservation
try-to-try variations

Figure 28: Voltage traces emulated with the same set of hardware parameters.
The black trace is the same throughout the whole figure and serves
as a comparison. The chosen parameters were those of the obser-
vation x̂slow (see tables 1 and 5).

49

4. Results

0 1000
a

0

1000
V r

0 1000
b

0

1000
a

0 1000
w

0

1000
b

Figure 29: Samples drawn from the 4D posterior for the target observation
x̂slow with parameter settings in tables 1 and 5. The encoder of the
CONV-AE with additional concurrent retraining with the NDE of
the SNPE algorithm was used as the embedding technique. 20
inference rounds with 1000 simulations each were performed.

The results show significant variations among the traces, even though the exact

same parameters were used for the emulation. This indicates that hardware

emulations are not deterministic and always have some inherent noise that

distorts the results. Obviously, this presents a major challenge for the SNPE

algorithm, as traces, even with the correct parameters, do not automatically

resemble the original observation.

By training the encoder of the CONV-AE simultaneously with the NDE, we

obtained the results displayed in figure 29. Compared to the results without

any embedding displayed in figure 27, the posterior is now more precise and

fine-tuned.

To improve our results further, we expanded the latent space of our encoder

50

4.3. Simulation-based inference

from 32 to 64 features. Additionally, we increased the complexity of the NDE

in the SNPE algorithm by raising the number of hidden features from 50 to

100 and the number of transformations from 5 to 10. Samples drawn after 20

rounds of inference from the resulting posterior are shown in figure 30. Addi-

tionally, samples from the first inference round are plotted, too, highlighting

the advantage of the sequential inference in the SNPE algorithm. The poste-

rior becomes significantly more refined after multiple rounds of inference. The

obtained results are already quite accurate. Emulations of drawn posterior

samples are displayed in figure 31. Except for similar deviations observed in

the try-to-try variations in figure 28, the overall structure remains very similar

between the different traces and the original observation.

To further investigate the obtained posterior, we plotted a zoomed-in view

of the plotted samples in figure 30 (see figure 32). We observe that the ap-

proximated posterior still misses the true observation with a slight shift in the

parameter space. This may indicate that the posterior is too overconfident.

It seems that some parameters exhibit strong correlations between each other.

In particular, parameter b and τw show a strong negative correlation. Accord-

ing to the 2D pairplot, an increase in τw can still produce a similar trace if b

decreases simultaneously. To further investigate this possible correlation, we

calculated the Pearson correlation coefficients, which are visualized in figure

33.

As expected, the Pearson coefficients indicate a strong negative correlation

between the parameters b and τw. Additionally, there appears to be a relatively

strong positive correlation between τw and a as well.

Often, correlations between two parameters are not readily apparent from

a multidimensional pairplot. In a typical pairplot, we observe the relation-

ships between all parameters in a multidimensional space, meaning that many

parameters can vary simultaneously, which can obscure specific correlations

between just two parameters. Thus, it is not necessarily evident from the

marginal distributions if the parameters are constrained to a narrow region in

the parameter space. To address this, we can examine 2D slices of the poste-

rior by keeping all but two parameters constant if we chose a certain condition

for the constant parameters. This approach allows us to investigate what data

the remaining two parameters can produce, potentially revealing correlations

that we did not observe previously, where deviations in one parameter can be

compensated by changes in another. Figure 34 illustrates such a conditional

pairplot, where the original observation obsslow was chosen as the condition.

Here, we again observe the anti-correlation between τw and b, as well as the

correlation between τw and a.

51

4. Results

0 1000
a

0

1000

V r

0 1000
b

0

1000

a

0 1000
w

0

1000

b

Figure 30: Samples drawn from the 4D posterior for the target observation
x̂slow with parameter settings in tables 1 and 5. The encoder of
the CONV-AE with a bigger latent space size of 64 and additional
concurrent retraining with a the NDE of the SNPE algorithm was
used as the embedding technique. The number of hidden features
of the NDE was raised from from 50 to 100 and the number of
transformations from 5 to 10. 20 inference rounds with 1000 sim-
ulations each were performed. The deep red samples represent the
posterior after round 20, while the light red points illustrate the
posterior from round 1.

52

4.3. Simulation-based inference

300 strue
posterior sample

Figure 31: Generated voltage traces with drawn parameters from the posterior
displayed in figure 30. x̂slow with parameter settings in tables 1 and
5 served as the target observation which is shown in black.

53

4. Results

360 420
a

635

640

V r

480 560
b

360

420
a

200 240
w

480

560
b

Figure 32: Zoomed-in view of the pairplot in figure 30.

a b w V
r

a

b

w

Vr

1.0

0.5

0.0

0.5

1.0

Pe
ar

so
n

Co
rre

la
tio

n

Figure 33: Visualization of the Pearson correlation coefficients of the parame-
ters inferred through the posterior displayed in figures 30 and 32.

54

4.3. Simulation-based inference

300 350 400
a

500 550
b

150 200 250
w

600 650
Vr

Figure 34: Conditional pairplot of the posterior displayed in figures 30 and 32.
The original observation x̂slow was chosen as the condition.

55

4. Results

0 1000
a

0

1000
V r

0 1000
b

0

1000
a

0 1000
w

0

1000
b

Figure 35: Samples drawn from the 4D posterior for the target observation
x̂fast with parameter settings in tables 1 and 5. The encoder of the
CONV-AE with additional concurrent retraining with the NDE of
the SNPE algorithm was used as the embedding technique. 20
inference rounds with 1000 simulations each were performed.

Lastly, we also demonstrate the inference results under the same condition as

in figure 29, but now with the observation x̂fast, which is displayed in figure

35. The results differ, indicating that the quality of inference depends on the

specific observation which is used. Some observations may be easier for the

algorithm to infer parameters from than others.

8D inference Since we achieved quite satisfying results on the 4D parameter

inference problem, we extended our pipeline to an eight-dimensional problem,

where additional parameters, namely ∆T, VT, EL, and VT, needed to be

inferred. Figure 36 shows samples drawn from the approximated posterior,

using the encoder of the CONV-AE with additional retraining as the data

embedding technique. The target observation was x̂fast. It is evident that

56

4.3. Simulation-based inference

the parameters VT, Vr, and Vth were inferred quite accurately, whereas the

algorithm struggled to pinpoint precise regions in the parameter space for the

remaining hardware parameters.

Additionally, we performed inference on the slow observation x̂slow (see figure

37). In this case, we used the encoder of the CONV-AE with a larger latent

size of 64 instead of 32. The encoder was also retrained in conjunction with

the NDE. The results in the marginal distributions were similar to the previ-

ous approximated posterior shown in figure 36, although the drawn samples

exhibited slight variations.

Furthermore, we attempted the problem with a more complex NDE featuring

100 hidden features and 10 transformations. The number of simulations was

also increased. 4000 simulations were performed in the first round, while 2000

simulations were carried out in each subsequent round. In this case, we uti-

lized samples from a truncated posterior since drawing samples from the full

posterior became too time-consuming. However, the results were not promis-

ing, as the algorithm failed to identify a refined region within the parameter

space, leading to a very broad posterior (see figure 44).

57

4. Results

a

V t
h

b

a

w

b

Vr

w

T

V r

VT

T

EL

V T

Figure 36: Samples drawn from the 8D posterior for the target observation
x̂fast with parameter settings in tables 1 and 5. The encoder of the
CONV-AE with additional concurrent retraining with the NDE of
the SNPE algorithm was used as the embedding technique. 20
inference rounds were performed. 3000 simulations were conducted
in the first round while 1000 simulations were carried out in each
subsequent round. The plot displays the whole possible parameter
range from 0 to 1022 for each parameter.

58

4.3. Simulation-based inference

a

V t
h

b

a

w

b

Vr

w

T

V r

VT

T

EL

V T

Figure 37: Samples drawn from the 8D posterior for the target observation
x̂slow with parameter settings in tables 1 and 5. The encoder of the
CONV-AE with a latent space size of 64 and additional concurrent
retraining with the NDE of the SNPE algorithm was used as the
embedding technique. 20 inference rounds were performed. 3000
simulations were conducted in the first round while 1000 simula-
tions were carried out in each subsequent round. The plot displays
the whole possible parameter range from 0 to 1022 for each param-
eter.

59

5. Summary and Discussion

5. Summary and Discussion

The central question in this thesis was whether we can correctly infer multiple

hardware parameters of emulated voltage traces on the BrainScaleS-2 system

using the sequential neural posterior estimation (SNPE) algorithm. Therefore,

we implemented different embedding methods that learn summary statistics of

the data to ensure that the SNPE algorithm only receives a compressed version

of the time series data. This helps reduce computational cost and improve

inference accuracy, as only the important features of the data are considered.

The embedding of data is especially important for longer traces with many

data points. In this context, we had a primary focus on autoencoders.

5.1. Datasets

In order to train and test our autoencoder models, we needed sufficient and

accurate data. We developed an efficient data generation and storage process.

Using this, one simulated and three emulated datasets with varying numbers

of variable parameters were created (see tables 2 and 1).

In our emulated datasets, we obtained a great diversity of different traces

(see figure 9). The dataset size of 200,000 traces could have been smaller for

our purposes. However, one should keep the curse of dimensionality in mind

when determining the dataset size. As the number of variable parameters in-

creases, exponentially more samples are needed, as data points become sparse

in the higher-dimensional space. Therefore, larger datasets are necessary if

one intends to train autoencoders on data with more variable parameters.

Additionally, the parameter ranges of the datasets have a significant impact

on the effective training of the autoencoder, as the data might be too similar

or overly variable, depending on the ranges.

In this thesis, we did not delve deeper into other properties of our datasets.

For example, certain types of traces may be underrepresented, affecting the

ratios between different classes. It is possible that a specific slow-spiking trace

with a distinct spike reset shape occurs only in a narrow region of the pa-

rameter space, resulting in a limited number of samples. This can lead to

the autoencoder not learning these types of traces effectively because their

limited presence in the dataset does not significantly influence the loss. Con-

sequently, if this particular trace is selected during inference, the autoencoder

may struggle to encode it accurately. In our case, the autoencoders encoun-

tered the most difficulty when reconstructing very fast-spiking traces, which

may have been rare in the datasets, as the adaptation variables were varied,

60

5.2. Data embedding

often leading to predominantly slow-spiking traces.

5.2. Data embedding

Using autoencoders for low-dimensional representation learning was the pri-

mary method investigated in this thesis. Therefore, we implemented two mod-

els, the convolutional autoencoder (CONV-AE) and the convolutional-LSTM

autoencoder (CONV-LSTM-AE), whose architectures are displayed in tables

8 and 9. Furthermore, we developed a carefully designed training routine

that includes several steps, ranging from data preprocessing and learning rate

schedules to weighted losses. However, the latter is only useful for datasets

with very similar traces.

When we compared the two models against each other, it was evident that

the CONV-LSTM-AE performed quite poorly in the loss curves as well as in

the reconstruction quality (see figure 10 and figure 11). The training was even

prematurely terminated due to a lack of improvement in the validation loss.

This indicated that the model was very prone to overfitting, as the valida-

tion error stagnated while the training error still decreased. Even a dropout

probability of 0.5 could not mitigate the issues observed. One reason for

this might be that the CONV-LSTM-AE is a much larger model with signif-

icantly more learnable parameters than the CONV-AE (see tables 8 and 9).

A larger model has many more weights that can be adjusted, which can lead

to the model capturing unimportant features. Additionally, the training loss

of the CONV-LSTM-AE was systematically higher than that of the CONV-

AE, indicating that this model was generally not well-suited for the task or

inadequately trained and thus struggled to learn the data effectively. In addi-

tion, it remains uncertain why the validation error of that model was already

higher than the training error in the first epoch. Normally, the training error

is much higher in the first epoch due to random initialization, as the weights

have no prior knowledge of the data and quickly decrease after around 200

batches. Thus, it is also possible that there was a systematic error in the

implementation of the CONV-LSTM-AE that could not be identified.

The CONV-AE, on the other hand, performed quite well in the reconstruction

traces and test metrics (see figure 11 and table 3). We investigated the impact

of different latent sizes for this model. If the latent size is too small, it can

not learn all of the important features. If it is too large, it may lead to

overfitting, longer training times, and a loss of compression ability. Therefore,

it is essential to find the optimal trade-off between compression ratio and

reconstruction quality. However, as shown in figure 41, the specific model’s

61

5. Summary and Discussion

performance heavily depends on the given dataset. If the dataset has more

complexity, it is likely that more features need to be learned and a bigger

latent size is thus necessary.

Finally, we also investigated the denoising ability of the CONV-AE. To do this,

we trained the model by artificially adding noise while calculating the loss with

respect to the clean trace. Figure 14 displays the denoising performance on

randomly chosen samples from the test set with a signal-to-noise ratio (SNR)

of 20 dB, which worked quite well. However, the validation and test loss were

higher compared to training without noise (see figure 13 and table 3).

In general, the peaks of a voltage trace are challenging to learn as can be

seen in figures 11 or 14. That is because they often vary due to the irregular

sampling of voltage values on the hardware or the fixed simulation time grid

in simulations. According to theory, these peaks should consistently reach a

fixed threshold before resetting. However, this threshold is not always aligned

with the simulation time grid or is not always sampled, leading to values

captured before or after the peak that do not accurately reflect the true peak.

Additionally, peaks often get truncated during the interpolation process. As

a result, the height of the peaks exhibits a random nature, making it difficult,

if not impossible, for the autoencoder to learn effectively.

It should be noted that the loss from the autoencoder trained on the simula-

tions dataset was smaller than the losses when it was trained on the emulation

datasets. This is because the adaptation was quite strong in the simulations

dataset, resulting in most traces exhibiting spiking primarily at the begin-

ning and then stabilizing. Consequently, the majority of traces do not differ

significantly, making it easier for the model to learn effectively.

5.3. Simulation-based inference

We first tested the entire inference procedure on simulated data, yielding

promising results for embeddings with the encoder of the CONV-AE, the fully

connected neural network (FCNN), as well as with wavelet transforms. Fur-

thermore, feeding in the raw 1024 data points after interpolation also worked

surprisingly well (see chapter 4.3.1). However, we noticed that the shape of

the resulting posterior in the 2D pairplots varies depending on the embedding

technique which is used. For instance, there is a correlation between the vari-

ables b and Vr in the posterior when using the encoder of the CONV-AE as an

embedding (see figure 17). In contrast, the posterior shape of these parameters

with the FCNN as an embedding appears completely uncorrelated (see figure

19). This is an interesting discovery. Different embedding techniques may

62

5.3. Simulation-based inference

either neglect certain features of the data, thereby obscuring potential corre-

lations, or they might impose those correlations themselves. Additionally, it

is also possible that the SNPE algorithm exhibits variability in different runs,

leading to different posterior shapes. This would need to be investigated by

conducting multiple inference runs under the same conditions and comparing

the resulting posteriors.

However, when running inference on emulated data, we encountered several

challenges. The CONV-AE did not perform as expected, unlike in the simu-

lations (see figure 25).

A reason for this is that emulations on the hardware are not entirely determin-

istic. As shown in figure 28, even emulations with the same set of parameters

can vary significantly in their inter-spike intervals. This is due to the intrinsic

noise present in the hardware. At this point, we can only hypothesize about

the types of noise responsible for these deviations. For instance, it is pos-

sible that the digitally set parameters are not precisely translated onto the

hardware, but rather that some variance is present. Thus, the final hardware

parameters might deviate slightly from the intended values. Additionally,

other noise sources, such as varying source voltage, could also contribute to

these variations. To address this issue, it would be necessary to systematically

investigate the sources of the noise and explore potential mitigation strategies

to make hardware emulations more accurate. On top of that, we also did not

select the target trace to be stable by optimizing the dynamic ranges.

It is also important to note that the adaptive exponential integrate-and-fire

(AdEx) parameters do not directly correspond to the hardware parameters.

While the hardware parameters are aligned with the AdEx parameters, varia-

tions due to the specific implementation of the hardware are indeed possible.

Furthermore, the ranges of the hardware parameters do not automatically

match the ranges from the AdEx parameters. If one wishes to achieve the

exact same conditions, it would be essential to determine which regions of the

hardware parameter space correspond to which regions in the AdEx parameter

space (similar to what was done in Billaudelle et al., 2022). It could also be the

case that we are operating within a parameter space defined by the hardware

parameters where inference using simulations would also perform poorly.

Since we often observed a slight systematic shift of the posterior from the true

observations (for instance, see figure 32), it is possible that our target observa-

tion x̂slow corresponds to a trace that occurs less frequently due to try-to-try

variations, making it resemble more traces with slightly shifted parameters.

Hence, our approximated posteriors might be overconfident, too.

63

5. Summary and Discussion

Unperturbed by this setback, we then attempted to retrain the encoder of

the CONV-AE concurrently with the neural density estimator (NDE) of the

SNPE algorithm, which worked quite well (see figure 29). The algorithm

was able to identify a narrow region in the parameter space near the true

observation. It should be noted that only because the posterior is broad and

not point-like at the observation that it represents a poor approximation.

It is also possible that there is high variance in the parameter choices or

that correlation and compensation mechanisms exist between the parameters.

Conversely, the approximated posterior can be overconfident, meaning it is too

narrow and neglects variances in the parameters that still produce a relatively

similar voltage trace. In our case, the emulations with the drawn posterior

samples agree well with the target observation when considering the try-to-try

variations (see figure 31).

For that approximated posterior, we also investigated possible correlations (see

figure 33). We found a strong anticorrelation between parameters b and τw, as

well as a notable positive correlation between a and τw. The anticorrelation

between b and τw can be explained through the AdEx equations 1 and 2.

Specifically, τw governs how quickly the adaptation current w changes. A

higher value of the spike-triggered adaptation b, on the other hand, leads to

higher values of the adaptation current w when a spike occurs. Thus, if b

increases, the adaptation current w must decrease more rapidly, which can

be achieved by reducing the value of τw to produce a similar voltage trace,

and vice versa. On the other hand, the correlation between a and τw is less

straightforward due to the differing potential signs in equation 2, since the

change of w also depends on the specific value of the membrane voltage V . The

increase or decrease of w does not only depend on the subtreshold adaptation

a but also on the current memrbane potential V . However, as we observed in

the case of simulation, correlations might also arise due to the specific type of

embedding technique used. One must assess the stability of the embeddings

by running the SNPE algorithm multiple times to see if consistent results are

obtained.

We have seen that the inference results depend on several factors. One key fac-

tor is the embedding technique, which has a clear impact on the approximated

posterior. The encoder without additional retraining performed worse than

the encoder that was retrained simultaneously with the NDE, suggesting that

while the encoder learned good features for reconstructing the original trace,

these features may not be optimal for parameter inference with the SNPE al-

gorithm. Thus, retraining the encoder makes sense. Moreover, the algorithm

converges faster when the encoder is retrained rather than kept static (see

figures 23 and 24).

64

5.3. Simulation-based inference

Furthermore, we observed that the inference results also depend on the specific

type of target observation whose parameters are being inferred. For the faster

observation x̂fast, the results were more imprecise (see figure 35) compared to

the results of the slower spiking observation x̂slow (see figure 29).

On top of that, the inference results also heavily depend on the specific hard-

ware parameters being inferred. Some parameters can be found more pre-

cisely than others. As seen in figure 37, the marginals of the parameters Vth,

Vr, and VT are more narrow than those of other parameters. This could be

because those parameters impact more distinct properties, such as thresholds

and boundaries, which likely have little to no correlation with other param-

eters, resulting in clearer shifts in the voltage trace. In contrast, adaptation

variables are more complex, as multiple parameters can influence changes in

inter-spike intervals, making them harder to isolate.

In the 8D inference problem, the algorithm had difficulty identifying a well-

defined region in the entire parameter space (see figure 37). When we increased

the complexity of the NDE, the results deteriorated even further (see figure

44). Since standard sampling performed poorly, we were compelled to use

sampling from a truncated posterior. This indicates that a significant portion

of the approximate posterior lies outside the support of the prior. Therefore,

we may have needed more simulations per round, as the larger network might

require additional training information.

This may have been due to the poor performance of standard sampling meth-

ods, which prompted us to use truncated sampling. While truncated sampling

does speed up the process, it comes with several disadvantages. It can neg-

atively affect results by introducing bias, reducing variance, and potentially

missing important global features of the posterior distribution, which can lead

to overconfidence and a skewed parameter estimation.

As a note, fewer rounds of SNPE can also be sufficient for many cases. In our

work, we performed multiple rounds mainly to study the development of the

embeddings, as we did not have much time for more extensive testing.

65

6. Outlook

6. Outlook

The future goal of this work is to accurately emulate recorded voltage traces

of a biological neuron on the BrainScaleS-2 hardware. However, achieving this

goal requires inferring all 24 variable hardware parameters. Since our model

already struggled to accurately infer eight parameters, there is much work

ahead of us. However, the inference pipeline can still be optimized in many

ways.

First of all, extensive systematic testing needs to be conducted. This includes

finding optimal hyperparameters for the neural density estimator (NDE) and

exploring other NDEs, such as neural spline flows (Durkan et al., 2019). Ad-

ditionally, we need to identify better hyperparameters for the autoencoder

and test the relationship between the sequential neural posterior estimation

(SNPE) algorithm and different embedding techniques. For further potential

optimization tests, see chapter 5.

One major step that could optimize and reduce variability in the entire in-

ference pipeline is to investigate the specific reasons behind the trial-to-trial

variations. If we can address and diminish these underlying issues, the param-

eters can likely be determined more accurately.

If one wants to infer even more parameters, it may be necessary to imple-

ment even better autoencoders to compress the time series data. A prominent

candidate for that are “temporal convolutional autoencoders” (Bai, Kolter,

and Koltun, 2018; Lea et al., 2017; Z. Li, Sun, et al., 2022). These models

leverage causal convolutions, where only the present and past data points of

the time series are convolved, excluding any future data points. Addition-

ally, they utilize layers of dilated convolutions to gain a larger receptive field,

thereby allowing for a more extensive contextual understanding of the data.

Furthermore, improvements in autoencoder techniques, such as incorporat-

ing adaptive loss terms with regularization, can enhance model performance

(Tschannen, Bachem, and Lucic, 2018).

Aside from its denoising effect, the autoencoder can also function as an initial

check to determine whether a trace is even possible to emulate on the hardware.

In this context, the Autoencoder can serve as an anomaly detector. The

idea is that the Autoencoder is trained on all possible voltage traces that

the BrainScaleS-2 hardware can produce. As a result, the Autoencoder can

reconstruct those traces very well. However, if a trace is fed into the encoder

that significantly differs from the training data, the reconstruction loss will be

much higher. By setting a threshold, this reconstruction loss can be used as

66

an anomaly metric, thus serving as a first predictive check to assess whether

inference can be successful in the first place.

If one finally obtains a good approximation of the high-dimensional posterior,

more analyses and diagnostic tests can be performed. First, it is essential

to find a suitable metric to quantify the similarity between two time series.

For instance, using the mean squared error can be problematic, as even a

single time shift or adaptation shift in the traces can accumulate and affect

all subsequent time points in the time series. Once an appropriate metric is

established, systematic posterior predictive checkss (PPCs) can be conducted

to assess the quality of the posterior.

If the posterior is too confident, one can also combine an ensemble of multiple

posteriors to get closer to the true posterior. The aim is to approximate

the same posterior with different SNPE runs, as the results may vary. By

averaging over multiple posteriors, one may come closer to the true posterior.

The final sampling is then performed by sampling equally from all posteriors.

Furthermore, one can perform sensitivity analysis and correlation analysis in

high-dimensional space to better understand the relationships between param-

eters. Through posterior analysis, one can learn a great deal about the rela-

tionships of hardware parameters, which may even be useful for designing the

next generation of hardware (e.g., to mitigate certain unwanted relationships

that one might want to avoid). For more analytical methods, see Lueckmann,

Boelts, et al., 2021 and Tolley et al., 2024.

67

References

References

Aremu, Oluseun Omotola, David Hyland-Wood, and Peter Ross McAree (2020).

“A machine learning approach to circumventing the curse of dimensionality

in discontinuous time series machine data”. In: Reliability Engineering &

System Safety. doi: https://doi.org/10.1016/j.ress.2019.106706.

Ashraf, Mohsena et al. (2023). “A Survey on Dimensionality Reduction Tech-

niques for Time-Series Data”. In: IEEE Access. doi: 10.1109/ACCESS.

2023.3269693.

Bai, Shaojie, J. Zico Kolter, and Vladlen Koltun (2018). “An Empirical Evalu-

ation of Generic Convolutional and Recurrent Networks for Sequence Mod-

eling”. In: doi: 10.48550/arXiv.1803.01271.

Benesty, Jacob et al. (2009). Noise Reduction in Speech Processing - Pearson

Correlation Coefficient. Springer Berlin Heidelberg. isbn: 978-3-642-00296-

0. doi: 10.1007/978-3-642-00296-0_5.

Berkhof, Johannes, Ive van Mechelen, and Herbert Hoijtink (2000). “Posterior

predictive checks: Principles and discussion”. In: Computational Statistics.

doi: 10.1007/s001800000038.

Bialek, William et al. (1991). “Reading a Neural Code”. In: Science. doi:

10.1126/science.2063199.

Billaudelle, Sebastian et al. (2022). “An accurate and flexible analog emulation

of AdEx neuron dynamics in silicon”. In: 2022 29th IEEE International

Conference on Electronics, Circuits and Systems (ICECS). doi: 10.1109/

ICECS202256217.2022.9971058.

Brette, Romain andWulfram Gerstner (2005). “Adaptive Exponential Integrate-

and-Fire Model as an Effective Description of Neuronal Activity”. In: J

Neurophysiol. doi: 10.1152/jn.00686.2005.

Campo, Adrià Tauste (2020). “Inferring neural information flow from spiking

data”. In: Computational and structural biotechnology journal. doi: 10 .

1016/j.csbj.2020.09.007.

Chen, Tingting et al. (2020). “Unsupervised Anomaly Detection of Industrial

Robots Using Sliding-Window Convolutional Variational Autoencoder”. In:

IEEE Access. doi: 10.1109/ACCESS.2020.2977892.

Chiang, Hsin-Tien et al. (2019). “Noise Reduction in ECG Signals Using Fully

Convolutional Denoising Autoencoders”. In: IEEE Access. doi: 10.1109/

ACCESS.2019.2912036.

Chiarot, Giacomo and Claudio Silvestri (2023). “Time Series Compression

Survey”. In: Association for Computing Machinery. doi: 10.1145/3560814.

Constantine, Paul G., Eric Dow, and Qiqi Wang (2014). “Active Subspace

Methods in Theory and Practice: Applications to Kriging Surfaces”. In:

SIAM Journal on Scientific Computing. doi: 10.1137/130916138.

68

https://doi.org/https://doi.org/10.1016/j.ress.2019.106706
https://doi.org/10.1109/ACCESS.2023.3269693
https://doi.org/10.1109/ACCESS.2023.3269693
https://doi.org/10.48550/arXiv.1803.01271
https://doi.org/10.1007/978-3-642-00296-0_5
https://doi.org/10.1007/s001800000038
https://doi.org/10.1126/science.2063199
https://doi.org/10.1109/ICECS202256217.2022.9971058
https://doi.org/10.1109/ICECS202256217.2022.9971058
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1016/j.csbj.2020.09.007
https://doi.org/10.1016/j.csbj.2020.09.007
https://doi.org/10.1109/ACCESS.2020.2977892
https://doi.org/10.1109/ACCESS.2019.2912036
https://doi.org/10.1109/ACCESS.2019.2912036
https://doi.org/10.1145/3560814
https://doi.org/10.1137/130916138

References

Cranmer, Kyle, Johann Brehmer, and Filles Louppe (2020). “The frontier of

simulation-based inference”. In: Proceedings for the Sackler Colloquia at the

US National Academy of Sciences. doi: 10.48550/arXiv.1911.01429.

Dasan, Evangelin and Ithayarani Panneerselvam (2021). “A novel dimension-

ality reduction approach for ECG signal via convolutional denoising au-

toencoder with LSTM”. In: Biomedical Signal Processing and Control. doi:

10.1016/j.bspc.2020.102225.

Davison, Andrew P. et al. (2009). “PyNN: a common interface for neuronal net-

work simulators”. In: Frontiers in Neuroinformatics. doi: 10.3389/neuro.

11.011.2008.

Deistler, Michael, Pedro J. Goncalves, and Jakob H. Macke (2022). “Trun-

cated proposals for scalable and hassle-free simulation-based inference”.

In: Advances in Neural Information Processing Systems. url: https://

openreview.net/forum?id=QW98XBAqNRa.

Durkan, Conor et al. (2019). “Neural Spline Flows”. In: SIAM Journal on

Scientific Computing. url: https://arxiv.org/abs/1906.04032.

Fourcaud-Trocmé, Nicolas et al. (2003). “How Spike Generation Mechanisms

Determine the Neuronal Response to Fluctuating Inputs”. In: The Journal

of Neuroscience. doi: 10.1523/JNEUROSCI.23-37-11628.2003.

Gerstner, Wulfram and Werner Kistler (2002). Spiking Neuron Models: Single

Neurons, Populations, Plasticity. Cambridge University Press. isbn: 0 521

89079 9. url: https://neuronaldynamics.epfl.ch/online/index.html.

Goncalves, Pedro J et al. (2020). “Training deep neural density estimators to

identify mechanistic models of neural dynamics”. In: eLife. doi: 10.7554/

eLife.56261.

Greenberg, David S., Marcel Nonnenmacher, and Jakob H. Macke (2019). “Au-

tomatic Posterior Transformation for Likelihood-free Inference”. In: Pro-

ceedings of the 36th International Conference on Machine Learning. doi:

10.48550/arXiv.1905.07488.

Gulati, Anil (2015). “Understanding neurogenesis in the adult human brain”.

In: Indian J Pharmacol. doi: 10.4103/0253-7613.169598.

Guo, Yifan et al. (2018). “Multidimensional Time Series Anomaly Detection:

A GRU-based Gaussian Mixture Variational Autoencoder Approach”. In:

PMLR. url: https://proceedings.mlr.press/v95/guo18a.html.

Hasler, Jennifer and Harry B. Marr (2013). “Finding a roadmap to achieve

large neuromorphic hardware systems”. In: Frontiers in Neuroscience. doi:

10.3389/fnins.2013.00118.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long Short-Term Mem-

ory”. In: Neural Computation. doi: 10.1162/neco.1997.9.8.1735.

69

https://doi.org/10.48550/arXiv.1911.01429
https://doi.org/10.1016/j.bspc.2020.102225
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.3389/neuro.11.011.2008
https://openreview.net/forum?id=QW98XBAqNRa
https://openreview.net/forum?id=QW98XBAqNRa
https://arxiv.org/abs/1906.04032
https://doi.org/10.1523/JNEUROSCI.23-37-11628.2003
https://neuronaldynamics.epfl.ch/online/index.html
https://doi.org/10.7554/eLife.56261
https://doi.org/10.7554/eLife.56261
https://doi.org/10.48550/arXiv.1905.07488
https://doi.org/10.4103/0253-7613.169598
https://proceedings.mlr.press/v95/guo18a.html
https://doi.org/10.3389/fnins.2013.00118
https://doi.org/10.1162/neco.1997.9.8.1735

References

Huhle, Jakob (2024). Exploration of the AdEx parameter space through sim-

ulation and simulation-based-inference. url: https : / / www . kip . uni -

heidelberg.de/vision/publications/reports/.

Iberri, D. (2007). File: Action potential.svg. Accessed: 20024-09-27. url: https:

//upload.wikimedia.org/wikipedia/commons/b/bc/Neuron_Hand-

tuned.svg.

Indiveri, Giacomo et al. (2011). “Neuromorphic Silicon Neuron Circuits”. In:

Frontiers in Neuroscience. doi: 10.3389/fnins.2011.00073.

Izhikevich, Eugene M. (2003). “Simple Model of Spiking Neurons”. In: IEEE

Transactions on Neuronal Networks. doi: 10.1109/TNN.2003.820440.

J. Touboul, R. Brette (2008). “Dynamics and bifurcations of the adaptive ex-

ponential integrate-and-fire model”. In: Biol Cybern. doi: 10.1007/s00422-

008-0267-4.

Jarosz, Q. (2009). File: Neuron Hand-tuned.svg. Accessed: 20024-09-27. url:

https://upload.wikimedia.org/wikipedia/commons/4/4a/Action_

potential.svg.

Jolivet, Renaud et al. (2008). “A benchmark test for a quantitative assess-

ment of simple neuron models”. In: J Neurosci Methods. doi: 10.1016/j.

jneumeth.2007.11.006.

Kaiser, Jakob et al. (2023). “Simulation-based inference for model parame-

terization on analog neuromorphic hardware”. In: Neuromorphic Comput-

ing and Engineering. doi: 10 . 1088 / 2634 - 4386 / ad046d. url: https :

//dx.doi.org/10.1088/2634-4386/ad046d.

Kalra, Dayal and Maissam Barkeshli (2024).Why Warmup the Learning Rate?

Underlying Mechanisms and Improvements. doi: 10.48550/arXiv.2406.

09405.

Kingma, Diederik P. and Jimmy Ba (2014). “Adam: A Method for Stochastic

Optimization”. In: CoRR. url: https://api.semanticscholar.org/

CorpusID:6628106.

Lea, Colin et al. (2017). “Temporal Convolutional Networks for Action Seg-

mentation and Detection”. In: 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). doi: 10.1109/CVPR.2017.113.

Li, Pengzhi, Yan Pei, and Jianqiang Li (2023). “A comprehensive survey on

design and application of autoencoder in deep learning”. In: Applied Soft

Computing. doi: 10.1016/j.asoc.2023.110176.

Li, Zhiyuan and Sanjeev Arora (2019). An Exponential Learning Rate Schedule

for Deep Learning. doi: 10.48550/arXiv.1910.07454.

Li, Zhiyuan, Yu Sun, et al. (2022). “Unsupervised Machine Anomaly Detec-

tion Using Autoencoder and Temporal Convolutional Network”. In: IEEE

Transactions on Instrumentation and Measurement. doi: 10.1109/TIM.

2022.3212547.

70

https://www.kip.uni-heidelberg.de/vision/publications/reports/
https://www.kip.uni-heidelberg.de/vision/publications/reports/
https://upload.wikimedia.org/wikipedia/commons/b/bc/Neuron_Hand-tuned.svg
https://upload.wikimedia.org/wikipedia/commons/b/bc/Neuron_Hand-tuned.svg
https://upload.wikimedia.org/wikipedia/commons/b/bc/Neuron_Hand-tuned.svg
https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1007/s00422-008-0267-4
https://doi.org/10.1007/s00422-008-0267-4
https://upload.wikimedia.org/wikipedia/commons/4/4a/Action_potential.svg
https://upload.wikimedia.org/wikipedia/commons/4/4a/Action_potential.svg
https://doi.org/10.1016/j.jneumeth.2007.11.006
https://doi.org/10.1016/j.jneumeth.2007.11.006
https://doi.org/10.1088/2634-4386/ad046d
https://dx.doi.org/10.1088/2634-4386/ad046d
https://dx.doi.org/10.1088/2634-4386/ad046d
https://doi.org/10.48550/arXiv.2406.09405
https://doi.org/10.48550/arXiv.2406.09405
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://doi.org/10.1109/CVPR.2017.113
https://doi.org/10.1016/j.asoc.2023.110176
https://doi.org/10.48550/arXiv.1910.07454
https://doi.org/10.1109/TIM.2022.3212547
https://doi.org/10.1109/TIM.2022.3212547

References

Lima, Felipe Tomazelli and Vinicius M.A. Souza (2023). “A Large Comparison

of Normalization Methods on Time Series”. In: Big Data Research. doi:

https://doi.org/10.1016/j.bdr.2023.100407.

Lueckmann, Jan-Matthis, Jan Boelts, et al. (2021). Benchmarking Simulation-

Based Inference. url: https://arxiv.org/abs/2101.04653.

Lueckmann, Jan-Matthis, Pedro J Goncalves, et al. (2017). “Flexible statistical

inference for mechanistic models of neural dynamics”. In: Advances in Neu-

ral Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran

Associates, Inc. url: https://proceedings.neurips.cc/paper_files/

paper/2017/file/addfa9b7e234254d26e9c7f2af1005cb-Paper.pdf.

Marder, Eve and Adam L Taylor (2011). “Multiple models to capture the

variability in biological neurons and networks”. In: Nature Neuroscience.

doi: 10.1038/nn.2735.

Mark W Barnett, Philip M Larkman (2007). The action potential; Practical

Neurology. 2nd. Birkhauser. isbn: 978-3-030-59316-2.

Martin, John H. (2021). Neuroanatomy: Text and Atlas. McGraw Hill. isbn:

978-1-259-64248-7.

Mart́ın-Araguz, A et al. (2002). “Neuroscience in ancient Egypt and in the

school of Alexandria”. In: Rev Neurol.

Mueller, Eric C. (2014). “Novel Operation Modes of Accelerated Neuromorphic

Hardware”. In: PhD thesis. Ruprecht-Karls-Universität Heidelberg. url: http:

//www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?

id=3112.

Naud, Richard et al. (2008). “Firing patterns in the adaptive exponential

integrate-and-fire model”. In: Biological Cybernetics. doi: 10.1007/s00422-

008-0264-7.

Oliveira, Marcos A. de et al. (2023). “Time Series Compression for IoT: A

Systematic Literature Review”. In: Wireless Communications and Mobile

Computing. doi: 10.1155/2023/5025255.

Papamakarios, George, Eric Nalisnick, et al. (2021). “Normalizing Flows for

Probabilistic Modeling and Inference”. In: Journal of Machine Learning

Research. url: http://jmlr.org/papers/v22/19-1028.html.

Papamakarios, George, Theo Pavlakou, and Iain Murray (2017). “Masked Au-

toregressive Flow for Density Estimation”. In: Advances in Neural Informa-

tion Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates,

Inc. url: https://proceedings.neurips.cc/paper_files/paper/2017/

file/6c1da886822c67822bcf3679d04369fa-Paper.pdf.

Paszke, Adam et al. (2019). “PyTorch: an imperative style, high-performance

deep learning library”. In: Curran Associates Inc. doi: 10.5555/3454287.

3455008.

71

https://doi.org/https://doi.org/10.1016/j.bdr.2023.100407
https://arxiv.org/abs/2101.04653
https://proceedings.neurips.cc/paper_files/paper/2017/file/addfa9b7e234254d26e9c7f2af1005cb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/addfa9b7e234254d26e9c7f2af1005cb-Paper.pdf
https://doi.org/10.1038/nn.2735
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3112
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3112
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3112
https://doi.org/10.1007/s00422-008-0264-7
https://doi.org/10.1007/s00422-008-0264-7
https://doi.org/10.1155/2023/5025255
http://jmlr.org/papers/v22/19-1028.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/6c1da886822c67822bcf3679d04369fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/6c1da886822c67822bcf3679d04369fa-Paper.pdf
https://doi.org/10.5555/3454287.3455008
https://doi.org/10.5555/3454287.3455008

References

Pehle, Christian et al. (2022). “The BrainScaleS-2 Accelerated Neuromorphic

System With Hybrid Plasticity”. In: Frontiers in Neuroscience. doi: 10.

3389/fnins.2022.795876.

Richter, Mathias (2020). Inverse Problems; Basics, Theory and Applications

in Geophysics. 2nd. Birkhauser. isbn: 978-3-030-59316-2.

Sagheer, Alaa and Mostafa Kotb (2019). “Unsupervised Pre-training of a Deep

LSTM-based Stacked Autoencoder for Multivariate Time Series Forecasting

Problems”. In: Scientific Reports. doi: 10.1038/s41598-019-55320-6.

Schmidhuber, Jürgen (2015). “Deep learning in neural networks: An overview”.

In: Neural Networks. doi: 10.1016/j.neunet.2014.09.003.

Shinomoto, Shigeru et al. (2009). “Relating neuronal firing patterns to func-

tional differentiation of cerebral cortex”. In: PLoS Comput Biol. doi: 10.

1371/journal.pcbi.1000433.

Stimberg, Marcel, Romain Brette, and Dan FM Goodman (2019). “Brian 2,

an intuitive and efficient neural simulator”. In: eLife. doi: 10.7554/eLife.

47314. url: https://doi.org/10.7554/eLife.47314.

Tejero-Canteroe, Alvaro et al. (2020). “sbi: A toolkit for simulation-based

inference”. In: Journal of Open Source Software. doi: 10.21105/joss.

02505.

Tolley, Nicholas et al. (2024). “Methods and considerations for estimating

parameters in biophysically detailed neural models with simulation based

inference”. In: PLOS Computational Biology. doi: 10.1371/journal.pcbi.

1011108.

Tschannen, Michael, Olivier Bachem, and Mario Lucic (2018). “Recent ad-

vances in autoencoder-based representation learning”. In: Third workshop

on Bayesian Deep Learning (NeurIPS 2018). url: http://www.nari.ee.

ethz.ch/pubs/p/autoenc2018.

Van Geit, W, E. De Schutter, and P. Achard (2008). “Automated neuron

model optimization techniques: a review”. In: Biological Cybernetics. doi:

10.1007/s00422-008-0257-6.

Wan, Zhiqiang, Yazhou Zhang, and Haibo He (2017). Variational autoencoder

based synthetic data generation for imbalanced learning. doi: 10 . 1109 /

SSCI.2017.8285168.

Wang, Fei et al. (2019). “A novel ECG signal compression method using spin-

dle convolutional auto-encoder”. In: Computer Methods and Programs in

Biomedicine. doi: 10.1016/j.cmpb.2019.03.019.

Weeks, Michael and Magdy Bayoumi (2002). “Discrete Wavelet Transform:

Architectures, Design and Performance Issues”. In: Journal of VLSI Signal

Processing. doi: 10.1023/A:1023648531542.

Windhorst, Uwe and H̊akan Johansson (1999). Modern Techniques in Neuro-

science Research. isbn: 978-3540644606.

72

https://doi.org/10.3389/fnins.2022.795876
https://doi.org/10.3389/fnins.2022.795876
https://doi.org/10.1038/s41598-019-55320-6
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1371/journal.pcbi.1000433
https://doi.org/10.1371/journal.pcbi.1000433
https://doi.org/10.7554/eLife.47314
https://doi.org/10.7554/eLife.47314
https://doi.org/10.7554/eLife.47314
https://doi.org/10.21105/joss.02505
https://doi.org/10.21105/joss.02505
https://doi.org/10.1371/journal.pcbi.1011108
https://doi.org/10.1371/journal.pcbi.1011108
http://www.nari.ee.ethz.ch/pubs/p/autoenc2018
http://www.nari.ee.ethz.ch/pubs/p/autoenc2018
https://doi.org/10.1007/s00422-008-0257-6
https://doi.org/10.1109/SSCI.2017.8285168
https://doi.org/10.1109/SSCI.2017.8285168
https://doi.org/10.1016/j.cmpb.2019.03.019
https://doi.org/10.1023/A:1023648531542

References

Yildirim, Ozal, Ru San Tan, and U. Rajendra Acharya (2018). “An efficient

compression of ECG signals using deep convolutional autoencoders”. In:

Cognitive Systems Research. doi: 10.1016/j.cogsys.2018.07.004.

Zheng, Yi et al. (2016). “Exploiting multi-channels deep convolutional neural

networks for multivariate time series classification”. In: Frontiers of Com-

puter Science. doi: 10.1007/s11704-015-4478-2.

73

https://doi.org/10.1016/j.cogsys.2018.07.004
https://doi.org/10.1007/s11704-015-4478-2

Acronyms

Acronyms

AdEx adaptive exponential integrate-and-fire.

CONV-AE convolutional autoencoder.

CONV-LSTM-AE convolutional-LSTM autoencoder.

FCNN fully connected neural network.

FPGA field-programmable gate array.

LSTM long short-term memory.

MAF masked autoregressive flow.

NDE neural density estimator.

PPC posterior predictive checks.

SNPE sequential neural posterior estimation.

SNR signal-to-noise ratio.

74

A. Appendix

A.1. Fixed hardware parameters

Table 7: Fixed hardware parameter settings throughout all experiments.

parameter setting

reset enable multiplication True
threshold enable True
adaptation enable pulse True
exponential enable True
adaptation enable True
adaptation invert a False
adaptation invert b False
constant current type source
refractory period (hardware µs) 3

75

A. Appendix

A.2. Model architectures

Table 8: Conv-AE model overview. A batch size of 32 was used during train-
ing.

Layer (type) Input Shape Output Shape Kernel Shape Param #

Conv AE b (1024) (1024) – –
+– Conv Encoder b (1024) (32) – –

+– Sequential (1, 1024) (1, 32) – –
+– Conv1d (1, 1024) (32, 1024) 5 192
+– ReLU (32, 1024) (32, 1024) – –
+– BatchNorm1d (32, 1024) (32, 1024) – 64
+– MaxPool1d (32, 1024) (32, 512) 2 –
+– Conv1d (32, 512) (16, 512) 3 1,552
+– ReLU (16, 512) (16, 512) – –
+– BatchNorm1d (16, 512) (16, 512) – 32
+– MaxPool1d (16, 512) (16, 256) 2 –
+– Conv1d (16, 256) (64, 256) 11 11,328
+– ReLU (64, 256) (64, 256) – –
+– MaxPool1d (64, 256) (64, 128) 2 –
+– Conv1d (64, 128) (128, 128) 13 106,624
+– ReLU (128, 128) (128, 128) – –
+– MaxPool1d (128, 128) (128, 64) 2 –
+– Conv1d (128, 64) (1, 64) 3 385
+– ReLU (1, 64) (1, 64) – –
+– MaxPool1d (1, 64) (1, 32) 2 –

+– Conv Decoder b (32) (1024) – –
+– Sequential (1, 32) (1, 1024) – –

+– Conv1d (1, 32) (128, 32) 3 512
+– ReLU (128, 32) (128, 32) – –
+– Upsample (128, 32) (128, 64) – –
+– Conv1d (128, 64) (64, 64) 13 106,560
+– ReLU (64, 64) (64, 64) – –
+– Upsample (64, 64) (64, 128) – –
+– Conv1d (64, 128) (16, 128) 11 11,280
+– ReLU (16, 128) (16, 128) – –
+– Upsample (16, 128) (16, 256) – –
+– Conv1d (16, 256) (32, 256) 3 1,568
+– ReLU (32, 256) (32, 256) – –
+– Upsample (32, 256) (32, 512) – –
+– Conv1d (32, 512) (1, 512) 5 161
+– Upsample (1, 512) (1, 1024) – –

Trainable params: 240,258
Total mult-adds (M): 842.49
Input size (MB): 0.13
Forward/backward pass size (MB): 34.23
Params size (MB): 0.96
Estimated Total Size (MB): 35.32

76

A.2. Model architectures

Table 9: Conv-LSTM-AE model overview. A batch size of 32 was used during
training.

Layer (type) Input Shape Output Shape Kernel Shape Param #

Conv LSTM AE (1024) (1024) – –
+– Conv LSTM Encoder (1024) (60) – –

+– Sequential (1, 1024) (1, 32) – –
+– Conv1d (1, 1024) (10, 1024) 7 80
+– BatchNorm1d (10, 1024) (10, 1024) – 20
+– Tanh, Dropout (10, 1024) (10, 1024) – –
+– MaxPool1d (10, 1024) (10, 512) 2 –
+– Conv1d (10, 512) (32, 511) 6 1,952
+– BatchNorm1d (32, 511) (32, 511) – 64
+– Tanh, Dropout (32, 511) (32, 511) – –
+– MaxPool1d (32, 511) (32, 255) 2 –
+– Conv1d (32, 255) (32, 255) 5 5,152
+– BatchNorm1d (32, 255) (32, 255) – 64
+– Tanh, Dropout (32, 255) (32, 255) – –
+– MaxPool1d (32, 255) (32, 127) 2 –
+– Conv1d (32, 127) (64, 127) 7 14,400
+– Tanh, Dropout (64, 127) (64, 127) – –
+– Conv1d (64, 127) (64, 127) 11 45,120
+– BatchNorm1d (64, 127) (64, 127) – 128
+– Tanh, Dropout (64, 127) (64, 127) – –
+– MaxPool1d (64, 127) (64, 63) 2 –
+– Conv1d (64, 63) (128, 63) 11 90,240
+– Tanh, Dropout (128, 63) (128, 63) – –
+– Conv1d (128, 63) (64, 63) 11 90,176
+– BatchNorm1d (64, 63) (64, 63) – 128
+– Tanh, Dropout (64, 63) (64, 63) – –
+– MaxPool1d (64, 63) (64, 31) 2 –
+– Conv1d (64, 31) (1, 32) 32 2,049
+– Tanh (1, 32) (1, 32) – –

+– LSTM (32, 1) (32, 20) – 1,840
+– Sequential (20) (60) – –

+– Linear (20) (60) – 1,260
+– Tanh (60) (60) – –

+– Conv LSTM Decoder (60) (1024) – –
+– Sequential (1, 60) (10, 3840) – –

+– Conv1d (1, 60) (1, 60) 32 33
+– Tanh (1, 60) (1, 60) – –
+– Upsample (1, 60) (1, 120) – –
+– Conv1d (1, 120) (64, 120) 11 768
+– Tanh (64, 120) (64, 120) – –
+– Conv1d (64, 120) (128, 120) 11 90,240
+– Tanh (128, 120) (128, 120) – –
+– Upsample (128, 120) (128, 240) – –
+– Conv1d (128, 240) (64, 240) 11 90,176
+– Tanh (64, 240) (64, 240) – –
+– Conv1d (64, 240) (64, 240) 7 28,736
+– Tanh (64, 240) (64, 240) – –
+– Upsample (64, 240) (64, 480) – –
+– Conv1d (64, 480) (32, 480) 5 10,272
+– Tanh (32, 480) (32, 480) – –
+– Upsample (32, 480) (32, 960) – –
+– Conv1d (32, 960) (32, 960) 6 6,176
+– Tanh (32, 960) (32, 960) – –
+– Upsample (32, 960) (32, 1920) – –
+– Conv1d (32, 1920) (10, 1920) 7 2,250
+– Tanh (10, 1920) (10, 1920) – –
+– Upsample (10, 1920) (10, 3840) – –

+– Sequential (38400) – – –
+– Linear (38400) (1024) – 39,322624
+– Sigmoid (1024) (1024) – –

Trainable params: 39,803,948
Input size (MB): 0.13
Forward/backward pass size (MB): 59.10
Params size (MB): 159.22
Estimated Total Size (MB): 218.45

77

A. Appendix

A.3. Datasets

100 s 20
0

M
AD

C

Figure 38: Voltage traces of the 2D dataset with parameter setting from table
1. The traces were interpolated down to 1024 datapoints and only
the first 300 datapoints are displayed for visualization purposes.

78

A.3. Datasets

100 s 20
0

M
AD

C
Figure 39: Voltage traces of the 8D dataset with parameter setting from table

1. The traces were interpolated down to 1024 datapoints and only
the first 300 datapoints are displayed for visualization purposes.

79

A. Appendix

A.4. Autoencoder training

0 25 50 75 100 125 150
epochs

10 3

0 25 50 75 100 125 150
epochs

training
validation

M
SE

Figure 40: Comparison between the average training and validation losses of
two autoencoder models. One standard deviation of the validation
loss is shown, too. Left: convolutional autoencoder (CONV-AE)
where weighted loss was applied during training; Right: CONV-
AE without a weighted loss during training; the training for both
models was conducted on the 4D emulation dataset with parameter
settings of table 1.

80

A.4. Autoencoder training

0 25 50 75 100 125 150
epochs

10 3

10 2

0 25 50 75 100 125 150
epochs

training
validation

M
SE

Figure 41: Comparison between the average training and validation losses of
two autoencoder models with a latent space dimension of 32. One
standard deviation of the validation loss is shown, too. Left:
CONV-AE which was trained on the 2D dataset; Right: CONV-
AE which was trained on the 8D dataset; the values of the param-
eters for those datasets can be found in table 1.

81

A. Appendix

A.5. Simulation-based inference

80.0 82.5
a (nS)

78

81

b
(p

A)

48 52
w (ms)

80.0

82.5

a
(n

S)

55.0 54.9
Vr (mV)

48

52

w
 (m

s)

Figure 42: Pair plot of 10,000 drawn samples from the approximated poste-
rior. The true parameters are located at the intersection of the grey
lines and are set according to the values in table 4. Wavelet trans-
forms using the “Haar-wavelet” were used as the data embedding
technique. Coefficient calculation was performed up to decomposi-
tion level 4, and only the approximation coefficients were fed into
the SNPE algorithm. For more information, see Huhle, 2024. 20
rounds of inference with 1000 simulations each were performed.

82

A.5. Simulation-based inference

0 1000
a

0

1000

w

360 420
a

200

210

w

Figure 43: Samples drawn from the 2D posterior for the target observation
x̂slow with parameter settings in tables 1 and 5. The encoder of the
CONV-AE with additional concurrent retraining with the NDE
was used as the embedding technique. 20 inference rounds with
1000 simulations each were performed. Left: view of the whole
parameter range; Right: zoomed-in view of the plotted samples.

83

A. Appendix

a

V t
h

b

a

w

b

Vr

w

T

V r

VT

T

EL

V T

Figure 44: Samples drawn from the 4D posterior for the target observation
x̂slow with parameter settings in tables 1 and 5. The encoder of the
CONV-AE with a latent space size of 64 and additional concurrent
retraining with the NDE of the SNPE algorithm was used as the
embedding technique. 20 inference rounds were performed. 4000
simulations were conducted in the first round while 2000 simula-
tions were carried out in each subsequent round. The plot displays
the whole possible parameter range from 0 to 1022 for each param-
eter.

84

A.6. Experiment environment and data

A.6. Experiment environment and data

The state of the used software is displayed in table 11. Additional changes

which are still under review can be found in table 10. The emulation experi-

ments were performed in a software container provided by the research group;

the used container is 2024-04-17 1.img. For the simulations, a newer version

of the Brian simulator was needed. Therefore, a custom conda environment

with Brian 2.7.0. was used. A file with all the packages in this environment

can be found in /ley/users/jhuhle/BA/conda env.txt. All experiment data

can be found in /ley/users/jhuhle/BA.

Table 10: Changesets which are still under review.

Title Changeset ID

feat: use brian2 as a simulator 22949
dataset 23097
Autoencoder 23216
SBI 23416
Plotting 23517

85

A. Appendix

Table 11: Software state

Repository git hash

model-hw-adex-sbi 29df7f256b15f892cad4a5346223d1b51883860c
pynn-brainscales 57370c7479f4a4c372ad944c22bec0b5ee30f61b
code-format 09f3a985a6f264359b10a6a129dd6dce7e55c9e8
haldls 237983b173c164d225a2f5398d7e72ef60de7397
grenade 6e2d453aaf305f297027ba0132bc70d13444dda7
calix a706868c6ba285b1f8fd7cdef1a19d7328e02912
logger 73dadb3ce413c521845ef7d36f818073eee4fefa
halco a97040a732ab1ba954e077616303a18acf623092
hate 35b3cb211cabbbc5c01036ae7878a73e338166c4
fisch 6120fc0ac0d90b3c66a212b3cc5cc25034bf584e
libnux 66b9c67bc114f82add677c6095f38843c23c4cd7
hxcomm 95abf25670bd8cb7cc5b499cde56f653130cf20c
rant 722edd57c9e42462a660db8a1febb0211ffad07c
ztl b6745261d8bfdce44516d58d632c3c73834839d2
pywrap 5e2af30e9593882b471d3cd02df00b93f13ff479
lib-boost-patches 136c5b41cb046afe2c726aa4646928bf5190622e
sctrltp 1d854f953f7e8c8ead44406a22bb80421ca3857c
hwdb f7262189b0e55b686896a3dea952065c2f1a3789
visions-slurm 8f41ea4f5bd1573d8f4623e9ed698a29f30036a3
flange 28e729d59df3b4ff380f84351c40d4da3086bed8
lib-rcf 000185eb11db4d54cb6b12b09af54cf742741036
bss-hw-params b7be7827b51536804f0bda76f8ba4be693df23a8
paramopt ddf6c49df5b44d5fd42e314433432015f8738409

86

Danksagung (Acknowledgement)

Zuallererst möchte ich natürlich Jakob Kaiser danken. Er hat mich Küken

unter seine Fittiche genommen und mich mit viel Geduld herangezüchtet.

Dabei hat er immer wieder Ordnung in verwirrte Gedanken gebracht und viele

Dinge dann eben auch siebenmal erklärt, wenn ich sie schon wieder vergessen

hatte. Selbst jetzt ist er mental noch recht stabil, obwohl ich immer noch nicht

die drei git commands beherrsche, die ich seit sechs Monaten benutzen sollte.

Seine Expertise, große Geduld und Bereitschaft, mir auch an Wochenenden

zu Hilfe zu kommen, haben zu dieser Arbeit entscheidend beigetragen. Man

hätte sich wohl keinen besseren Cheffe suchen können!

Außerdem möchte ich natürlich auch meinen Bürokameraden Carl, Simon und

Arik für die tolle Büroatmosphäre danken. Besonders letztere hat unter meiner

Tyrannei wahrscheinlich sehr gelitten, da ich es nie gemisst habe, ihn seiner

Stifte und sonstiger Büroutensilien zu berauben.

Auch möchte ich Phillip Spiegler danken, welcher mir immer wieder mal Fragen

beantwortete und auch eine vorherige Arbeit Korrektur gelesen hat. Zudem

bin ich auch sehr dankbar, dass er mich an meinem letzten Tag hier beim Dart

spielen gewinnen lassen hat.

Selbstverständlich gilt mein Dank auch allen anderen Electronics Vision(s)

Mitgliedern für die tolle Zeit hier in dieser Arbeitsgruppe.

Zuletzt möchte ich mich noch bei der Putzfrau und dem Hausmeister Mi-

chael entschuldigen, die ich wohl sehr verstört haben muss, als ich sie im-

mer wieder schlaftrunken und stöhnend bei ihrem Arbeitsbeginn frühmorgens

begrüßte. Auch dem EINC gilt mein Dank, welches in den letzten Wochen

wortwörtlich mein Zuhause geworden ist. Es hütete mich stets in tiefer Nacht,

als ich mal wieder mit verwirrtem Geist und gebrochenem Willen durch dessen

großen Hallen und langen Gängen umherwanderte. Die Akustik des Gebäudes

beglückte mich sehr, da sie nachts den Sound des hardstyle Technos klanglich,

sowie auch lautstärke-technisch, vorteilhaft unterstützte. Bei WG-gesucht be-

kommt das EINC dennoch nur vier von fünf Sternen, da ich ab und an durchaus

schon einen Herd vermisst habe.

The work carried out in this bachelor Thesis used systems, which received

funding from the European Union’s Horizon 2020 Framework Programme for

Research and Innovation under the Specific Grant Agreements Nos. 720270,

785907 and 945539 (Human Brain Project, HBP) and Horizon Europe grant

agreement No. 101147319 (EBRAINS 2.0)

	Introduction
	Background
	Biological neuron
	AdEx
	Analog neuromorphic hardware: the BrainScaleS-2 system
	Simulation-based inference
	SNPE algorithm
	Data embedding

	Methods
	Experiment setup
	Datasets
	Data embedding
	Simulation-based Inference

	Results
	Datasets
	Data embedding
	Simulation-based inference
	SNPE on simulated data
	SNPE on emulated data

	Summary and Discussion
	Datasets
	Data embedding
	Simulation-based inference

	Outlook
	Appendix
	Fixed hardware parameters
	Model architectures
	Datasets
	Autoencoder training
	Simulation-based inference
	Experiment environment and data

