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Abstract

One application of neuromorphic computers is providing an energy-efficient solution
for computer simulations of neural networks in the field of computational neuro-
science. BrainScaleS-2 is a mixed-signal neuromorphic platform that promises ac-
celerated and faithful emulation of biological neural networks. In this work, we aim
to emulate the synaptic tagging and capture plasticity rule for a single synapse on
BrainScaleS-2. The three main steps for emulating this rule are emulating the neural
dynamics, emulating the calcium dynamics, and implementing the equations of the
plasticity rule. The first two steps are achieved using the neuron and the adaptation
circuits respectively of the analog core of BrainScaleS-2 that emulates the neuron
dynamics based on the adaptive exponential leaky integrate-and-fire model. The
third step relies on differential equations solved numerically on the digital plasticity
processor of BrainScaleS-2. The main hardware constraints are the update timestep
used to solve the differential equations and the use of finite arithmetic. Using a
higher update timestep and stochastic rounding, we show that BrainScaleS-2 can
faithfully emulate a single synapse that follows the synaptic tagging and capture
plasticity rule for four stimulation protocols. The results show that almost no sta-
tistically significant results exist between the simulation and the emulation schemes,
and that the variability of the test statistics mostly stems from the spikes. We con-
clude our work by reaffirming the role of BrainScaleS-2 in speeding-up the emulation
of neural dynamics in computational neuroscience.
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Motivation

Neuromorphic computing is a computing technology inspired by the human brain’s
architecture. Many reasons have encouraged the computing community to develop
such technologies (Schuman et al., 2022). On one hand, the von Neumann computer
architecture possesses many limitations in terms of parallel operations and mem-
ory/processing separation. These limitations hinder the computing performance
and efficiency in fields related to computational neuroscience, artificial intelligence
(AI), and robotics (Indiveri and Liu, 2015). On the other hand, the human brain
is known for its high computing abilities with low power consumption. This su-
perior performance of the brain can be attributed to many reasons of which we
know the memory-processing collocation that allows parallel computations and the
event-driven operation of networks enabled by sparse spikes (Schuman et al., 2022).

There exist fundamental operational differences for neuromorphic computers against
standard von Neumann architectures starting with the parallel operations in neu-
romorphic computers where all neurons can be operated simultaneously, and the
collocated memory/processing (Schuman et al., 2022). Additionally, neuromorphic
computers are expected to achieve inherent scalability by connecting multiple chips
as a single large computer. One of the most attractive features in neuromorphic
computing is the sparse activity of spikes between neurons that enables event-driven
computation. This feature is believed to achieve power and energy efficiency as only
a small portion of the system would be active at a given time. In their general ar-
chitecture, neuromorphic computers implement the so-called spiking neural network
(SNN)s, in which the functionality of neurons and synapses is biologically plausible.
These networks account for timing in their operation where information propagates
asynchronously due to the delay differences between neurons and synapses.

Many physical realizations of neuromorphic computers have been developed in the
past years. These systems are designed based on a variety of choices depending
on the end goals and fields that these platforms are targeted at. BrainScaleS-2
(Pehle et al., 2022) is a neuromorphic platform primarily targeted at faithfully em-
ulating biologically plausible neural dynamics for the advancement of AI, robotics,
and computational neuroscience. Positive consequences follow from the advance-
ment of computational neuroscience, ranging from understanding the human ner-
vous system through simulating large neural networks to complementing medical
applications. Computer simulations are an indispensable part of computational neu-
roscience, specifically for understanding neuron circuits through synaptic plasticity
(Zenke and Gerstner, 2014). The challenge lies in simulating large networks with an
adequate simulation timestep, which requires long experiments with large waiting
times to capture the timescale of long-term plasticity (Zenke and Gerstner, 2014).
Here comes the role of specialized neuromorphic hardware, such as BrainScaleS-2,
that can emulate neural dynamics at accelerated timescales compared to real time.
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Another useful consequence of the advancement of theoretical neuroscience is de-
riving learning rules for machine intelligence. Since the neuromorphic hardware
architecture is inspired by the human brain, we argue that neuromorphic computers
must be connected to special neuromorphic algorithms that can effectively exploit
their characteristics. Our focus is on biologically-plausible plasticity algorithms that
would eventually be used as learning rules for SNNs to perform a variety of tasks
in the fields of machine learning and robotics. One of the well-established rules is
spike-timing dependent plasticity (STDP) which adjusts weights based on the rela-
tive spike timings of presynaptic and postsynaptic neurons. The STDP learning rule
has proven effective as a clustering mechanism, specifically as a spike sorter in brain
machine interface applications (Schuman et al., 2022). However, experiments show
that the temporal order is only relevant in a small regime to presynaptic activation,
and the synaptic modification seem to be independent of the postsynaptic spiking
activity (Tetzlaff et al., 2012). An alternative to STDP is calcium-based plasticity
formulated as the synaptic tagging and capture (STC) hypothesis (Tetzlaff et al.,
2012).

The strength of the STC plasticity scheme lies in its dependence on different synaptic
states and timescales (Redondo and Morris, 2011). Specifically, it asserts that long-
lasting synaptic changes do not have to be triggered at close time instants, and these
changes could be tied to events in the past, present, and future. The STC plasticity
mechanism has proven its plausibility in many behavioral, and consequently, realistic
settings. For example, it has been linked with the improvement of memory recall
in recurrent neural networks as well as the enhancement of learning after a time
break from memory encoding (Luboeinski and Tetzlaff, 2021). Behavioral tagging
has also been identified as the analog of synaptic tagging in the STC hypothesis
in many behavioral experiments (Okuda et al., 2021) such as the persistence of
long-term potentiation (LTP) and the encoding of everyday spatial memory in rats
(Wang et al., 2010).

Motivated by the previous implementations of plasticity rules on BrainScaleS-2 and
the variety of neuron dynamics that the corresponding neuron circuits can emulate,
we aim to implement the STC plasticity rule on BrainScaleS-2. In this work, we
focus on emulating the rule for a single synapse in attempt to emulate at later stages
neural networks that can exploit the STC rule. In the next sections, we describe the
methods followed to implement the rule on a single synapse, and we present the re-
sults that seem to faithfully emulate the rule’s dynamics. We discuss the constraints
of our algorithm and present future extensions to our work including emulating a
full recurrent network that would provide reliable conclusions on memory consolida-
tion as presented in (Luboeinski and Tetzlaff, 2021) or even performing real-world
tasks to achieve machine intelligence. We conclude our work by re-affirming the
flexibility of BrainScaleS-2, and the role it serves in computational neuroscience and
the advancement of bio-inspired computing.
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Background

In this section, we introduce the relevant concepts that are necessary for emulating
the STC plasticity rule of neurons on BrainScaleS-2. It is significant to note that
our goal in this work is highly interdisciplinary. This is clear from the topics that
we covered in the motivation section and that would be described in more details
in this section. Nevertheless, these topics will converge smoothly throughout this
work.

2.1 Memory and Synaptic Tagging and Capture

Hypothesis

An engram, or a memory trace, is the physical entity in the brain that stores in-
formation over time and enables memories to be expressed (Redondo and Morris,
2011). The physical substrate of engrams for the persistence of long-term mem-
ory (LTM) is a change in the biophysical and structural efficacy of synapses within
neural networks. The persistence of these engrams depends on many determinants,
but the immediate determinant is a consolidation process that gets activated after
memory encoding and initial storage. This consolidation process requires specific
conditions to be activated and enables memory traces to be stabilized. The consol-
idation process has two components; at the high level between cortices and neural
circuits, systems consolidation involves dynamic interactions between the neocorti-
cal and hippocampal circuits for creating or updating engrams. Synaptic or initial
consolidation, on the other hand, is performed at the cellular level, and it is con-
cerned with synaptic strength for duration ranging from minutes to hours. The dual
framework of memory consolidation at the cellular and systems levels is considered
crucial for the persistence of memory (Redondo and Morris, 2011). For example,
the activation of excitatory glutamatergic synapses in the hippocampus triggers a
variety of cellular cascades which consequently play an important role in learning
and memory.

A theory that explains a significant part of synaptic consolidation is the STC hy-
pothesis. It was first suggested by Frey and Morris (1997) and later revised by
Redondo and Morris (2011) to account for various limitations and challenges to
the initial hypothesis. In the theory on synaptic consolidation, LTP and long-term
depression (LTD) involve two phases (Lamprecht and LeDoux, 2004). The early
phase is characterized by the increase in calcium concentration, while the late phase
is characterized by insertion of neurotransmitter receptors in the case of LTP and
their removal in the case of LTD. In between these two phases, the biophysical and
structural alterations of the synapses contribute to stabilizing the levels of synap-
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tic strength. The stabilization depends on the recent history and near future of
the neural activity, and both can be dependent or independent of the neural ac-
tivity occurring during encoding. This extension of the time window that deter-
mines memory consolidation is accompanied with the synthesis and distribution of
plasticity-related proteins (PRP) induced by other neuronal activities. In the STC
hypothesis, the proteins are captured by synaptic tags which are local molecular
changes at synapses found to mark these synapses as having experienced synaptic
plasticity. Computationally, the STC hypothesis accounts for the several ’states’ of
a synapse that can reflect the level of synaptic strength and the potential for LTM.

A core concept of the STC hypothesis is that memory encoding creates a potential
for LTM but not a commitment itself (Redondo and Morris, 2011; Luboeinski and
Tetzlaff, 2021). In behavioural and experimental neuroscience, it is intuitive to
think about memory formation as a sequence of events triggered at a moment in
time. For example in some experiments, a strong firing in specific neurons could be
attributed to animals learning by receiving rewards, and this would immediately lead
to consolidation between the different events at the experiment time. However, this
form of learning is somehow restricted to laboratory experiments. Realistic events
occur at different times such that their memorability can be affected by other past
or future events. If memory consolidation were always triggered by all these events
and stimuli, the memory systems of the brain would be simultaneously handling
numerous consolidation cascades, which is not feasible for neurons as the capacity
of the nervous system would be reached immediately (Redondo and Morris, 2011;
Tetzlaff et al., 2012). The STC hypothesis accounts for this timing issue; it asserts
that memory consolidation involves a set of mechanisms that can but do not have
to be triggered at a single moment in time. One of the supporting experiments for
this claim was that LTP was induced even during the inhibition of protein synthesis
(Frey and Morris, 1997).

According to the STC hypothesis, LTP occurs over the following steps after neurons
have fired sufficiently. First, early LTP is expressed, and the synapse is marked with
a local synaptic tag. Second, the PRP are synthesized and distributed. Third, these
proteins are captured by the tagged synapses which allow the stabilization of the
synaptic strength in the late LTP phase. The time course of synaptic consolidation
is also influenced by the neural network. More specifically, if there was a prior
activity of the neuron that has already upregulated the availability of PRPs at
a synapse, these proteins will be captured by local synaptic tags and ensure the
stabilization of the synaptic component of a new memory trace without the need to
produce proteins for the new activity. This suggests that neural activities from weak
stimulations can be consolidated if there is a prior presence of proteins. Conversely,
if neural activity that induces PRP synthesis occurs later after early LTP and tag
setting, stabilization of the synaptic strength will occur at this later time with the
temporal duration of the tag being the main determinant of the persistence of LTM.
This also suggests that role of the networks in consolidating weak and strong neural
activities that occur within a short time window.

4



2.2 Neuron Models

2.2.1 Leaky Integrate-and-Fire Model

Integrate-and-fire models (Gerstner and Kistler, 2002) are single-compartment neu-
ron models which follow the assumption that information in neurons is contained
in the occurrence spikes. The shape of the action potential is almost the same
among all neurons and does not carry information. Instead, action potentials are
considered as events. The simplest integrate-and-fire neuron model uses a linear
differential equation to describe the dynamics of the membrane potential V . Equa-
tion 2.1 uses conservation of the currents across the neuron membrane between an
external injected current I that models synaptic input, the leak current controlled
by the membrane resistance R, and the capacitive current formed by the membrane
insulation and charges giving rise to a membrane time constant τmem:

τmem
dV (t)

dt
= Vrev − V (t) + R · I(t) (2.1)

with Vrev being the reversal potential. Besides the differential equation, the second
ingredient for the integrate-and-fire model is a spiking mechanism defined by a
threshold ϑ for firing an action potential:

V (t(f)) = ϑ, (2.2)

after which the membrane potential resets to a fixed value Vr:

V (t(f)+) = Vr (2.3)

The main assumption of this model about the shape of the action potential and its
leak term coin its name, the leaky integrate-and-fire (LIF) model. It is a highly
simplified model that is accurate at generating spikes, but it also neglects many
features observed in biological neurons. If refractoriness is accounted for in the
LIF model through a refractory period tref , the performance of the model in spike
generation can be further improved (Gerstner and Kistler, 2002) as in the case of
the neuron model by Luboeinski and Tetzlaff (2021).

2.2.2 Adaptive Exponential Leaky Integrate-and-Fire Model

The adaptive exponential leaky integrate-and-fire (AdEx) model proposed by Brette
and Gerstner (2005) is a spiking neuron model with two variables, the membrane
potential V and the adaptation current Iadapt:

τmem
dV (t)

dt
= Vrev − V (t) + ∆T exp

(
V (t)− VT

∆T

)
− R · Iadapt(t) + R · I(t) (2.4)

τadapt
dIadapt(t)

dt
= a · (V (t)− Vrev)− Iadapt(t) (2.5)
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where τmem is the membrane time constant, Vrev is the reversal potential, ∆T is the
slope factor, VT is the threshold voltage, R is the membrane resistance, I is the
input current, τadapt is the time constant of the adaptation current, and a is the
subthreshold adaptation term.

In this model, the membrane potential is coupled with the adaptation current to give
rise to realistic neuron dynamics. More specifically, the exponential nonlinearity in
eq. (2.4) models the process of spike generation and upswing of the action potential.
The downswing of the action potential is modelled by discrete resets similar to
the LIF model. That is, the membrane potential integrates until a threshold ϑ is
reached, and a spike is elicited at t = tf . At this instant, the membrane potential
is reset to a fixed voltage Vr, and the adaptation current is incremented by a fixed
value b.

V (t = t(f)+) = Vr (2.6)

Iadapt(t = t(f)+) = Iadapt + b (2.7)

where b is the spike-triggered adaptation term. These hard resets in eq. (2.6) and
eq. (2.7) along with the differential equations in eq. (2.4) and eq. (2.5) give rise to
rich dynamics including adapting, bursting, delayed spike initiation, initial bursting,
fast spiking, and regular spiking (Brette and Gerstner, 2005).

2.3 Neuromorphic Hardware

The current general-purpose computers are designed to excel in a setting where the
algorithms can be specified absolutely and the symbols of the computation can be
assigned unambiguously (Douglas et al., 1995). For example in biological neural net-
works, the systems have to be translated to a mathematical form including the state
variables and parameters. Time should also be abstracted, and natural phenomena
such as noise must be specified. These computers use the digital representation
which generally means that they restore information in the form of bits. The ad-
vantages of computing in digital systems are the precise computation and the ease
of storage and display of results (Douglas et al., 1995).

However, the real world is less rigid, and the actual behavior of phenomena emerges
from a complex network of factors (Douglas et al., 1995). This possibly means that
real-world neural computations cannot be achieved using general-purpose digital
methods with the symbolic approach. The early vision of neuromorphic hardware
was to emulate the function and organization of biological neural networks using
analog electronic circuits fabricated using the complementary metal oxide semicon-
ductor (CMOS) technology. Unlike digital systems, analog circuits directly rely on
the physics of the CMOS circuits to obtain physical processes that behave like neu-
ral processes. The advantage of analog computing in this case lies in its efficiency;
instead of using many components for storage and digital clock cycles to execute
algorithms on digital computers, these would naturally arise out of the physical
processes in analog circuits (Douglas et al., 1995).
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2.3.1 BrainScaleS-2

BrainScaleS-2 is a mixed-signal neuromorphic computing platform, which means
that it uses both analog and digital circuits in its hardware architecture. The ar-
chitecture features an analog neuromorphic core that emulates neural dynamics at
1000-fold accelerated timescales compared to real time, thus promising accelerated
emulations of neural networks. Alongside is a digital circuit that ensures flexible
control, calculations, and plasticity (Pehle et al., 2022). BrainScaleS-2 encompasses
512 neuron circuits that can emulate a variety of dynamics observed in biological
neurons (Billaudelle et al., 2022). The physical design of the chip mainly consists
of 4 quadrants, and each quadrant encloses 128 silicon neurons. Neurons can form
synaptic connections through a synaptic crossbar with 256 rows and 128 columns.
In other words, each neuron can communicate by default with 256 different neurons
in a network.

In the analog core of BrainScaleS-2, the neuron circuits are designed based on the
AdEx model (Brette and Gerstner, 2005). Due to the flexibility of BrainScaleS-2
neuron circuit design and variety of circuit parameters, the neuron model can also
be simplified to the LIF model. Each neuron circuit can be configured individually
through 24 analog parameters using an on-chip digital-to-analog converter digital-
to-analog converter (DAC) with 10-bit resolution (Pehle et al., 2022). These analog
parameters control the potentials and conductances provided in equations 2.4 and
2.5. The general unit of measurement for all the analog states and parameters is
the least significant bits (LSB), which is the smallest weighted bit in the number
that represents that analog state or parameter. Eventually, these numbers map to
a voltage range but requires tuning.

On the other hand, BrainScaleS-2 features two digital control and plasticity proces-
sors, each referred to as plasticity processing unit (PPU), to ensure a flexible digital-
control architecture. The PPU can be used to implement programmable plasticity
rules, automatic on-chip calibration, parallel readout of analog observables for learn-
ing, and a variety of other use cases (Pehle et al., 2022). For the implementation
of the plasticity rules, these processors can read and write the digital state of the
neurons and synapses by means of single instruction, multiple data (SIMD) vector
extensions. The SIMD units can perform fixed-point and integer arithmetic opera-
tions on vectors of either 128 8-bit entries or 64 16-bit entries. For carrying out any
experiment on BrainScaleS-2, a field-programmable gate array (FPGA) is used for
real-time control, specifically buffering of external stimuli such as spikes and output
data (Pehle et al., 2022).

The analog traces of the neuron dynamics can be sampled by means of a mem-
brane analog-to-digital converter (MADC) and a column-parallel analog-to-digital
converter (CADC). The MADC has a higher sampling resolution compared to the
CADC, which makes the MADC more suitable in initial experiments for tuning the
neuron parameters. However, the CADC provides a faster alternative that can be
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used in plasticity rules run on the PPU.

BrainScaleS-2 supports correlation-based plasticity rules such as STDP through its
built-in analog sensor circuits within each synapse (Friedmann et al., 2016). Addi-
tionally, the CADC together with the PPU facilitate the implementation of differ-
ent plasticity rules on BrainScaleS-2. For example, several versions of STDP-based
learning rules were implemented (Wunderlich et al., 2019), as well as learning rules
that include structural plasticity with a form of stochasticity (Billaudelle et al.,
2021). At a higher level of learning, BrainScaleS-2 has been proven useful in car-
rying out optimizations for learning to learn scenarios for spiking neural networks
through exploiting the accelerated timescales compared to biological time (Bohnst-
ingl et al., 2019).

2.4 Stochastic Rounding

Rounding is a function that maps a given number to another number while keeping
the resulting number close to its original value. Rounding is needed to make numbers
simpler and more usable, but also to represent numbers in finite precision number
systems. The most common rounding function is the round-to-nearest (RN) mode,
which as its name suggests, rounds the given number to a nearest value that can be
represented by the system at hand (Croci et al., 2022). The RN rule is deterministic,
meaning that the output of the rounding function depends only on the given number
to be rounded, and repeating the rounding yields the same result (Croci et al., 2022).

In attempt to reduce the accumulation of round-off errors produced by the RN mode,
another rounding mode referred to as stochastic rounding (SR) was first proposed
in an abstract in 1949 (Croci et al., 2022; Forsythe, 1950). In the SR mode, a
given number is mapped to either of the two nearest representable numbers with
a probability that depends on the distances of the given number to the nearest
numbers. Particularly, let F be a subset of R and fl be a rounding operator that
maps a real number x ∈ R to one of the two nearest numbers in F. The nearest
numbers can be defined as (Croci et al., 2022):

⌊x⌋ = max{y ∈ F : y ≤ x} (2.8)

⌈x⌉ = min{y ∈ F : y ≥ x} (2.9)

If x ∈ F, then ⌊x⌋ = ⌈x⌉ = x, and if x ̸∈ F, then the 2 numbers ⌊x⌋ and ⌈x⌉ are
adjacent in F with a distance of ϵM referred to as the machine epsilon. In the latter
case, SR is defined as (Croci et al., 2022):

fl(x) =

{
⌈x⌉ with probability q(x)

⌊x⌋ with probability 1− q(x)
(2.10)

where q(x) is set to:

q(x) =
x− ⌊x⌋
⌈x⌉ − ⌊x⌋

=
x− ⌊x⌋

ϵM
(2.11)
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This form of SR is an interesting rounding mode from a numerical point of view.
Particularly, SR ensures zero-mean rounding errors and produces smaller errors
compared to RN especially in situations where RN produces rounding errors of
one sign (Croci et al., 2022). More importantly, SR is immune to stagnation, a
phenomenon where a sequence of small updates relative to large quantities is lost
as these updates cannot be represented by the computing system. To demonstrate
stagnation, suppose we want to compute 1+0.1 in 1-digit base-10 arithmetic (Croci
et al., 2022). With RN, fl(1 + 0.1) = 1; this result is fixed and the error is always
0.1. Using SR, we define fl(1+0.1) = 1 with a probability of 0.9, and fl(1+0.1) = 2
with a probability of 0.1 such that the expected result is 1 ∗ 0.9 + 2 ∗ 0.1 = 1.1. In
other words, using this rounding mode reduces on average the accumulated error,
especially if there are other computations that depend on this rounding.

Despite being proposed earlier, the interest in SR is currently expanding as it proved
useful mainly in applications related to machine learning and solving ordinary dif-
ferential equations on finite precision systems. For example, Hopkins et al. (2020)
demonstrated the importance of rounding in solving ordinary differential equations
in neuroscience by using SR to produce accurate spike timings in the Izhikevich
neuron model. Other useful domains of application of SR include numerical linear
algebra, partial differential equations, quantum mechanics, and quantum comput-
ing (Croci et al., 2022). A primary consideration worth mentioning is the energy-
efficiency in all areas of computing, which caused the shift towards reduced precision
arithmetic and the need to overcome the resulting drawbacks using SR.

When considering replacing RN with SR, it is crucial to consider the properties
of RN that are not necessarily preserved in SR, and whether the computations of
interest depend on these properties. There are several properties listed in (Croci
et al., 2022), but we only focus on the properties that would be of concern in our
application:

1. For SR, if x ∈ F , then fl(|x|) ̸= |fl(x)| and fl(−x) ̸= −fl(x).

2. SR is not monotonic, meaning that x ≤ y does not necessarily imply that
fl(x) ≤ fl(y).
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Methods

In this section, we describe the methods for emulating a single synapse that obeys
the STC plasticity rule on BrainScaleS-2. We first introduce the theoretical model
that we rely on from Luboeinski and Tetzlaff (2021) and illustrate how this model
can be configured on the circuits of BrainScaleS-2. We then describe in details the
hardware emulation of the neuron dynamics, calcium dynamics, and STC plasticity
rule.

3.1 Model and Experiment Setup

3.1.1 Single-Synapse Model

In this section, we describe the biological mechanisms governing the used synaptic
model depicted in figure 3.1 which incorporates the calcium dynamics according to
the STC hypothesis (Luboeinski and Tetzlaff, 2021). In this model, a presynaptic
neuron j is connected via a synapse to a postsynaptic neuron i. Spikes arriving
from neuron j at times tnj along with the initial total synaptic weight wji induce
a change in the postsynaptic membrane potential Vi. If the membrane potential
exceeds a threshold, a postsynaptic spike is elicited at time tmi . The presynaptic and
postsynaptic spikes drive the postsynaptic calcium concentration cji which induces
early-phase plasticity, quantified by the early-phase weight hji. In case the synapse
is tagged, and the proteins synthesized pi during the early phase are sufficient, late-
phase plasticity is induced, quantified by the late-phase weight zji. Consequently,
the total synaptic weight wji is represented by a weighted sum of the early-phase
weight hji and the late-phase weight zji.

All equations governing the single-synapse plasticity are adopted from Luboeinski
and Tetzlaff (2021). The dynamics of the postsynaptic membrane potential follow
the LIF neuron model:

τmem
dVi(t)

dt
= Vrev − Vi(t) + R · (Ibg(t) + Istim(t) + Isyn,i(t)) (3.1)

with reversal potential Vrev, membrane time constant τmem, membrane resistance R,
external background current Ibg(t), external stimulus current Istim(t), and synaptic
current Isyn,i(t). The synaptic current Isyn is defined as:

Isyn,i(t) =
∑
j

∑
tkj

wji · exp
(
−(t− tkj − tax,delay)/τsyn

)
(3.2)

with axonal time delay tax,delay and synaptic time constant τsyn. For a single synapse,
the background current and the stimulation current are set to zero. The membrane
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Figure 3.1: The synaptic model integrating various mechanisms of calcium-dependent
synaptic plasticity and the STC hypothesis. Modified from Luboeinski and Tetzlaff (2021).

potential for the single synapse thus reduces to eq. (3.3).

τmem
dVi(t)

dt
= Vrev − Vi(t) + R · Isyn,i(t) (3.3)

In the presence of synaptic input, if the membrane potential V exceeds a threshold
potential Vth, a spike is elicited, and V is set to a reset potential Vreset for a refractory
period tref .

The calcium dynamics follow eq. (3.4) with the calcium time constant τc, the contri-
bution of presynaptic spikes cpre, the contribution of postsynaptic spikes cpost, and
the delay of calcium concentration triggered by presynaptic spikes tc,delay.

dcji(t)

dt
= −cji(t)

τc
+ cpre

∑
n

δ(t− tnj − tc,delay) + cpost
∑
m

δ(t− tmi ), (3.4)

The dynamics of the early-phase weight are governed by eq. (3.5) with Θ[.] being
the Heaviside function and τh being a time constant. The first term of eq. (3.5)
describes a relaxation of the early-phase weight to its initial value h0, the second
term describes early-phase LTP with rate γp for calcium concentration above the
potentiation threshold θp, and the third term describes early-phase LTD with rate
γd for calcium concentration above the depression threshold θd.

τh
dhji(t)

dt
= 0.1 (h0 − hji(t)) + γp(1 nC− hji(t)) ·Θ[cji(t)− θp] (3.5)

− γdhji(t) ·Θ[cji(t)− θd] + ξ(t),

The term ξ(t) =
√
τh · (Θ[cji(t)− θp] + Θ[cji(t)− θd]) σpl Γ(t) describes the calcium-

dependent noise-driven fluctuations with standard deviation σpl, and Gaussian white
noise Γ(t) with mean zero and variance 1

∆t
, where ∆t is the time step for numerical

computations. Knowing the early-phase weight, the protein amount is updated
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using eq. (3.6) where α is the protein synthesis rate and θpro is the protein synthesis
threshold.

τp
dpi(t)

dt
= −pi(t) + α Θ

[(∑
j

|hji(t)− h0|

)
− θpro

]
(3.6)

The dynamics of the late-phase weight depend on the protein amount, early-phase
weight, and a tagging threshold θtag.

τz
dzji(t)

dt
= pi(t) · (1− zji(t)) ·Θ[(hji(t)− h0)− θtag] (3.7)

− pi(t) · (zji + 0.5) ·Θ[(h0 − hji(t))− θtag]

Finally, the total synaptic weight is given by:

wji(t) = hji(t) + h0 · zji(t) (3.8)

For the rest of the report, we drop all the indices of the model variables, j and i,
corresponding to the presynaptic and postsynaptic neurons respectively, since we
only deal with a single synapse in this work. The parameters of the model are listed
extensively in table 3.1.

3.1.2 Linking STC Variables to BrainScaleS-2

Emulation versus Simulation

In computational neuroscience, computer simulations are usually carried out for de-
riving and experimenting with neuron models, synapse models, and neural networks.
In a simulation, the dynamics of the physical system under consideration is mim-
icked using another physical system that originally has different dynamics from the
physical system under study. More specifically, in a simulation of the STC model,
the differential equations that govern the neuron and synapse dynamics of interest
are numerically computed using a computer that operates according to an architec-
ture that does not resemble the neuron’s architecture, for example a standard von
Neumann architecture. In an emulation, on the other hand, a physical system that
resembles the one under study is used to mimic the latter system, thus achieving
efficient computing. Here, we emulate a single synapse that follows the STC model
described in section 3.1.1 on BrainScaleS-2 whose silicon neurons follow the AdEx
model.

STC Variables on BrainScaleS-2

The analog core of BrainScaleS-2, primarily consisting of neurons and synapses, al-
lows the emulation of the neuron dynamics, namely the membrane potential V and
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Symbol Value Description

∆t 0.2 ms Timestep of numerical integration

tend 8 hours Total simulation duration

τmem 10 ms Membrane time constant

τsyn 5 ms Synaptic time constant

tax,delay 3 ms Axonal spike delay

tref 2 ms Refractory period

R 10 MΩ Membrane resistance

Vrev −65 mV Reversal potential

Vreset −70 mV Reset potential

Vth −55 mV Threshold potential for spiking

h0 0.420 075 nC Initial early-phase weight

tc,delay 0.0188 s
Delay of postsynaptic calcium influx after

presynaptic spike

cpre 1 Presynaptic calcium contribution

cpost 0.2758 Postsynaptic calcium contribution

τc 0.0488 s Calcium time constant

τp 60 min Protein time constant

τz 60 min Late-phase time constant

γp 1645.6 Potentiation rate

γd 313.1 Depression rate

θp 3 Calcium threshold for potentiation

θd 1.2 Calcium threshold for depression

σpl 0.290 436 nC s−1/2 Standard deviation for plasticity
fluctuations

α 1 Protein synthesis rate

θpro 0.210 037 nC Protein synthesis threshold

θtag 0.084 014 9 nC Tagging threshold

Table 3.1: Neuron and synapse model parameters of the simulation scheme. Adapted
from Luboeinski and Tetzlaff (2021).
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the synaptic current Isyn, with spikes injected as digital events. The calcium dy-
namics c are directly dependent on the presynaptic and postsynaptic spikes with a
low time constant in the order of milliseconds that allows the calcium concentration
to decay quickly. Therefore, the calcium dynamics should be linked to the analog
core of BrainScaleS-2 where spikes are injected. To do that, we exploit the adap-
tation circuit that was incorporated into BrainScaleS-2 to apply the AdEx model.
Specifically, we use the adaptation current whose dynamics greatly resemble those of
calcium to emulate the calcium dynamics. The rest of the STC variables have to be
computed using the PPU since they have high time constants in the order of seconds
and hours, and their dynamics are not directly tied to the neuron dynamics. These
variables are explicitly the early-phase weight h, protein amount p, late-phase weight
z, and total synaptic weight w. Since these variables rely on the calcium concentra-
tion, the latter should be sampled by the CADC at a predefined sampling period
δt to be used for weight updates. Finally, the total synaptic weight w is mapped to
the hardware weight of the synaptic projection to proceed the experiment with new
synaptic weights.

3.1.3 Experiment Configuration

Ideally, a single synapse is formed by two neurons, a presynaptic neuron and a post-
synaptic neuron. However, for emulating a single synapse on BrainScaleS-2, one
silicon neuron acting as a postsynaptic neuron is configured rather than two. This
is because the membrane potential and the synaptic current of only the postsynap-
tic neuron will be affected by the presynaptic spikes. Therefore, a spike source is
configured that plays the role of the presynaptic neuron which would elicit spikes
to a configured postsynaptic neuron. However, for the STC rule, additional require-
ments apply. The adaptation trace generated by the postsynaptic neuron depends
on the postsynaptic spikes only, but the calcium trace depends on the presynaptic
and postsynaptic spikes. To resolve this, we exploit one of the supported modes
by the neurons of BrainScaleS-2 referred to as the “bypass mode”. In this mode,
presynaptic spikes are directly translated to postsynaptic spikes with a negligible
time delay. We use this mode in another configured neuron connected to the same
spike source, referred to as the “parrot neuron”, which ensures that each presynaptic
spike induces one and only one postsynaptic spike at almost the same instant. In
this way, we mirror the presynaptic spikes and produce an adaptation trace from
the postsynaptic spikes of the parrot neuron. The required calcium trace is thus
the weighted sum of the two adaptation traces. Calcium is then sampled regu-
larly from the adaptation trace to update the early-phase weight, protein amount,
late-phase weight, and total synaptic weight. Finally, the computed total synaptic
weight is mapped to the hardware weight that is used to define the projection of the
presynaptic neuron to the postsynaptic neuron.

14



(1)
Spike Source

Bypass
projection

Presynaptic spikes

Projection Postsynaptic
Neuron

(2)
Postsynaptic spikes

Synaptic
weight

Involved
hardware

Parrot
Neuron

Bypass spikes

Presynaptic calcium trace

(2)

Postsynaptic calcium trace

Calcium
samples

(3)

STC
variables

(4)

(1) FPGA
(2) Analog core
(3) CADC
(4) PPU

Figure 3.2: Experimental setup for emulating a single synapse following the STC plas-
ticity rule on BrainScaleS-2. A spike source is used to generate presynaptic spikes. These
are forwarded to the postsynaptic neuron via a projection whose weight update obeys the
STC plasticity rule. These spikes are injected by the FPGA. The same presynaptic spikes
are mirrored to the parrot neuron using a bypass projection to emulate the presynaptic
calcium dynamics. The bypass mode is supported by the neurons of BrainScaleS-2 which
ensures that presynaptic spikes are immediately translated to postsynaptic spikes. The
neuron and calcium dynamics are emulated in the analog core of BrainScaleS-2. The
weighted sum of the adaptation traces of the postsynaptic and parrot neurons represent
the calcium trace. Calcium samples obtained by the CADC are then used to calculate the
STC variables using the PPU including the synaptic weight which is used to update the
weight of the projection.

3.1.4 Hardware Constraints and Limitations

For emulating the STC plasticity rule on BrainScaleS-2, there are several constraints
to be accounted for:

1. PPU period: this period accounts for the time required by the PPU to sample
from the analog traces and do the necessary calculations. In our application,
we need to sample from the adaptation traces, calculate the state variables,
update the synaptic weights, and write the final weight to the synaptic pro-
jection. The timestep used in the model simulation (Luboeinski and Tetzlaff,
2021) was 0.2ms which translates to 0.2 µs when accounting for the acceler-
ation factor. However, we already demonstrated in the lab rotation (Atoui,
2024) that this is not enough for the PPU, and we suggested using slower

15



time updates that must not exceed 100µs and preferably remain below 50 µs
to ensure the expected behavior of the stimulation protocols.

2. Using integers instead of floats: The PPU relies primarily on 8-bit and 16-
bit integers, whereas the simulations were performed using double-precision
arithmetic (Luboeinski and Tetzlaff, 2021). Though the PPU also supports
floating-point calculations, we prioritize using 8-bit arithmetic for speed pur-
poses as the STC plasticity rule imposes many calculations and the PPU pe-
riod should remain low. This necessitates converting the STC variables to a
suitable range, but also imposes truncation errors.

3. Floating-point operations: besides representing the STC variables as integers,
the operations of these variables with STC parameters that are mostly decimal
numbers are time-expensive, which increase the PPU period. This has to be
resolved by further approximations of the STC parameters by writing them as
fractions and performing integer operations only.

4. Large time constants: these lead to slow changes of STC variables such as the
protein amount, the late-phase weight, and the steady-state term of the early-
phase weight that cannot be represented by reduced-precision arithmetic. The
problem arises due to the small range of 8-bit integers which can only represent
numbers between 0 and 255. This leads to stagnation since the changes in the
state variables and synaptic weights are small and cannot be represented by
8-bit integers. To resolve this, we suggest using a stochastic-update framework.

Aside from these constraints, there exist further limitations for emulating STC on
BrainScaleS-2:

1. The postsynaptic calcium influx delay arising from the presynaptic spikes,
described in eq. (3.4) as tc,delay will not be implemented. The reason is that
the calcium traces are generated by the adaptation traces whose circuits are
designed to increment the adaptation term at the spike time with no possibility
for a predefined delay.

2. The axonal spike delay will not be implemented as the circuits for emulating
neuron dynamics do not account for this delay.

3. The noise fluctuations of calcium during potentiation and depression that af-
fect the early-phase weight, referred to as ξ(t) described in eq. (3.5), will not
be implemented as the implementation is computationally expensive.

3.2 Emulating Neuron Dynamics

To adjust the neuron dynamics to a desired behavior, each silicon neuron in BrainScaleS-
2 has 24 uniquely tuneable analog parameters (Pehle et al., 2022). For the LIF
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neuron model, only 15 analog parameters out of the 24 parameters are relevant.
Here, it is useful to note that the differential equation that governs the neural dy-
namics is invariant to some parameters. For example, the biological reset, reversal,
and threshold membrane potentials are −70mV, −65mV and −55mV respectively.
In neuromorphic hardware, the priority is to optimize the design to the technology
used in the manufacturing process, and this includes the design choices for the state
variables such as the membrane and adaptation potentials. Eventually, the neural
network behavior relies on spikes as the mode of communication between neurons,
and the biological membrane potentials can be mapped to different hardware mem-
brane potentials that can generate spikes in a similar fashion to the biological neuron.
The relevant neuron parameters for our application that are directly accessible to
the users of BrainScaleS-2 are listed below:

• leak v leak: leak membrane potential

• leak i bias: current that controls membrane resistance

• threshold v threshold: spiking threshold potential

• reset v reset: reset membrane potential after a spike

• membrane capacitance capacitance: membrane capacitance

• refractory period refractory time: refractory period after a spike

Additionally, there are digital controls and analog parameters that control the synap-
tic current. The typical procedure followed here is to choose the highest value for
the membrane capacitance to minimize noise on the membrane, as the membrane
acts as a lowpass RC filter. Accordingly, the leak conductance can be calibrated to
obtain the desired membrane time constant τm. The reset, leak, and threshold po-
tentials are tuned to achieve a linear circuit operation with Vreset < Vleak < Vthreshold.
The most important consideration here is the integration from the leak potential to
the threshold potential in the LIF model that occurs in the presence of postsynaptic
potentials. This integration should be mapped to that in the biological model to
produce the same number of spikes at the same time instants. A calibration of the
threshold potential and the synaptic input current by analog parameters is thus
required to obtain the desired spikes.

Practically, the weight update will not affect the performance of the single-synapse
emulation since postsynaptic spikes occur only for the strong tetanic stimulation at
a very low rate (Atoui, 2024). Therefore, the calibration of the threshold potential
and synaptic input will not affect the emulation of the STC plasticity rule on a single
synapse on BrainScaleS-2. For time constraints in this thesis, we chose to postpone
this step for later stages where the weight update on hardware is required for the
network emulation and affects the network’s performance.
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3.3 Emulating Calcium Dynamics

The neuron circuits of BrainScaleS-2 were designed and implemented in a way that
ensures a wide flexibility in their usage, and this is made accessible to the user
through many parameters that can be tailored to the application at hand. To emu-
late the calcium dynamics for the STC rule, we need a calcium trace that depends
on the presynaptic and postsynaptic spikes as in equation eq. (3.4) without affecting
the membrane potential and the neuron dynamics. More specifically, a circuit that
implements the exponential kernel at each spike is required, and this can be achieved
by the circuit of the adaptation current whose dynamics provided in eq. (2.5) can
be easily compared to the calcium dynamics. In the following, we will describe how
the calcium trace was obtained using the adaptation circuit of BrainScaleS-2 while
achieving the same biological outcome as the STC model.

3.3.1 Tuning Hardware Parameters

To understand how the calcium trace can be implemented by the adaptation circuit,
we can refer to the AdEx model and its parameters. The subthreshold adaptation
strength a couples the adaptation current Iadapt with the membrane potential. This is
not required in the calcium dynamics in equation 3.4 since the calcium concentration
does not depend on the membrane potential. The time constant τadapt is mapped to
the calcium time constant τc. The spike-triggered increment b controls the increment
of the adaptation current at each spike which should be mapped to the contributions
of presynaptic and postsynaptic spikes cpre and cpost respectively in the calcium trace.
An important consideration is that b should also be tuned to ensure a high dynamic
range with a linear operation of the circuit. Here, we mention the main parameters
that allowed decoupling the adaptation current from the membrane potential and
tuning its parameters to resemble the biological calcium trace in both, the parrot
and postsynaptic neurons:

• adaptation enable pulse: this parameter enables the usage of the adapta-
tion circuit, set to True as we will rely on the adaptation term of the AdEx
model to emulate the calcium dynamics.

• adaptation enable: this parameter applies the adaptation current to the dy-
namics of the membrane potential of the neuron, set to False so as to decouple
the adaptation trace from the membrane potential as the calcium concentra-
tion should not directly affect the neuron dynamics.

• adaptation i bias tau: this is a conductance parameter that controls the
time constant of the adaptation term. Note that the calcium time constant
should be divided by the acceleration factor, i.e. 1000, so this parameter is
mapped to τc = 48.8 µs. It is fine-tuned according to the chip and interaction
with other parameters.

• adaptation i bias a: this is a conductance parameter that controls the strength

18



of the subthreshold adaptation term a in eq. (2.5), set to 0 since the calcium
concentration does not depend on the membrane potential.

• adaptation i bias b: this is a conductance parameter that controls the spike-
triggered adaptation term b in eq. (2.5). In our application, it controls the
increment in the calcium trace at each spike. This parameter is fine-tuned to
achieve an adequate dynamic range of calcium. It should not be too small so
that noise does not affect small calcium readings, but also not too large so
that the calcium region of interest remains within the linear operating region
to map thresholds linearly as will be demonstrated later (Billaudelle, 2022).
It is fine-tuned according to the chip and interaction with other parameters.

• adaptation v ref : this is the baseline voltage of the adaptation term, it is
selected (Billaudelle, 2022) and fine-tuned to have the adaptation term operate
in a linear range to obtain a smooth calcium trace. It is fine-tuned according
to the chip and interaction with other parameters.

3.3.2 Obtaining Calcium Traces

For tuning the calcium parameters listed in section 3.3.1 and comparing against the
true biological calcium trace, we rely on the MADC. Although the MADC will not
be used for sampling the calcium traces when running the STC rule on BrainScaleS-
2, it has a higher sampling rate and a finer resolution compared to the CADC.
Therefore, the full adaptation traces can be retrieved, and the parameters can be
fine-tuned to match the true calcium trace. We use the experimental setup described
in fig. 3.2 and a stimulation scheme of Poisson spikes at 2 frequencies, 20 kHz and
100 kHz since these values match the frequencies used in the stimulation protocols
that would be described in the following section.

3.3.3 Sampling Calcium Traces

While running the STC plasticity rule, the calcium traces will be sampled using the
CADC at lower sampling rate and resolution compared to the MADC. Therefore, it
is essential to look at the retrieved samples and compare them to the true biological
traces to check beforehand if the experimental samples can track the true traces and
fine-tune the parameters if necessary. Similar to section 3.3.2, we use the experi-
mental setup described in fig. 3.2 and a stimulation scheme of Poisson spikes at the
2 frequencies, 20 kHz and 100 kHz. Here we also note from previous experiments on
BrainScaleS-2 that there exists a variability in the sampling times in the order of
microseconds that might affect the samples relative to the expected traces.
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3.3.4 Mapping Calcium Thresholds

Referring to the early-phase weight equation eq. (3.5), the calcium concentration is
used in a form of thresholds for updating the early-phase weight. This provides the
advantage of having to map only the potentiation and depression thresholds without
the need to map the full calcium range. In fact, mapping the full calcium range is
challenging as the adaptation circuit becomes nonlinear for high calcium values, and
noise can interfere with low calcium values. Here we describe the approach used to
map the two thresholds θp and θd.

Calcium Mapping Protocol

It is useful to define a stimulation protocol for calcium mapping that we can under-
stand its behavior beforehand and design according to our specifications. For that,
we use spikes with a fixed interspike interval (ISI). Here we use lowercase letter c
for biological calcium and uppercase C for calcium on hardware with LSB units.
For simplicity, we now only use the calcium concentration arising from presynaptic
spikes which reduces equation 3.4 to:

dc(t)

dt
= −c(t)

τc
+ cpre

∑
n

δ(t− tn) (3.9)

The analytical solution for eq. (3.9) is:

c(t) = cpre

N−1∑
n=0

exp (−t− tn

τc
) ·Θ(t− tn) (3.10)

Now we consider spikes separated by a fixed ISI, τisi, so eq. (3.10) can be further
simplified to:

c(t) =
N−1∑
n=0

exp (−t− n · τisi
τc

) ·Θ(t− n · τisi) (3.11)

For t ≥ tN , and using the sum of a geometric sequence, the calcium concentration
can be written as:

c(t) =
N−1∑
n=0

exp (−t− n · τisi
τc

) = exp (− t

τc
) ·

N−1∑
n=0

(exp (
τisi
τc

))n

= exp (− t

τc
) ·

exp (N ·τisi
τc

)− 1

exp ( τisi
τc
)− 1

(3.12)

At the time of the (N − 1)th spike,

c(t = (N − 1) · τisi) =
exp ( τisi

τc
)− exp (−(N−1)·τisi

τc
)

exp ( τisi
τc
)− 1

(3.13)
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which has an upper bound for a large N

cmax = c(t = (N − 1) · τisi) −→
exp ( τisi

τc
)

exp ( τisi
τc
)− 1

(3.14)

For our mapping protocol, the maximum calcium concentration cmax reached should
be within the linearity region. The biological calcium concentration can be at-
tributed to the number of spike-triggered increments performed by the adaptation
circuit. Using the design and measurement curves in (Billaudelle, 2022) as an av-
erage among different chips, we can set cmax = 5, i.e. the adaptation term can be
incremented by 5 without leaving the linear operating region.

Using eq. (3.14), τisi can be computed as:

τisi = τc · ln (1 +
1

cmax − 1
), (3.15)

which amounts to 10.9 µs with cmax = 5 and τc = 0.0488 ms.

To collect samples that cover the calcium range up to cmax = 5, we use a stimulation
protocol for a predefined total duration. The duration is divided into periods where
the first period includes only 1 spike, and the number of spikes increases at a rate of
1 spike/period (see figure 3.3). We use such a stimulation protocol to have a wide
range of biological calcium values and account for unexpected hardware behavior.
Within each period, there will be an interval of spikes and an interval with no spikes
where the calcium concentration decays. To avoid the expected error from the
variability in the sampling times around the rising edges of spikes, we only consider
the samples that are in the decaying interval and leave out the samples taken within
the interval of spikes.

Linear Regression

The approximately linear operation of the circuit responsible for emulating the cal-
cium dynamics up to cmax = 5 allows us to formulate a simple linear regression
problem to map the calcium potentiation and depression thresholds, θp = 3 and
θd = 1.2 respectively, to the hardware readings. Specifically, let Ch be the hardware
readings of the analog circuit, Cb be the biological calcium concentration, β0 be
the regression coefficient, and β1 be the regression constant which is the calcium
baseline:

Ch = β0 · Cb + β1. (3.16)

β0 and β1 can be estimated using the method of least-squares estimation that min-
imizes the squared discrepancies between the observed data Ch and the expected
data Cb (Hastie et al., 2001). Using the estimated parameters, we get:

θp(emulation) = β̂0 · θp (3.17)

and
θd(emulation) = β̂0 · θd (3.18)

21



Input
spikes

PPU
samples

Period = 1 ms Interspike interval = 10.9 us

Duration = 100 ms

Use samples
in this interval

Leave out samples
in this interval

Figure 3.3: Stimulation protocol used for mapping calcium thresholds. The full duration
of the protocol is divided into multiple periods. Each period consists of injecting spikes
separated by a fixed ISI starting with 1 spike and increasing at a rate of 1 spike/period.
PPU samples that are within the interval of spike injection are left-out due to possible er-
rors from the variability in the sampling times. PPU samples that are within the decaying
interval of calcium are selected for threshold mapping. The timing in the figure is not up
to scale.

with the calcium baseline being measured before every run of the plasticity rule and
subtracted from the measured calcium. It is worthy to note the variability of these
parameters between different neurons on the same chip and between different chips,
so this mapping should be repeated whenever we use different neurons or chips.

3.4 Emulating the Synaptic Plasticity Rule

3.4.1 Plasticity Experiments

To model the different forms of plasticity that could occur in a single synapse,
we use the standard stimulation protocols that are generally adopted in the lit-
erature. These protocols vary by strength and frequency as described in fig. 3.4.
Tetanic (high-frequency) stimulations induce LTP due to the high calcium concen-
tration released at the synapse while low-frequency stimulations induce LTD due
to the moderate calcium concentration released at the synapse. Furthemore, strong
stimulations cause the synapse to be marked by a local synaptic tag and the syn-
thesis of a sufficient amount of PRPs necessary for late-phase LTM whereas weak
stimulations only induce synaptic tagging necessary for early LTM . Consequently,
the strong tetanic stimulation (STET) protocol induces early-phase and late-phase
LTP whereas weak tetanic stimulation (WTET) protocol induces only early-phase
LTP. On the other hand, strong low-frequency stimulation (SLFS) protocol induces
early-phase and late-phase LTD whereas weak low-frequency stimulation (WLFS)
protocol induces only early-phase LTD.
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STET fstim = 100 kHz
tstim = 1 ms tbreak = 600 ms

x 3

WTET fstim = 100 kHz
tstim = 0.2 ms

x 1

SLFS fstim = 20 kHz
tstim = 0.15 ms tbreak = 1 ms

x 900

WLFS fstim = 1 kHz
tstim = 900 ms

x 1

tend = 28.8 s

Figure 3.4: Standard plasticity protocols for the induction of early-phase and late-phase
synaptic potentiation and depression. Reproduced from supplementary information of
Luboeinski and Tetzlaff (2021) to match the timescale of BrainScaleS-2.

3.4.2 Mapping Biological Parameters to BrainScaleS-2

This step is needed since only integers will be used in the STC emulation on
BrainScaleS-2 contrary to the original model defined in (Luboeinski and Tetzlaff,
2021) where decimal numbers and double precision arithmetic are adopted for the
parameters and variables respectively. All the neuron and synapse parameter values
that are used in the emulation scheme are summarized in table 3.2. In this section,
we explain in detail our mapping choices.

Early-phase weight

Referring to eq. (3.5), the value of the early-phase weight h ranges between a
minimum of 0 nC and a maximum of 1 nC. Since we’ll be using an 8-bit un-
signed integer for the emulation of h, the maximum value of 1 can be mapped
to 28 − 1 = 255. The resolution of h is thus 1 nC

255
, and h0 can be mapped to

0.420 075 nC · 255 LSB/nC = 107LSB. The potentiation, depression, and steady-
state factors, γp, γd, and 0.1 respectively, are held constant as they are unitless
multiplicative factors of the time constant τh. On the other hand, τh is divided by
the acceleration factor of 1000. The potentiation and depression calcium thresh-
olds, θp and θd respectively, are mapped to the range of calcium as per the methods
described in section 3.3.4, and the resulting values expressed in units of LSB and
presented in section 4.1.3 are used.
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Protein amount

The protein amount p will be represented as an 8-bit unsigned integer with range 0
till 255. Referring to eq. (3.6), the time constant τp is divided by the acceleration
factor of 1000, and the protein synthesis threshold θpro is mapped to the range of h
which yields θpro = 0.210 037 · 255 = 54LSB. To map the protein synthesis rate α,
we can look at the solution of the differential equation. When the protein synthesis
condition is satisfied, eq. (3.6) is expressed as:

τp
dp(t)

dt
= −p(t) + α, (3.19)

whose solution with an initial amount of protein p0 can be expressed as:

p(t) = α + (p0 − α) exp(− t

τp
), (3.20)

which has a limit of α as t −→ ∞. To maximize the dynamic range of the protein
amount on BrainScaleS-2, we choose αhw = 255.

Late-phase weight

Referring to eq. (3.7), the late-phase weight z ranges between −0.5 and 1, so we use
a signed 8-bit integer to represent z. To ensure balanced stepsize for potentiation
and depression, we map z = 1 to 127, z = 0.5 to 64, and z = −0.5 to −64 so the
resolution is 1

127
. The time constant τz is divided by the acceleration factor 1000.

The tagging threshold θtag is mapped to the range of h, so θtag = 0.0840149·255 = 21
LSB. Finally, the protein amount in the equation is normalized by 255.

Total synaptic weight

The model by Luboeinski and Tetzlaff (2021) models plasticity for excitatory synapses
only, so the total synaptic weight is represented by an 8-bit unsigned integer with a
range of 0 to 255. Referring to eq. (3.8), the term h0 is used in its normalized form.
To be able to add the early-phase weight h and the late-phase weight z, they should
have the same resolution, so the late-phase weight is multiplied by a factor of 2.
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Symbol Simulation Value Emulation Value Remarks on Mapping

∆tV 0.2ms 0
Continuous-time emulation

of neuron dynamics

∆tC 0.2ms 0
Continuous-time emulation

of calcium dynamics

∆tweights 0.2ms 50µs Acceleration factor,
additional time for PPU

tend 8 hours 28.8 s Acceleration factor

τmem 10ms 10µs Acceleration factor

τsyn 5ms 5 µs Acceleration factor

tax,delay 3ms N/A Limitation of neuron circuit

tref 2ms 2 µs Acceleration factor

R 10MΩ 4MΩ Circuit operation convenience

Vrev −65mV 70 LSB Circuit operation convenience

Vreset −70mV 65 LSB Circuit operation convenience

Vth −55mV 85 LSB Circuit operation convenience

h0 0.420 075 nC 107 LSB Mapping to integers

tc,delay 0.0188 s N/A Limitation of neuron circuit

cpre 1 1 Multiplicative factor

cpost 0.2758 0.2758 Multiplicative factor

τc 0.0488 s 0.0488ms Acceleration factor

τp 3600 s 3600ms Acceleration factor

τz 3600 s 3600ms Acceleration factor

γp 1645.6 1645.6 Multiplicative factor

γd 313.1 313.1 Multiplicative factor

θp 3 52* Experimental mapping

θd 1.2 20* Experimental mapping

σpl 0.290 436 nC s−1/2 N/A Computational convenience

α 1 255 Mapping to integers

θpro 0.210 037 nC 54 LSB Mapping to integers

θtag 0.084 014 9 nC 21 LSB Mapping to integers

Table 3.2: Neuron and synapse model parameters for simulation versus emulation
schemes. The simulation values are adapted from Luboeinski and Tetzlaff (2021). The
neuron membrane potential and calcium concentration are continuous-time signals emu-
lated on the analog core. The parameters concerned with time dynamics are divided by
the acceleration factor 1000. The multiplicative factors are kept constant. The thresholds
and initial or steady-state values are mapped to the ranges of their corresponding vari-
ables. The LSB units are units of measurement of the CADC. Parameters that are not
accounted for in the emulation are referred to as not applicable (N/A). Parameters with
(*) are chip-dependent.
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3.4.3 Implementing the Plasticity Rule

Solving the Differential Equations

To solve the differential equations of h, p, and z in the plasticity kernel, we use
the explicit Euler method to update the STC variables (Kong et al., 2021). More

specifically, let
dy(t)

dt
= F (t, y) be a first-order differential equation. The linear

approximation of y(t) at tn+1 around tn is:

y(tn+1) = y(tn) + (tn+1 − tn) ·
dy

dt

∣∣∣∣
t=tn

(3.21)

For a regular time step ∆t = tn+1 − tn, we can re-write the explicit Euler formula
as:

y(tn +∆t) = y(tn) + ∆t · F (tn, y(tn)) (3.22)

Stochastic Rounding

As demonstrated in section 2.4, the rounding error is higher when using the RN
rounding scheme compared to the SR rounding scheme. To decrease the rounding
errors when multiplying integers with fractions and the accumulated errors in op-
erations dependent on the rounded result, we rely on the SR rounding scheme for
integer multiplication with fractions. Specifically, let x be the result of the multipli-
cation of an integer with a fraction such that x ∈ Q, so that ⌊x⌋ and ⌈x⌉ are the two
nearest numbers to x in Z, and ϵM = 1. The SR rounding scheme for x becomes:

SR(x) =

{
⌊x⌋ if P > x− ⌊x⌋
⌈x⌉ if P ≤ x− ⌊x⌋

(3.23)

where P is a random number drawn from a uniform distribution U(0, 1).

Stochastic Updates

To overcome the phenomenon of stagnation demonstrated in section 2.4 when updat-
ing the STC variables, we use SR in solving the corresponding differential equations.
More specifically, let x be a variable that is updated by eq. (3.22) using the following
update rule:

x(t+∆t) = x(t) + k ·∆t, (3.24)

where k is a constant such that k ·∆t < 1. In this case, we define the SR rounding
scheme of the update rule as follows:

x(t+∆t) =

{
x(t) + 1 if P ≤ k ·∆t

x(t) if P > k ·∆t,
(3.25)
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where P is a random number drawn from a uniform distribution U(0, 1). In other
words, x is updated effectively with a probability of k · ∆t such that on average,
the variables are updated at a timestep of ∆t. Although this update scheme is a
form of SR, we refer to it as stochastic update (SU) to differentiate the two goals of
rounding in our application. It is worth to note that we do not intend to increase
the update timestep ∆t and perform regular updates as this yields highly distorted
results as demonstrated in the lab rotation (Atoui, 2024).

Algorithm Implementation

Using eq. (3.22) and section 3.4.2, the differential equation for the early-phase weight
h in eq. (3.5) can be rewritten as:

h(t+∆t) = h(t) +
0.1 ·∆t

τh
(h0 − h(t)) (3.26)

+
γp ·∆t

τh
· (255− h(t)) ·Θ[c(t)− θp]

− γd ·∆t

τh
· h(t) ·Θ[c(t)− θd],

The variety in the early-phase weight dynamics allows us to divide the equation into
three parts. The first two parts are related to plasticty in the presence of sufficient
calcium while the third part always pull the early-phase weight to a steady-state
value.

1. Plasticity cases

Case of LTP: c ≥ θp > θd yields:

h(t+∆t) = h(t) · (1− ∆t

τh
· (γp + γd)) +

γp ·∆t · 255
τh

, (3.27)

Using the values in table 3.2, the early-phase weight can be updated at each
timestep by applying SR as in section 3.4.3 when multiplying with the fraction

(1− ∆t

τh
· (γp + γd)) and adding a constant offset

γp ·∆t · 255
τh

.

h(t+∆t) =

{
⌈h(t+∆t)⌉ if Ph ≤ h(t+∆t)− ⌊h(t+∆t)⌋
⌊h(t+∆t)⌋ if Ph > h(t+∆t)− ⌊h(t+∆t)⌋

(3.28)

where Ph is a random number drawn from a uniform distribution U(0, 1).
Case of LTD: θp > c ≥ θd yields:

h(t+∆t) = h(t) · (1− γd ·∆t

τh
), (3.29)

Here, the early-phase weight can be updated at each timestep by applying

SR described in section 3.4.3 when multiplying with the fraction (1− γd ·∆t

τh
)

similar to eq. (3.28).
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2. Steady-state: this part of the equation forces h to converge to a steady-state
value h0. The steady-state dynamics are slow with a time constant of 10 · τh.
In this case, we apply SU proposed in section 3.4.3 as follows:

h(t+∆t) =


h(t) + 1 · sgn(h0 − h(t)) if Ph,ss ≤

0.1∆t · |h0 − h(t)|
τh

h(t) if Ph,ss >
0.1∆t · |h0 − h(t)|

τh

(3.30)

with Ph,ss being a random number drawn from a uniform distribution U(0, 1).
We chose Ph,ss to be dependent on h0 − h(t) so that h(t) converges smoothly.

Using eq. (3.22) and section 3.4.2, the differential equation for the protein amount
p in eq. (3.6) can be rewritten as:

p(t+∆t) = p(t)− p(t) · ∆t

τp
+

α ·∆t

τp
· Θ[(|h(t)− h0|)− θpro] (3.31)

Since ∆t
τp

< 1 and α·∆t
τp

< 1, the evolution of the protein dynamics can be divided

into 2 parts that exploit SU:

1. Case of protein synthesis during LTM: |h(t)− h0| > θpro yields:

p(t+∆t) =


p(t) + 1 if Pp ≤

α ·∆t

τp

p(t) if Pp >
α ·∆t

τp

(3.32)

with Pp being a random number drawn from a uniform distribution U(0, 1).

2. Steady-state: this part of the equation allows the protein amount to decay
back to 0 which yields:

p(t+∆t) =


p(t)− 1 if Pp,ss ≤ p(t) · ∆t

τp

p(t) if Pp,ss > p(t) · ∆t

τp

(3.33)

where Pp,ss is a random number drawn from a uniform distribution U(0, 1).
We chose Pp,ss to be dependent on p(t) so that p(t) decays smoothly and more
frequently.

Using eq. (3.22) and section 3.4.2, the differential equation for the late-phase weight
z in eq. (3.7) can be rewritten as:

z(t+∆t) = z(t) +
p(t) ·∆t

255 · τz
· (127− z(t)) ·Θ[(h(t)− h0)− θtag] (3.34)

− p(t) ·∆t

255 · τz
· (z(t) + 64) ·Θ[(h0 − h(t))− θtag]

The evolution of the late-phase weight dynamics follows 2 cases:
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1. Case of late LTP: h(t)− h0 ≥ θtag yields:

z(t+∆t) =


z(t) + 1 if Pz ≤

p(t) ·∆t

255 · τz
· (127− z(t))

z(t) if Pz >
p(t) ·∆t

255 · τz
· (127− z(t))

(3.35)

Furthermore, since z depends directly on p, it makes sense that the update
probability of z is directly dependent on the update probability of p. This
yields:

z(t+∆t) =


z(t) + 1 if Pz ≤

p(t)

255 · α
· (127− z(t)) if Pp ≤

α ·∆t

τp

z(t) if Pz >
p(t)

255 · α
· (127− z(t)) if Pp ≤

α ·∆t

τp

(3.36)

2. Case of late LTD: h0 − h(t) ≥ θtag yields:

z(t+∆t) =


z(t)− 1 if Pz ≤

p(t) ·∆t

255 · τz
· (z(t) + 64)

z(t) if Pz >
p(t) ·∆t

255 · τz
· (z(t) + 64)

(3.37)

Similar to the case of LTP, we let the update probability of z be directly
dependent on that of p which yields:

z(t+∆t) =


z(t)− 1 if Pz ≤

p(t)

255 · α
· (z(t) + 64) if Pp ≤

α ·∆t

τp

z(t) if Pz >
p(t) ·∆t

255 · α
· (z(t) + 64) if Pp ≤

α ·∆t

τp

(3.38)

where Pz is a random number drawn from a uniform U(0, 1). We chose Pz to be
dependent on z(t) so that z(t) converges smoothly and more frequently. Finally, the
total synaptic weight w can be updated as follows:

w(t+∆t) = h(t+∆t) + 2 · h0 · z(t+∆t) (3.39)

where h0 is the normalized steady-state early-phase weight value.

The arithmetic representation of the STC variables in the plasticity kernel and their
update routine are summarized in table 3.3.

To implement the SU routine, we rely on random 32-bit unsigned integers drawn
from a 32-bit xorshift pseudo-random number generator (Marsaglia, 2003). The
update probabilities are then converted to integers by multiplying each probability
with 232 − 1 at runtime to obtain probability-equivalents, and the 32-bit random
numbers are compared against these probability-equivalents. Furthermore, we rep-

resent any decimal number x using a fraction
n

d
such that |x− n

d
| < ϵ with ϵ being

a predefined error parameter set to 0.001.
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STC Variable Datatype Resolution Cases Update Probability

Early-phase
weight h

8-bit unsigned
integer

1

255

Early LTP

Early LTD

Steady-state

1

1

|h(t)− h0|
125164

Protein amount
(p)

8-bit unsigned
integer

1

255

Protein synthesis

Protein decay

1

257

p(t)

65455

Late-phase
weight (z )

8-bit signed
integer

2

255

Late LTP

Late LTD

p(t) · (127− z(t))

16690909

p(t) · (z(t) + 64)

16690909

Total synaptic
weight (w)

8-bit unsigned
integer

1

255
LTM 1

Table 3.3: Summary of the STC variables updated on the PPU with their properties
and update probability. For each update case, the update probability is evaluated at
∆t = 50µs. Variables that are updated at every timestep have an update probability of 1.
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Algorithm 1: STC Plasticity Kernel

Result: h, p, z, w
Cbaseline,pre ← 255;
Cbaseline,post ← 255;
while t ≤ tend do

while t ≤ tbaseline do
Cpre, Cpost ← AnalogReadOut();
Cbaseline,pre ← min(Cbaseline,pre, Cpre)− ErrorMargin;
Cbaseline,post ← min(Cbaseline,post, Cpost)− ErrorMargin;

end
Cpre, Cpost ← AnalogReadOut();
C ← kpre · (Cpre − Cbaseline,pre) + kpost · (Cpost − Cbaseline,post);
if C ≥ θp then

h← h× factorp + offsetp;
else

if C ≥ θd then
h← h× factord;

end

end
if Ph ≤ h− ⌊h⌋ then

h← ⌈h⌉
end

if Ph,ss ≤
0.1∆t · |h0 − h|

τh
then

h← h+ 1 ∗ sgn(h0 − h);
end

if Pp ≤
α ·∆t

τp
then

if |h− h0| ≥ θpro then
p← p+ 1;

end

if (h− h0) ≥ θtag and Pz ≤
p

255 · α
· (127− z) then

z ← z + 1;
else

if (h0 − h) ≥ θtag and Pz ≤
p

255 · α
· (z + 64) then

z ← z − 1;
end

end

end
w ← h+ 2 ∗ h0 ∗ z;
RecordResults();

end
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3.5 Running Experiments on BrainScaleS-2

To assess our implementation of the STC plasticity rule, we run algorithm 1 at an
update timestep of 0.05ms for the four plasticity protocols on BrainScaleS-2. We
compare the emulation results against two baselines obtained by simulation: the
first is obtained at the base timestep of 0.2ms biological time as in Luboeinski and
Tetzlaff (2021), and the second is obtained at 50ms which is the biological equivalent
of the update timestep used in the emulation. The simulations were already repro-
duced in the lab rotation (Atoui, 2024), and a thorough assessment was done on the
effect of increasing the simulation timestep for regular updates, but we reproduce
them here only for comparison purposes with the emulation results. Luboeinski
and Tetzlaff (2021) accounted only for the variability in spikes, as their implemen-
tation was based on a simulation on a standard computer. For the emulation on
BrainScaleS-2, there are different sources of variability:

• Trial-to-trial variability: we repeat the experiment using the same set of spikes
and update seed for 100 times to assess the variability and reproducibility of
the same result. As far as our implementation in this work is concerned, the
trial-to-trial variability stems from the emulation of calcium dynamics in the
analog core of BrainScaleS-2 and sampling variability.

• Variability across update seeds: we use 100 different update seeds for the same
set of spikes to assess our implementation and how close the average behavior
across different update seeds is to the baseline obtained by simulation.

• Variability across different set of spikes: we vary the set of spikes using different
seeds. Here we assess whether we can rely 100 set of spikes as in the simulation
of Luboeinski and Tetzlaff (2021), or if we need more experiment runs to obtain
significant results.

• Variability across different chips: we use 3 different chips to assess the similar-
ity of the results across different neurons and whether the mismatches in the
manufacturing process affect the results.

• Variability in the time samples: the time samples are not exactly taken at
multiples of the predefined PPU period, which causes different results between
the emulation at 50µs and the simulation at the equivalent biological timestep
50ms.

As quantitative measures of our implementation, we use the mean and standard
deviation of the number of potentiations and depressions to assess the trial-to-trial
variability in the case of same spikes and update seed. For the case of different
spikes, we use the final late-phase weight value zf as a test statistic for the strong
protocols, and the maximum absolute deviation of the early-phase weight |h−h0|max

as a test statistic for the weak protocols. Although these statistics are skewed as
will be demonstrated, a t-test of these statistics to compare the means would still
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be robust for finite variance and sufficient sample size (Chen, 1995). In this case,
we consider that the sample mean is the one obtained from the emulation, and the
true mean and the true variance are obtained from the simulation. The t-statistic
becomes:

t =
x̄− µ0

σ
(3.40)

where x̄ is the sample mean, µ0 is the true mean, σ is the standard deviation. The
null hypothesis is that the emulation mean is equal to the simulation mean. Using
the test-statistic, we calculate the p-value which is a measure of the probability
describing the likelihood of obtaining the observed data under the null hypothesis of
a statistical test. We reject the null hypothesis at a p-value < 0.01, which indicates
that there is a strong evidence against the null hypothesis. Despite not being able
to prove that the means are equal, the p-value serves as a measure for evidence
whether the simulation and emulation results are statistically significant.
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Results

We present the results of our approach first on a single chip, specifically on emulating
the calcium dynamics followed by the implementation of the plasticity rule. Then,
we compare the final results of the implementation against different chips. Further
results on other chips can be found in the appendix.

4.1 Emulating Calcium Dynamics

The adaptation parameters that are needed to emulate the calcium dynamics are
tuned individually for each chip. Specifically, we focus on the calcium traces recorded
using the MADC for judging the overall behavior compared to the theoretical cal-
cium trace as well as the calcium mapping for judging the linearity of calcium around
the potentiation and depression calcium thresholds.

4.1.1 MADC Calcium Traces

The retrieved calcium traces measured using the MADC at stimulation frequencies of
20 kHz and 100 kHz are presented in figures 4.1 and 4.2 respectively. At a frequency
of 20 kHz, the calcium traces and the spikes align almost completely. At a frequency
of 100 kHz, there is a misalignment between the theoretical and experimental calcium
traces for two reasons. First, the adaptation circuit is non-linear beyond certain
adaptation potentials. Second, there is a probability of either missing spikes or not
recording all spikes at high frequencies. While a better mapping at 100 kHz can
be achieved for lower adaptation reference potential and spike-triggered adaptation,
this comes at the expense of noisy recordings at 20 kHz. Consequently, the calcium
mapping should account for both, low and high frequencies.

4.1.2 CADC Calcium Samples

For the same frequencies and tuned adaptation parameters, the retrieved CADC
calcium samples are shown in figures 4.3 and 4.4. Similar to the MADC results,
there is a discrepancy between the theoretical and experimental calcium samples
due to the frequency of the stimulation. Additionally, there exists a variability in
the sampling times in the CADC, which means that the samples are not taken at
exact multiples of the defined period. This is accounted for in figures 4.3 and 4.4
by error bars and is especially visible when the sampling times are around the spike
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Experimental and theoretical calcium traces at 20 kHz
stimulation frequency. Chip code: W69F0

Figure 4.1: Emulation of calcium dynamics using MADC at 20 kHz stimulation fre-
quency. (A) Theoretical calcium trace calculated from Poisson spikes using eq. (3.4)
versus the experimental calcium trace extracted using the adaptation trace. (B) Expected
Poisson spikes simulated at 20 kHz during 1ms versus the recorded spikes from the parrot
neuron that are used to generate the experimental calcium trace.

35



250

300

350

400

450

500

550

600

Ca
lci

um
 C

on
ce

nt
ra

tio
n

(M
AD

C)

A

Theoretical
Experimental

0.0 0.2 0.4 0.6 0.8 1.0
Time (ms)

B Expected spikes = 112
Recorded spikes = 99

0

2

4

6

8

10

Ca
lci

um
 C

on
ce

nt
ra

tio
n

(B
io

lo
gi

ca
l u

ni
ts

)

Experimental and theoretical calcium traces at
        100 kHz stimulation frequency. Chip code: W69F0

Figure 4.2: Emulation of calcium dynamics using MADC at 100 kHz stimulation fre-
quency. (A) Theoretical calcium trace calculated from Poisson spikes using eq. (3.4)
versus the experimental calcium trace extracted using the adaptation trace of the AdEx
model from the recorded spikes. (B) Expected Poisson spikes simulated at 100 kHz dur-
ing 1ms versus the recorded spikes from the parrot neuron that are used to generate the
experimental calcium trace.
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Figure 4.3: Emulation of calcium dynamics using CADC at 20 kHz stimulation frequency.
The true trace is the theoretical calcium trace calculated using eq. (3.4) from the recorded
spikes of the parrot neuron. The true samples are samples from the true trace at the times
of the PPU samples. The PPU samples are generated by the CADC from the adaptation
traces during the experiment. The margin of error shows the expected error at the PPU
samples due to the variability in the sampling times.

times.

4.1.3 Mapping Calcium Thresholds

The results for mapping the biological potentiation and depression calcium thresh-
olds θp and θd respectively are shown for a single chip in figure 4.5. The region
under consideration until cmax = 5 is linear under the tuned adaptation parameters,
and the linear regression is thus valid for mapping the calcium thresholds. The
samples that are around the spike times are left-out as they are more affected by
the variability in sampling times. These samples are shown along with their error
bars in figure 4.5 to demonstrate how they can worsen the performance of the linear
mapping. Further results for other chips can be found in the appendix.

4.2 Baseline Comparison

We reproduce the simulation results obtained using eq. (3.22) on the STC model
equations. As mentioned earlier, these were described in details in the lab rotation
(Atoui, 2024) , but are listed here again for comparison against the emulation results.
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Figure 4.4: Emulation of calcium dynamics using CADC at 100 kHz stimulation fre-
quency. The true trace is the theoretical calcium trace calculated using eq. (3.4) from the
recorded spikes of the parrot neuron. The true samples are samples from the true trace at
the times of the PPU samples. The PPU samples are generated by the CADC from the
adaptation traces during the experiment. The margin of error shows the expected error
at the PPU samples due to variability in the sampling times.
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Figure 4.5: Mapping the calcium potentiation and depression thresholds using linear
regression and least-squares estimation. (A) Calcium CADC values of the samples col-
lected from running the calcium mapping experiment versus theoretical calcium calculated
using eq. (3.4). The error bars are the expected errors from the CADC variability in sam-
pling times. Samples with low expected errors are selected and fitted using least-squares
method. The linear fit is used to estimate the potentiation and depression thresholds.
(B) Theoretical calcium trace calculated from the recorded spikes of the parrot neuron
using eq. (3.4) and PPU samples. The left-out samples are in the spiking duration of the
mapping protocol whereas the selected samples are in the decaying region of the mapping
protocol. (C) Recorded spikes of the parrot neuron used to generate the theoretical cal-
cium trace and experimental calcium samples.
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Figure 4.6: Impact of strong and weak tetanic and low-frequency stimulation protocols
on a single synapse. The lines correspond to the average weights across the different spike
trials, and the bands correspond to one standard deviation from the average. Tetanic
protocols induce LTP while low-frequency protocols induce LTD. Strong protocols induce
late-phase LTM while weak protocols induce only early-phase LTM. The simulation is
carried out for 100 trials using the synapse and neuron parameters listed in table 3.1 and
a simulation time step of 0.2 ms. The results are in agreement with those obtained in
figure 2 of Luboeinski and Tetzlaff (2021)

4.2.1 Simulation at Base Timestep

The simulation at the base timestep of 0.2 ms is considered as the ground truth
that we would ultimately like to achieve. The results of the simulation of the four
protocols are presented in figure 4.6. These results are in alignment with the simu-
lation results for a single synapse in work of Luboeinski and Tetzlaff (2021) except
that we accounted for some hardware constraints for a fair comparison. The protein
amount synthesized in each protocol is also presented in figure 4.7. Only the strong
protocols can lead to protein synthesis and late-phase LTM. It is worth to note that
there is an existing variability in the protein amount due to spikes for both STET
and SLFS protocols.
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Figure 4.7: Impact of strong and weak tetanic and low-frequency stimulations on the
synthesis of proteins. The simulation is carried out for 100 trials using the synapse and
neuron parameters listed in table 3.1 and a simulation time step of 0.2 ms. The lines
correspond to the average weights across the 100 trials, and the bands correspond to one
standard deviation from the average.
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Figure 4.8: Impact of strong and weak tetanic and low-frequency stimulation protocols
on a single synapse. The lines correspond to the average weights across the spike trials,
and the bands correspond to one standard deviation from the average. Tetanic protocols
induce LTP while low-frequency protocols induce LTD. Strong protocols induce late-phase
LTM while weak protocols induce only early-phase LTM. The simulation is carried out for
100 trials using the synapse and neuron parameters listed in table 3.1 and a simulation
time step of 50ms. The results show some differences in the mean and standard deviation
depending on the protocol with respect to those obtained at a simulation time step of
0.2ms.

4.2.2 Simulation withWeight Updates at Hardware Timestep

To account for the major hardware constraint which is the update timestep, we
repeat the simulation at a simulation timestep of 50ms. This would serve as an
immediate baseline to compare against the emulation results. The results of this
simulation is presented in figure 4.8 for the four protocols. As an immediate com-
parison with the simulation at 0.2ms, the variance in the early-phase weight and
late-phase weight is higher in the SLFS protocol in the simulation at 50ms as indi-
cated by the error bands. The peak early-phase weight is also higher in the WTET
protocol. The synthesized protein amount is also presented in figure 4.9 where the
SLFS shows also a higher variance indicated by the error bands.
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Figure 4.9: Impact of strong and weak tetanic and low-frequency stimulations on the
synthesis of proteins. The simulation is carried out for 100 trials using the synapse and
neuron parameters listed in table 3.1 and a simulation time step of 50ms. The lines
correspond to the average weights across the 100 trials, and the bands correspond to one
standard deviation from the average. The results show some differences in the mean and
standard deviation with respect to those obtained at a simulation time step of 0.2ms.
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4.3 Emulating a Single Synapse

In this section, we test our implementation of the STC plasticity rule on BrainScaleS-
2. We start by showing with the baseline which is the single trial behavior that uses
one set of spikes and one update seed. Then, we experiment with different update
seeds and different spike trials.

4.3.1 Single Trial Behavior

A single trial of an experiment on BrainScaleS-2 uses one seed for simulating the
presynaptic spikes and one seed for the stochastic rounding. As shown for figure
4.10, a single trial shows a clear discretization since the updates do not occur at
every time step. The 100 trials performed in this section tests the reproducibility
of the results. As we cannot judge on the performance of one trial and one chip,
the trial-to-trial variability depends on the protocol, neurons, and spikes as will be
explained later. For example, the results in figure 4.10 show a higher variability in
the low-frequency protocols. However, this is not always the case as presented in
the results found in figure A.2.1 in the appendix.

4.3.2 Average Behavior for One Set of Spikes

In this section, we run the experiment for 100 different update seeds using the
same set of spikes. Each individual update seed yields different results but with a
common overall behavior. We plot the individual seeds and the average behavior
for the four protocols in figure 4.11. Averaging across the update seeds produces
a smooth behavior, i.e. one that is obtained from an update time step of 0.05ms.
The traces no longer look discretized as in the single trial behavior. To investigate
how close the average emulation behavior is to the baseline simulation behavior, we
plot the same results for the same set of spikes in figure 4.12 for the four protocols.
In this case, the emulation results agree with the simulation results for the STET
and WLFS protocols but not for the SLFS and WTET protocols. While these
results are not to be generalized across different spike trials, they can be explained
by the differences between the number of potentiations and depressions between
the simulation and emulation shown in figures 4.13. The number of potentiations
and depressions is almost identical in the STET and WLFS protocols. For the
SLFS protocol, the timing differences lead to differences in the evolution of the
synaptic weights. The number of potentiations and depressions are significantly
different in the SLFS protocol and WTET protocols which cause the difference in
the synaptic weights. All these differences are primarily attributed to the variability
in the sampling times.
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Emulation results for the four stimulation protocols using the same set of spikes
for the same update seed. Chip code: W69F0

Figure 4.10: Emulation results for the four stimulation protocols for one set of spikes
repeated 100 times for a single update seed. The aim is to check the reproducibility of the
results over different trials. The source of variability is the adaptation circuit. The mea-
sures of performance are the mean and standard deviation of the number of potentiations
and depressions shown by arrows pointing upwards and downwards respectively for each
protocol.
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Emulation results for the four stimulation protocols using the same set of spikes
for 100 update seeds. Chip code: W69F0

Figure 4.11: Emulation results for the four stimulation protocols using one set of spikes
and different update seeds. The trajectories in faded color show the individual trials, and
the trajectory in bold shows the average behavior. The overall average behavior is in
agreement with the behavior obtained by simulation for the four protocols.
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Emulation results for the four stimulation protocols using the same set of spikes.
Comparison against the two simulation baselines. Chip code: W69F0.

Figure 4.12: Comparison of the emulation results of the four stimulation protocols
against the simulation baselines for 100 update seeds. The agreement between the emula-
tion and simulation results depends on the stimulation protocol. For comparison purposes,
the simulation results are plotted at an accelerated factor of 1000 to match the time of
the emulation results.
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Figure 4.13: Comparison between the calcium concentration in the emulation and sim-
ulation schemes for a single set of spikes in the four stimulation protocols. The average
number of potentiations and depressions for each protocol in the simulation and emulation
cases are indicated by the numbers on the upper right of each figure by the up and down
arrows respectively. The small difference in the number of potentiations and depressions
between the simulation and emulation explains the alignment in the traces of the STET
and WLFS protocols. The larger difference in the number of potentiations and depressions
between the simulation and emulation explains the difference in the traces of the WTET
and SLFS protocols.
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4.3.3 Average Behavior across Different Sets of Spikes

In this section, we experiment with 100 different trials of spikes. We plot the results
against the two simulation baselines and use the final late-phase weight and max-
imum absolute deviation of the early-phase weight as test statistics for the strong
and weak protocols respectively.

Comparison with Simulation at Base Time Step

Figure 4.14 show the results of the emulation plotted against the simulation per-
formed at a time step of 0.2 ms. The overall behavior of the protocols aligns with
the ground truth simulation at 0.2 ms. There are differences in the mean of the
synaptic weights and protein amount in all protocols. However, there are signifi-
cant differences in the variance shown by the bands corresponding to the standard
deviation.

Comparison with Simulation at Hardware Timestep

The same results are plotted against the simulation baseline performed at a time
step of 50 ms for a fair comparison in figure 4.15. The mean of the synaptic weights
and protein amount seem to align with those obtained from the simulation with
small differences in the mean. The variances of the emulation seem close to the
simulation for all protocols except for the STET protocol. This shows that the
effects in the hardware variability that were demonstrated for one set of spikes also
seem to cancel out.

4.3.4 Comparison across Different Chips

We perform the experiments for the different spikes for two other chips, and we
compare the results against the 0.05ms. Table 4.1 show the tuning parameters for
the adaptation circuit used in the four chips we used. Figures 4.16, 4.17 and 4.18
show the results for the four protocols in three different chips. The average behavior
of the protocols align with the expected behavior. For all chips, the STET protocol
aligns with the simulation baseline. The main differences in the mean lie in the
low-frequency protocols. Furthermore, the variance of the emulation aligns with
the variance of the simulation at the 0.05ms timestep, indicating that the hardware
variability effects cancel out.

Finally, we compare the results across the chips numerically using the mean, stan-
dard deviation, and p-value of the test statistics which are the final late-phase weight
zf in the strong protocols and the maximum absolute deviation |h − h0|max of the
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Emulation results for the four stimulation protocols for 100 different sets of spikes.
Comparison against simulation at a timestep of 0.2 ms. Chip code: W69F0

Figure 4.14: Emulation results for the four stimulation protocols compared against a
simulation baseline at a time step of 0.2 ms for 100 different sets of spikes. The lines
correspond to the average early-phase and late-phase weights and protein amount. The
bands correspond to one standard deviation from the average. For comparison purposes,
the simulation results are plotted at an accelerated factor of 1000 to match the time of
the emulation results.
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Emulation results for the four stimulation protocols for 100 different sets of spikes.
Comparison against simulation at a timestep of 50.0 ms. Chip code: W69F0

Figure 4.15: Emulation results for the four stimulation protocols compared against a
simulation baseline at a time step of 50 ms for 100 different sets of spikes. The lines
correspond to the average early-phase and late-phase weights and protein amount. The
bands correspond to one standard deviation from the average. For comparison purposes,
the simulation results are plotted at an accelerated factor of 1000 to match the time of
the emulation results.
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Emulation results for the four stimulation protocols for 100 different sets of spikes.
Comparison against simulation at a timestep of 50.0 ms. Chip code: W63F3

Figure 4.16: Emulation results for the four stimulation protocols compared against a
simulation baseline at a time step of 50 ms for 100 different sets of spikes. The lines
correspond to the average early-phase and late-phase weights and protein amount. The
bands correspond to one standard deviation from the average. For comparison purposes,
the simulation results are plotted at an accelerated factor of 1000 to match the time of
the emulation results.
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Emulation results for the four stimulation protocols for 100 different sets of spikes.
Comparison against simulation at a timestep of 50.0 ms. Chip code: W66F0

Figure 4.17: Emulation results for the four stimulation protocols compared against a
simulation baseline at a time step of 50 ms for 100 different sets of spikes. The lines
correspond to the average early-phase and late-phase weights and protein amount. The
bands correspond to one standard deviation from the average. For comparison purposes,
the simulation results are plotted at an accelerated factor of 1000 to match the time of
the emulation results.
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Emulation results for the four stimulation protocols for 100 different sets of spikes.
Comparison against simulation at a timestep of 50.0 ms. Chip code: W72F0

Figure 4.18: Emulation results for the four stimulation protocols compared against a
simulation baseline at a time step of 50 ms for 100 different sets of spikes. The lines
correspond to the average early-phase and late-phase weights and protein amount. The
bands correspond to one standard deviation from the average. For comparison purposes,
the simulation results are plotted at an accelerated factor of 1000 to match the time of
the emulation results.

54



Chip
Adaptation Reference

Potential
Adaptation Time

Constant
Spike-triggered
Adaptation (b)

63F3 440 280 400

66F0 400 290 460

69F0 400 320 560

72F0 450 320 620

Table 4.1: Parameter values used for tuning the adaptation circuit in different chips

early-phase weight in the weak protocols. Table 4.2 shows the mean and standard
deviation of the test statistics for the four protocols in the two simulation schemes.
As shown, there are differences that arise in the mean and standard deviation due
to increasing the simulation timestep. Table 4.3 shows the mean, standard devia-
tion, and p-value of the test statistics for the four chips we experimented with for
the four stimulation protocols. The differences in the mean and standard deviation
demonstrate the variability between the chips. The mean of the test statistics is
similar between the emulation and simulation for all protocols, but the variance is
higher for the STET protocol in the emulation case compared to other protocols.
The null hypothesis is not rejected for all protocols and chips except for one p-value
for the WLFS protocol in chip W63F3 which showed statistical significance.

Protocol Simulation Timestep Mean Standard deviation

STET
0.2 ms
50 ms

0.739
0.743

0.018
0.019

WTET
0.2 ms
50 ms

0.132
0.152

0.037
0.039

SLFS
0.2 ms
50 ms

−0.290
−0.275

0.0616
0.0997

WLFS
0.2 ms
50 ms

0.114
0.115

0.0165
0.0272

Table 4.2: Mean and standard deviation of the test statistics for the four stimulation
protocols in the simulation scheme for the two simulation timesteps, 0.2 ms and 50 ms.
The test statistics are the final late-phase weight for the strong protocols and the maximum
absolute deviation of the early-phase weight in the weak protocols.
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Protocol Chip Mean
Standard
deviation

p-value
(0.2 ms)

p-value
(50 ms)

STET
W63F3
W66F0
W69F0
W72F0

0.739
0.742
0.734
0.739

0.067
0.065
0.0702
0.067

0.962
0.872
0.805
0.958

0.860
0.945
0.652
0.863

WTET
W63F3
W66F0
W69F0
W72F0

0.145
0.156
0.141
0.155

0.0408
0.0379
0.0448
0.0377

0.726
0.519
0.806
0.535

0.855
0.926
0.779
0.944

SLFS
W63F3
W66F0
W69F0
W72F0

−0.310
−0.231
−0.281
−0.265

0.0825
0.115
0.0969
0.103

0.7408
0.345
0.892
0.695

0.726
0.661
0.949
0.923

WLFS
W63F3
W66F0
W69F0
W72F0

0.062
0.141
0.106
0.129

0.0205
0.0286
0.0253
0.026

0.0018∗

0.115
0.591
0.388

0.056
0.327
0.756
0.586

Table 4.3: Evaluation of the emulation results across four different chips using the test
statistics of the four stimulation protocols. The test statistics used are the final late-phase
weight for the strong protocols and the maximum absolute deviation of the early-phase
weight in the weak protocols. The p-value is calculated using the mean of the test statistic
of the emulation and using the mean and variance of the same statistic in the simulation
scheme as true values. Results with (*) show statistical significance.
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Discussion

In this work, we emulated the synaptic tagging and capture (STC) plasticity rule
for a single synapse on the mixed signal neuromorphic platform BrainScaleS-2. We
used the work of Luboeinski and Tetzlaff (2021) to emulate the equations of the
plasticity rule. The neuron and calcium dynamics were emulated by the analog
core of BrainScaleS-2, while the plasticity equations were provided to the plasticity
processing unit (PPU) for weight updates. We defined the hardware constraints,
specifically the time updates, finite arithmetic, and hardware variability. Then,
we proposed to overcome these constraints through increasing the update timestep,
stochastic rounding, and tuning of the adaptation circuits for emulation of calcium
dynamics. We used the standard plasticity protocols to assess our approach as well
as general performance measures such as the mean, standard deviation, and p-value.
We also used statistics that are specific to the plasticity rule, namely the number
of potentiations and depressions, the final late-phase weight in the strong protocols,
and the maximum deviation of the early-phase weight in the weak protocols.

Our approach faithfully reproduces the simulation results of the single synapse for
four stimulation protocols with small differences in the mean and standard devi-
ation across protocols. This highlights the power of stochastic rounding for finite
arithmetic and reduced precision. The differences between the emulation at a time
update of 0.05ms and the simulation at a time update of 0.05 s can be primarily
attributed to the hardware variability in the sampling times which affect the results
in case the calcium is at the edge of potentiation, depression, or at a rising edge of
the spike. This is sensitive because the calcium dynamics are fast and can decay
quickly or rise almost instantaneously by the effect of the spike. Another important
consideration is tuning the operation range of the adaptation circuit that is used to
emulate the calcium dynamics. The tuning has to account for circuit linearity and
the operation at all considered stimulation frequencies. This presents a challenge
since there is a trade-off between the three objectives: Operation at low frequen-
cies requires a high spike-triggered adaptation (b value) so as not to obtain a small
depression threshold that can be easily impacted by noise or decay. Operation at
high frequencies requires a low spike-triggered adaptation to maintain circuit linear-
ity. In both cases, the reference potential and the adaptation time constant have to
be tuned accordingly. In this work, tuning was assessed visually for linearity and
alignment of calcium traces with their biological duals at high and low frequency,
but this should be optimized using further numerical tests and several iterations as
done for calibrating the neuron circuits in the work of Weis (2020).

Our experiments on BrainScaleS-2 feature different sources of variability. Trial-to-
trial variability appears when running the experiment using the same spikes and
update seeds for several trials. Using different update seeds for the same spikes also
introduces a form of variability. There also exists the variability that arises from us-
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ing different spike trials, which is the only type of variability found in the simulation
scheme. Finally, there exists a variability between different chips that arises from
the manufacturing process. The trial-to-trial variability specifically arises from the
analog emulation of calcium which, due to its analog nature, is not fully reproducible
between trials. Furthermore, the emulation of calcium differs across protocols and is
also dependent on the calcium tuning and spikes under consideration. For example,
spikes with lower interspike interval (ISI) tend to provide more robust results com-
pared to spikes with higher ISI since they would exceed the threshold by a larger
amount and can overcome the effect of the variability in the sampling times. This
effect of ISI introduces a variability across trials, but also appears significantly in the
comparison of the average emulation results against the simulation baseline for one
set of spikes. In general, having a high calcium amount leads to more reproducible
results compared to low calcium amounts, and this appears in the high variance of
depressions in the low-frequency protocols compared to the low variance of poten-
tations in the tetanic protocols for the trial-to-trial variability experiment. For the
random update seeds we considered in the same set of spikes, the different trials
showed variability, some of which can be considered as extreme. This should be
further investigated in terms of choosing the pseudo-random number generator and
seeds, especially that we are considering only 100 trials.

Our implementation of STC on BrainScaleS-2 would be considered feasible if the
overall variability stems from the spike variability, as in the simulation case. In
other words, the errors that arise from the variability of the hardware would be
compensated across different trials. We expected that the effects of the variability
of sampling times and the ISI would cancel across different set of spikes; in the same
way that the variability in sampling time would lead to underestimation of poten-
tiations or depressions for some sets of spikes, it could also lead to overestimation
of potentiations or depressions for other sets of spikes. This appears true in the
experiments across different sets of spikes, where the variance of the test statistics
in the emulation is close to the variance of the test statistics of the simulation at
an update time of 0.05 s for all protocols except for the strong tetanic stimulation
(STET) protocol where the variance seems relatively higher. This shows that for
experiments across different sets of spikes, the main source of the variability is the
spikes, and variability that stems from analog computing seems relatively negligible
which makes our implementation successful.

For the STET protocol, the hardware variability is more apparent than the spike
variability as this protocol is considered robust due to its high calcium concentration.
This makes it less prone to the variability of the sampling times. Since this protocol
is important for the network emulation, we can attempt to resolve this problem by
running more experiments for the STET protocol. Finally, the chip variability was
depicted by tuning the adaptation circuits used for emulating the calcium dynamics,
which gave rise to different potentiation and depression thresholds and different
performance across protocols. This demonstrates the importance of automating the
tuning process to obtain reasonably close results between different chips.
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As far as the emulation of the network in the work of Luboeinski and Tetzlaff (2021)
is concerned, using BrainScaleS-2 for network experiments is feasible though with
further challenges. In this network, there are excitatory neurons with strong recur-
rent connections that are referred to as a cell assembly in addition to excitatory
control neurons. Within the cell assembly, a portion of the neurons are stimulated
with a learning protocol, and a sub-portion with a recall protocol. These protocols
resemble the STET protocol that we investigated, which proved to be robust with
the least variability and closest average behavior among other protocols, even when
tested on different chips and a slower update time. The reason is that the STET
protocol is more immune to the variability in sampling times compared to other pro-
tocols as the calcium concentration is high compared to the potentiation threshold
due to the high number of spikes. However, the tuning of the adaptation param-
eters is still important for the calcium concentration of the neurons that are not
stimulated in the cell assembly or are outside the cell assembly as these neurons are
affected by a lower number of spikes and thus possess a moderate amount of calcium.
Another form of variability that will be introduced in the network emulation is the
variability in the neuron circuits involved in the emulation of the neuron dynamics.
For a single synapse, there were almost no postsynaptic spikes, and this is the case
in the emulation and simulation schemes. The network experiment requires tuning
the neuron circuits and the synaptic weight to resemble the biological network. One
challenge is that the synaptic weights have a low resolution (0-63 least significant
bits (LSB)) compared to the calculated early-phase and late-phase weights, but we
expect that this would also be compensated across different weights. Another chal-
lenge would be the update of synapses in the network that will not occur at the same
time; here, we will also experiment with stochastic updates which introduce another
form of variability. Finally, we would have to connect different chips to achieve the
desired number of neurons in the network.

An important advantage of the use of BrainScaleS-2 in this emulation is the signif-
icant speed-up compared to the simulation performed on standard computers. For
example, one challenge faced by Luboeinski and Tetzlaff (2021) in the network sim-
ulation is the long simulation runtime and the need to perform some approximations
to reduce this runtime. Our implementation features a significant speedup with an
average runtime of 40 s per trial for the 8-hour biological-time experiment. In a sim-
ilar fashion, we expect to reduce this runtime in the network emulation which allows
running experiments for different network topologies and a higher number of spike
trials. On the other hand, our implementation possesses hardware limitations in
which the axonal spike delay, postsynaptic calcium influx delay due to presynaptic
spikes, and calcium noise fluctuations during potentiation and depression were not
implemented. The effect of these limitations is not visible in the emulation of a single
synapse due to the major absence of postsynaptic activity, and this must be fur-
ther investigated in the network behavior. However, the use of analog hardware for
the emulation of the neuron and calcium dynamics intrinsically presents delays and
some forms of variability. The question whether analog computing is advantageous
in this case and can provide realistic dynamics is of significant interest.

Besides being used for emulating biological neural networks to understand the human
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nervous system and behavior, the STC plasticity rule could be used as a learning rule
for machine learning tasks, similar to spike-timing dependent plasticity (STDP). We
get the inspiration from the biological plausibility of calcium-based plasticity and
its relevance to many behavioral experiments. A challenge for this application is
the relative computational steps needed to implement this plasticity rule compared
to other plasticity rules. This necessitates simplifying the rule or implementing it
along other algorithms that can exploit the key advantages of STC.
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Conclusion

The STC plasticity rule can be faithfully emulated on the neuromorphic circuits of
BrainScaleS-2. The hardware constraints related to the update timestep and re-
duced precision are overcome by using a higher timestep for updating the synaptic
weights and stochastic rounding. The emulation of the STC plasticity rule requires
a comprehensive procedure for emulating the neuron and calcium dynamics and
mapping the biological parameters to hardware. The use of analog hardware pro-
duces different sources of variability that lead to small errors in the mean of our
test statistics, and the effect of these forms of variability depend on the stimulation.
Nevertheless, the spike variability dominates the hardware variability in most of the
cases. Our results can be further improved by automating the tuning process of
the circuits responsible for emulating the calcium dynamics. Future steps include
emulating full networks that obey the STC plasticity rule which requires mapping
the synaptic weights to hardware and further use of stochastic rounding. Our work
highlights the power of stochastic rounding in overcoming the challenges of reduced
precision. Most importantly, it also demonstrates the power of analog neuromorphic
hardware such as BrainScaleS-2 in faithfully emulating biological neural dynamics
and speeding-up this emulation for research purposes.
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Appendix

A.1 Calcium Mapping

We present the calcium mapping results for the chips that were used for comparison
of emulation results in figures A.1.1 and A.1.2.

A.2 Single Trial Behavior

The trial-to-trial variability can differ depending on the chips and spikes as shown
in figure A.2.1.

A.3 Different Spikes

Figures A.3.1, A.3.2, and A.3.3 show the emulation results for different chips where
the emulation is compared against a simulation carried out at a time step of 0.2ms.

A.4 Information on Data Storage and Software

Here we present information on the software that was generated for this thesis for the
implementation of the plasticity rules and running experiments. The experiments
were executed in the container environment latest == 2024-04-17 1.img.
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Calcium experimental PPU samples Vs. theoretical samples
 N = 1811 datapoints. Chip code: W63F3

Figure A.1.1: Mapping the calcium potentiation and depression thresholds using lin-
ear regression and least-squares estimation. (A) Calcium column-parallel analog-to-digital
converter (CADC) values of the samples collected from running the calcium mapping ex-
periment versus theoretical calcium calculated using eq. (3.4) at the same time instants
of the samples. The error bars are the expected errors from the variability in time sam-
ples. Samples with low expected errors are selected and fitted using least-squares method
to estimate the potentiation and depression thresholds. (B) Theoretical calcium trace
calculated from the recorded spikes of the parrot neuron using eq. (3.4) and plasticity
processing unit (PPU) samples. The left-out samples are in the spiking duration of the
mapping protocol whereas the selected samples are in the decaying region of the mapping
protocol. (C) Recorded spikes of the parrot neuron used to generate the theoretical cal-
cium trace and experimental calcium samples.
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Figure A.1.2: Mapping the calcium potentiation and depression thresholds using lin-
ear regression and least-squares estimation. (A) Calcium CADC values of the samples
collected from running the calcium mapping experiment versus theoretical calcium cal-
culated using eq. (3.4) at the same time instants of the samples. The error bars are the
expected errors from the variability in time samples. Samples with low expected errors are
selected and fitted using least-squares method to estimate the potentiation and depres-
sion thresholds. (B) Theoretical calcium trace calculated from the recorded spikes of the
parrot neuron using eq. (3.4) and PPU samples. The left-out samples are in the spiking
duration of the mapping protocol whereas the selected samples are in the decaying region
of the mapping protocol. (C) Recorded spikes of the parrot neuron used to generate the
theoretical calcium trace and experimental calcium samples.
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Emulation results for the four stimulation protocols using the same set of spikes
for the same update seed. Chip code: W63F3

Figure A.2.1: Emulation results for the four stimulation protocols for one set of spikes
repeated 100 times for a single update seed. The aim is to check the reproducibility of the
results over different trials. The source of variability is the adaptation circuit. The mea-
sures of performance are the mean and standard deviation of the number of potentiations
and depressions shown by arrows pointing upwards and downwards respectively for each
protocol.
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Emulation results for the four stimulation protocols for 100 different sets of spikes.
Comparison against simulation at a timestep of 0.2 ms. Chip code: W63F3

Figure A.3.1: Emulation results for the four stimulation protocols compared against a
simulation baseline at a time step of 0.2 ms for 100 different sets of spikes. The lines
correspond to the average early-phase and late-phase weights and protein amount. The
bands correspond to one standard deviation from the average. For comparison purposes,
the simulation results are plotted at an accelerated factor of 1000 to match the time of
the emulation results.
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Emulation results for the four stimulation protocols for 100 different sets of spikes.
Comparison against simulation at a timestep of 0.2 ms. Chip code: W66F0

Figure A.3.2: Emulation results for the four stimulation protocols compared against a
simulation baseline at a time step of 0.2 ms for 100 different sets of spikes. The lines
correspond to the average early-phase and late-phase weights and protein amount. The
bands correspond to one standard deviation from the average. For comparison purposes,
the simulation results are plotted at an accelerated factor of 1000 to match the time of
the emulation results.
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Emulation results for the four stimulation protocols for 100 different sets of spikes.
Comparison against simulation at a timestep of 0.2 ms. Chip code: W72F0
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Figure A.3.3: Emulation results for the four stimulation protocols compared against a
simulation baseline at a time step of 0.2 ms for 100 different sets of spikes. The lines
correspond to the average early-phase and late-phase weights and protein amount. The
bands correspond to one standard deviation from the average. For comparison purposes,
the simulation results are plotted at an accelerated factor of 1000 to match the time of
the emulation results.
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Repository Commit ID

model-hw-memory-consolidation 96a5d6d11e4ba3749652d03da209943049c61ab2

pynn-brainscales 57370c7479f4a4c372ad944c22bec0b5ee30f61b

code-format 09f3a985a6f264359b10a6a129dd6dce7e55c9e8

haldls 237983b173c164d225a2f5398d7e72ef60de7397

grenade b388b3deb51f09b9871f53e7b5747993d5800e40

calix a706868c6ba285b1f8fd7cdef1a19d7328e02912

logger 73dadb3ce413c521845ef7d36f818073eee4fefa

halco a97040a732ab1ba954e077616303a18acf623092

hate 35b3cb211cabbbc5c01036ae7878a73e338166c4

fisch 6120fc0ac0d90b3c66a212b3cc5cc25034bf584e

libnux 66b9c67bc114f82add677c6095f38843c23c4cd7

hxcomm 95abf25670bd8cb7cc5b499cde56f653130cf20c

rant 722edd57c9e42462a660db8a1febb0211ffad07c

ztl b6745261d8bfdce44516d58d632c3c73834839d2

pywrap 5e2af30e9593882b471d3cd02df00b93f13ff479

lib-boost-patches 136c5b41cb046afe2c726aa4646928bf5190622e

sctrltp 1d854f953f7e8c8ead44406a22bb80421ca3857c

hwdb c5f86e16b1bb12e2b56d16477867b8369c1fc715

visions-slurm 8f41ea4f5bd1573d8f4623e9ed698a29f30036a3

flange 28e729d59df3b4ff380f84351c40d4da3086bed8

lib-rcf 000185eb11db4d54cb6b12b09af54cf742741036

bss-hw-params b7be7827b51536804f0bda76f8ba4be693df23a8

Table A.1: Commit IDs of the custom software

Description Change Sets

Plotting and Evaluation of STC Implementation 23563

PPU implementation using STC plasticity rule 22836

Mapping of calcium thresholds 22960

Minimal PPU example for calcium with plotting 22835

Initializing Plastic Synapse 22834

Minimal MADC example for calcium and plotting 22833

Table A.2: Overview of change sets
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