
Department of Physics and Astronomy
Heidelberg University

Bachelor Thesis in Physics
submitted by

David Baumeister

born in Heidelberg (Germany)

2024



Placement strategies for multi-compartment neurons on
BrainScaleS-2

This Bachelor Thesis has been carried out by David Baumeister at the
European Institute for Neuromorphic Computing (EINC), Kirchhoff-Institut für Physik (KIP)

in Heidelberg
under the supervision of
Dr. Johannes Schemmel



Abstract
BrainScaleS-2 (BSS-2) is a mixed-signal neuromorphic system that allows the emulation of
spiking neural networks. These neural networks can be constructed out of neuron circuits, that
partially replicate the behaviour of biological neurons, and their synaptic connections.

The neuron circuits on BSS-2 are arranged in a 2D grid and can be connected to form spatially
extended neurons. To use these multicompartment neurons on the BSS-2 chip a mapping
between an abstract neuron model and a switch configuration on the chip needs to be found.
For small neurons the switch configuration can be performed manually, but for rather complex
morphologies the manual approach is tedious and might even be unfeasible, since the mapping
is non-trivial and time-consuming regarding the number of switches that need to be set.

To solve the issue of configuring the hardware switches to form a neuron consisting of multiple
compartments, three algorithms are developed and implemented: a brute force algorithm,
an evolutionary algorithm and a constructive algorithm following a set of rules. These are
tested with randomly generated neurons to determine logical limitations and optimization
possibilities.

While the brute force approach fails for the placement of larger neurons because of its scaling
and therefore did not prove useful, the evolutionary and rule based approach both manage to
place a significant amount of neurons. The rule based algorithm is superior in execution speed
whereas the evolutionary algorithm is more flexible in terms of neuron topology. The success
of theses two algorithms opens up new possibilities for the use of BSS-2.

Zusammenfassung
BSS-2 ist ein mixed-signal neuromorpher Chip, der die Emulation von neuronalen Netzen
ermöglicht. Neuronale Netze werden aus elektrischen Neuron-Schaltkreisen, die teilweise die
Funktion biologischer Neuronen replizieren, und synaptischen Verbindungen konstruiert.

Die Schaltkreise auf dem BSS-2-Chip sind in einem 2D Raster angeordnet. Um Multicompartment-
Neuronen darauf verwenden zu können, muss eine Übersetzung des abstrakten Modell-
Neurons in eine Konfiguration der Schalter auf der Hardware gefunden werden. Schalter
einzeln zu setzen, ist für komplexe Neuronen zeitaufwändig und führt dazu, dass wenn keine
triviale Lösung erkennbar ist, das Neuron nicht auf der Hardware verwendet werden kann.

Um das Problem der Konfiguration der Schalter auf dem Chip zu lösen, werden drei Algorith-
men entwickelt und implementiert: eine Exhaustionsmethode, ein evolutionärer Algorithmus
sowie ein konstruktiver Algorithmus, der Regeln folgend eine Lösung konstruiert. Die Algo-
rithmen werden mit Hilfe zufällig generierter Neuronen getestet, um logische Beschränkungen
und Optimierungsmöglichkeiten zu bestimmen.

Die Exhaustionsmethode gelangt für größere Neuronen an seine Grenzen, was auf die schlechte
Skalierung des Algorithmus zurückzuführen ist. Sowohl der evolutionäre als auch der regel-
basierte Algorithmus sind erfolgreich bei der Plazierung unterschiedlicher Neuronen. Dabei
zeichnet sich der regelbasierte Algorithmus besonders durch seine schnelle Ausführung aus,
während der evolutionäre eine höhere Flexibilität gegenüber Neuronentopologien aufweist.
Diese Algorithmen eröffnen neue Möglichkeiten für die Verwendung von BSS-2.
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1 Introduction

The analog mixed-signal neuromorphic hardware platform BrainScaleS-2 (BSS-2) emulates
neural networks, partially recreating the working principle of biological neural networks. Each
BSS-2-chip offers 512 neuron circuits that each replicate the dynamics of the AdEx neuron
model [4]. These can be connected via synapses on the chip to form neural networks. The
chip can be used to create Spiking neural network (SNN) as well as Artificial neural network
(ANN) [11].

While biological neurons have a spacial structure consisting of structures like dendrites, axon
and soma, the neuron circuits on BSS-2 have no spacial extent. For many experiments the point
neuron models are sufficient, however some benefit from spatially structured neurons.

Spacial neurons have applications in the emulation of biological processes since their behaviour
is more appropriate than point-neurons, but also for computational purposes spatially extended
neurons are useful [9]. The structure of the dendrites can be used to pre-process a synaptic
input before it reaches the soma. Another application is the coincidence detection between
two synaptic inputs. Therefore, neurons with bipolar dendrites fire strongly when the synaptic
inputs on the dendrites happen with a specific delay and much more weakly otherwise [9].
Another advantage in the use of multicompartment-neurons is the possibility to establish
different learning rules on different parts of one neuron [3].

BSS-2 offers the possibility to emulate neurons with multiple compartments rather than sim-
ulating their behaviour. This leads to a reduction of computational cost. Spatially extended
neurons can be realised on the BSS-2 hardware, by short-circuiting multiple neuron circuits to
create a compartment. These compartments represent a part of the biological neuron and can
be connected to each other via resistors. The conductance of the resistor influences the signal
in the neuron, as the spacial structure in a biological neuron would.

The BSS-2 chip has its neuron circuits placed in two rows of 256. On the top and the bottom
of these rows the synapse arrays are placed. The chip is divided in half vertically by routing
structures. Therefore, a spatially extended neuron can only use the left or right half of the chip.
The connections mentioned above are established by five switches in each neuron circuit. These
allow to short circuit multiple neuron circuits to form a compartment and connect multiple
compartments via resistors.

Setting these switches manually is sufficient for smaller neurons, but becomes challenging
and time-consuming for larger neurons. Therefore, an algorithm which performs the switch
configuration is developed. Three types of algorithms are implemented and will be discussed
in the following. A brute force approach, a evolutionary approach and a constructive algorithm
following a set of rules. To test the algorithms for the success rate of the placement and the
execution time a test with randomly generated neurons is used.
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2 Methods

2.1 Multicompartment Neurons

A neuron model can be divided into multiple compartments each serving a computational
purpose, e.g. preprocessing data in dendritic structures [10], or emulating biological behaviour
better than point neurons. These compartments are formed by connecting multiple neuron
circuits on the BSS-2-chip. A compartment can use the shared resources of all connected
circuits. These compartments are interconnected via resistors which create a spatially extended
structure.

2.2 Hardware

The BSS-2 chip has 512 neuron circuits, placed in two rows of 256 circuits [11]. This pattern
allows for synaptic input from synapses from the top for the top row and the bottom for the
bottom row. The chip is separated in two halves vertically, see Figure 1. For the placement of
the multicompartment-neurons a 2×128 grid is therefore available.

For each neuron-circuit five switches, see Figure 1, can be used to connect two circuits in two
different ways.

A direct connection via the two inner switches allows to short circuit two neuron-circuits
creating a single compartment. This allows to form compartments of different shapes if required
for the placement and to use the resources of multiple neuron-circuits to fulfil the model
requirements for a compartment. For example by connecting two neuron circuits with these
two switches the total capacity of the compartment can be increased, since the membrane
capacitances are connected in parallel. This type of connection will be called internal connection
in the following.

The second type of connection uses the shared line of the chip to create a connection between
two compartments. There are two shared lines on the chip, one in the top row and one in the
bottom row. Each neuron circuit has three switches to use the shared line. It can connect to
the shared line with a switch or via a resistor. The shared line can be interrupted or connected
to the right. Therefore, a connection between two compartments can be created by letting
one compartment connect one, or multiple neuron-circuits to the shared line directly and the
other compartment connecting with one or multiple compartments to the shared line via a
resistor. This type of connection will be called external connection in the following. An external
connection between neuron circuits can only be formed in one row.

2.3 Algorithmic Concepts

For the placement of the neuron models different algorithmic approaches are taken. The basic
concepts of the implemented algorithms are presented in the following.
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Figure 1: Left figure shows the basic structure of the BSS-2-chip. The two rows of 128 neuron
circuits on one half of the chip can be connected to each other, but no connection
between the two halves of the chip are possible because of the routing structure
dividing the chip vertically. The right figure shows the five switches for each neuron
circuit that can be used to connect two circuits, taken from [8]. The inner switches Smh
and Smv are used to short circuit tow neuron circuits. The external switches Ss, Sms
and Rms are used to connect two compartments.
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2.3.1 Brute Force

Brute force algorithms solve problems by trying out every possible solution and checking for
validity.

If a problem is solvable an algorithm always finds a correct solution when following the brute-
force approach. Brute force algorithms are useful when applied to problems with few possible
states, since the time complexity of the algorithm is in O(n) where n is the number of possible
states. If no further information about the correct state exists, in the worst case every possible
state needs to be checked for validity.

2.3.2 Evolutionary Algorithms

An evolutionary algorithm follows the concept of biological evolution. Therefore a population
of individuals goes through multiple generations where each individual undergoes selection,
mating and mutation in each generation [13]. Each individual is represented by a genome,
which in this case represents the states of the switches on the chip. For the selection an ordering
of the individuals is required which implies how well it solves the given problem. This ordering
is given by the so-called fitness of the individuals. The fitness indicates how close a solution
is to being correct. Calculating the fitness to a result where the result is not explicitly known
often poses the main difficulty when working with evolutionary algorithms.

During the selection stage a number of individuals are selected, to form a new population.
Different procedures are available for this purpose. For example, the better half of the individ-
uals is selected and copied twice to form the new population. Another selection procedure is
the tournament where multiple randomly selected individuals out of the population compete
against each other and the better fitting individuals proceeds to the next generation. The tour-
nament is repeated N times, where N is the number of individuals in the old population. This
results in a new population of the same size as the old one. With the tournament it is possible
that a better fitting individual has multiple children in the next generation, and that bad fitting
individuals proceed into the next generation, when competing against other worse fitting indi-
viduals. Bad fitting individuals serve the purpose of having a heterogeneous population which
allows for different approaches on a valid solution. The rate of good fitting individuals in the
next generation is influenced by the number of contestants during the tournament, since for a
higher number of contestants the chance that a well fitting individual wins the tournament is
higher.

During the mating stage two randomly selected individuals have a certain chance to interact
with each other’s genome. For example, one exchanges parts of its genomes with the other.
This step allows combining two individuals that both have a good partial solution to one with
a overall better solution and one with a possibly worse solution than before.

The last stage in each generation is the mutation. During the mutation one or multiple changes
are randomly applied to a number of individuals. The most basic type of mutation is a random
flip of a part of the bits in the genome of an individual. Different types of mutations can be
applied depending on the structure of the genome of each individual.
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After performing each of the stages mentioned above the fitness of each individual of the new
population is calculated and a new generation starts. To achieve a valid result the average
fitness of the population should be increasing in each step. Good fitting individuals have
multiple copies of them in new generations with mutations or mated with other individuals.
Therefore, on average the fitness of the best individuals of the population is increasing in each
generation.

To prevent a mutation that makes the best fitting individuals in the population worse, a concept
called "hall of fame" can be used to ensure a certain number of best fitting individuals proceeds
to the next generation without participating in the two alternating stages mentioned above [6].

2.3.3 Greedy Algorithm

Greedy algorithms try solving problems by finding locally optimal partial solutions [7]. When
problems can be divided into steps that are independent of each other greedy algorithms can
find the optimal solution as a combination of locally optimal solutions. However often the
single steps are not independent of each other and therefore a locally optimal solution can
result in a bad overall solution or a state where no solution can be found.

For the placement of multicompartment neurons, local solutions are the placements of single
compartments that have a optimal usage of resources but may block off connections between
other compartments and therefore prevent a valid solution for the placement of the complete
neuron.

2.3.4 Backtracking

A backtracking algorithm tries to find solutions to a problem in multiple steps. If the algorithm
detects, that its current state can not lead to a valid solution the state is abandoned and the
algorithm goes back n steps [14]. The algorithm than chooses another option for the next step
as the last time. The number of steps n that the algorithm goes back in the solving process
depends on the problem to solve. Typical choices are going back one step, which equals a depth
first search or going back to the first step, which equals a breadth first search.
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3 Results

3.1 Neuron Abstraction Model

The implementation of the neuron abstraction model was performed during a preceding in-
ternship by the author and will be shortly described in the following [2].

The neuron abstraction model allows for intuitive construction of a multicompartment neuron.
The model consists of three main parts, that are hierarchically ordered. The neuron is imple-
mented as a graph which contains its compartment as vertices and the connections between the
compartment as edges. The compartments contain mechanisms, which correspond to hardware
configurations e.g. the membrane-capacitance of a compartment, see Figure 2.

Figure 2: On the left hand an abstract neuron model in its graph representation with multiple
compartments. On the right hand a single compartment containing its mechanisms.

The neuron model described above is the only required user input for the placement algorithm
to work. No further information by the user is required. The created abstraction model was
designed to not only work as an abstraction step for the specific problem of multicompartment-
placement, but is generic and can be used in different use cases and on different hardware.

3.2 Hardware Resources

The implementation of the hardware resource determination step was performed during a
preceding internship by the author and will be shortly described in the following [2].

To perform the placement of the multicompartment neuron, the given model parameters, e.g.
membrane capacity, are not sufficient. Instead, the number of neuron circuits on the BSS-2 chip
are required for the algorithm to perform placement.

To determine the hardware resources, the model parameters of the mechanism of each compart-
ment are converted into the number of required neuron circuits. This information is provided
during the placement step for each compartment. The required resources can be specifically
linked to the top or the bottom row if required. This feature allows compartments to have
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guaranteed synaptic input from both the upper and lower synaptic array which can be required
depending on the experimental setup.

3.3 PyNN API

PyNN is a Python library often used for experiments in computational neuroscience. To make
the use of multicompartment neurons on BSS-2 accessible in a similar fashion as in the PyNN
library [12] an Application programming interface (API) is created.

The API allows creating neurons of the abstraction model by defining their mechanism and
adding them into a compartment builder, that returns classes of compartments. This allows to
create templates of compartments, e.g. a spiking mechanism. These compartments are added
to the morphology builder and then interconnected to form a neuron. The morphology builder
returns a class of a neuron, which can again be used to create templates. This neuron is then
converted to the abstract neuron described in section 3.1 to perform the placement step.

The neurons generated in Python can be used to create PyNN populations, with which experi-
ments can be performed.

3.4 Placement

The placement of multicompartment-neurons is trivial for small neurons without complex
structure. For increasing size and complexity the placement becomes increasingly challenging.
The configuration of the chip consists of five switches for each of the 256 neuron circuits on each
half of the chip. Setting them by hand is not sufficient for larger neurons and a automation of
the placement is required. Therefore, three different algorithms are implemented and presented
in the following.

3.4.1 Brute Force Algorithm

The brute force algorithm tries every possible combination of the five switches of each neuron
circuit of the BSS-2 chip until a correct result is found, see Figure 3. This approach has the
advantage that for every placeable neuron a solution is found. The disadvantage of the brute
force concept lies in the number of possible combinations that need to be tested. One half of the
BSS-2 chip has a grid of 2×128 = 256 neuron circuits and each of the circuits has five switches
with two states each. Therefore, theoretically there are (25)256

∼ 2 · 10385 possible states for the
setup. Trying every possible configuration is therefore not feasible.

The number of possible states of a neuron circuit in general are 25 = 32. Since some states are
not valid these states are not tested in the brute force algorithm. It is not needed to test for
states where the neuron circuit is connected to the shared line directly and with a resistance
at once, since the direct connection short circuits the resistor. This subtracts 8 possible states
which leaves 24 combinations per neuron circuit and leads to a total of 24256

∼ 2 ·10353 possible
combinations for the whole coordinate-system of neuron circuits.
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Figure 3: Working principle of the brute force algorithm.

The implementation of this algorithm iterates through all possible states of the switches of each
neuron circuit in the coordinate system and checks after each iteration if the current state is
a valid solution. Starting at the left end of the grid, it firstly iterates through all states of the
neuron circuit in the top row. If all valid 24 combination of switches have been tried out, the
state of the first neuron circuit is set to zero, which equals no switches set, and the second
neuron circuit, in the first column in the second row is iterated by one. Then all iterations of
the first neuron circuit are repeated. This can be continued until the maximum size of 256 used
neuron circuits (128×2) are reached.

The validation of the current state consists of different steps which aim to detect a wrong
solution quickly. First the coordinate system is scanned to detect compartments. This is done
by finding neuron circuits that have a state unequal to zero, which means they have switches
set, and therefore are connected to other neuron circuits. The validation performs the following
checks on the possible solution in the given order since they have increasing computational
costs and therefore aim at a fast invalidation through computational cheap checks.

1. Number of compartments: compares the number of detected compartments with the
number of compartments in the target neuron.

2. Number of compartment connections: compares the number of detected compartment-
connections with the number of compartment-connections in the target neuron.

3. Isomorphism of neuron constructed from current solution and target neuron.

4. Minimal number of neuron circuits per compartment.

Once a valid solution is found, the algorithm assigns the compartment-IDs of the target neuron
to the corresponding neuron circuits on the coordinate system. The conversion happens through
a mapping of the compartment-IDs created during the validation and the compartment-IDs of
the target neuron.

For larger neurons, finding a valid solution for the placement takes many iterations of the
algorithm and is therefore time-consuming. The algorithm has a time limit after which it is
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terminated without success and without information if the neuron model is placeable on the
hardware. Neurons with up to four compartments have successfully been placed using the
brute-force algorithm.

Since multiple states of the coordinate-system can be tested in parallel, it is useful to run
the brute force algorithm in parallel by creating blocks of configurations. This happens by
iterating the state of a neuron circuit further on the right, e.g. the fifth which creates blocks of
configurations with 244 configurations, that can be tested in parallel.

This feature is implemented by creating s starting states, where higher-valued circuits have a
state unequal zero. Then these s states are validated and, while no solution is found, iterated
as in the single-threaded case. The time required to test for n possible states of the coordinate
system is therefore reduced by the factor s. The parallelisation is done on a machine with 64
cores therefore s = 64 is chosen.

When performing the brute force approach on the whole coordinate-system with the paralleli-
sation explained above, this leads to 24256

64 ∼ 3 ·10351 successive iterations.

The time a single iteration of the algorithm, including the validation which requires the most
time, was measured after several optimisations to be in the order of 20ns. With this the
placement of a more complex neuron as shown in Figure 13, with 34 circuits that need to be
partially iterated, would take the algorithm 1.8 ·1033 years without the parallelisation.

In the time from the creation of the universe to now the algorithm would be able to iterate up
to 19 circuits at the given speed [5]. For the algorithm to perform in a suitable time of 10min for
the mentioned complex neuron, 1038 parallel runs would be required. Therefore, the brute-force
algorithm as a solving strategy for the placement is discarded. For smaller neurons the solution
is rather trivial and other algorithms can find a good to optimal solution and for larger neurons
the brute-force approach can not find a solution, in a suitable time span.

3.4.2 Rule-based Algorithm

A basic version of this algorithm was developed during the previous internship [2]. During the
bachelor thesis some functionalities were modified to increase the amount of placeable neuron
models. At the end of the internship the algorithm was capable of placing neurons with up to
four adjacent compartments.

The basic concept of this algorithm can be classified as a sequential greedy algorithm. The
algorithm picks the most complex compartment of the model-neuron and places it at the center
of the coordinate system. It then places compartments, which are connected to this central
compartment in the model neuron, adjacent to the central compartment on the coordinate
system, see Figure 4, following given rules. Examples for rules given to the algorithm are the
following

– The compartment with the highest number of connected compartments is placed in the
center
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– The neighbour with the highest number of connected compartments is placed before
neighbours with fewer connections

– The default placement happens in the top row of the coordinate system. If the top row is
full, compartments are placed in the bottom row.

Figure 4: Working principle of the rule based algorithm.

With the concept of rules for the algorithm the amount of neurons placeable with the algorithm
is small at the beginning of the development since only fundamental rules are known. During
the development model neurons with increasing complexity in terms of size, shape and number
of connections, are tested. If the test for a model neuron fails a rule is implemented to allow the
placement of these neurons. For neurons with a higher number of compartments the number of
possible topologies increases. Therefore, testing each neuron topology by hand is not suitable
and the algorithm is tested with randomly generated neurons. The individual steps of rule
implementation are described in the following.

As a first step the rule-based algorithm assigns the descriptor of a compartment to one neuron
circuit. This represents a neuron consisting of one compartment with the requirement for one
neuron circuit. This is the most fundamental assignment which does not include multicom-
partment neurons. See the result Figure 5.

Next a compartment with the requirement for multiple neuron-circuits is placed. Therefore, an
internal connection between two neuron-circuits is established by setting the switches to short
circuit these two compartments, see Figure 6.

In the next step a neuron with two compartments that are connected to each other is placed.
Therefore, the algorithm gets a rule on establishing a external connection between two neuron
circuits belonging to different compartments, see Figure 7.

A more complex structure is a chain of compartments, where each compartment is connected
to a maximum of two other compartments. This can be realised by placing the compartments
in the top row adjacent to each other and establish a external connection between them, see
Figure 8.

If a neuron contains a compartment that is connected to more than two other compartments the
placement pattern of the compartment chain is no longer sufficient. Therefore, the compartment
with more than two connections needs to change its shape to a two times two grid to be able
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to connect to up to four compartments, see Figure 9 and Figure 10. The choice of the shape is
not the only possible. A solution with fewer neuron circuits would be, to allocate one circuit in
the top and one in the bottom row, however this pattern requires for a more complex treatment
of the connections between the compartment to ensure that two compartments are not short-
circuited via the shared line. Therefore, the solution using the two times two shape is used to
simplify the connection process.

For some cases, especially for synaptic inputs, a further restriction on the location of the neuron
circuits of a compartment is required. Therefore, it can be specified to place compartments in
the top row or in the bottom row. An example can be seen in Figure 11.

To increase the maximal amount of connections per compartment a bridge-shaped structure
that has inlaying chains is implemented. At this state the algorithm can construct compartments
with arbitrary number of connected compartments. However, the structure of the connected
compartments and their neighbours is limited. Only two of the neighbours can branch into
multiple neighbours. One of them is placed on the right of the bridge-structure one on the left.
Additionally, the amount of compartments with synaptic input from both directions is limited
due to their property to occupy both the top and the bottom lane of the coordinate system,
making it impossible to place more than one on each side. See an example in Figure 12.

Figure 5: Placement of a single compartment with requirement for one neuron circuit.

Figure 6: Placement of a single compartment with requirement for multiple neuron circuit.

Figure 7: Placement of two compartments of different size that are connected to each other.
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Figure 8: Placement of a chain of compartments.

Figure 9: Placement of a compartment which needs to change its shape to allow for connections
adjacent compartments.

Figure 10: Placement of a compartment with four connected compartments.

Figure 11: Placement of a compartment with specified synaptic input.

Figure 12: Placement of a compartment with seven connected compartments via a bridge struc-
ture.

Figure 13: Placement of a neuron with a combination of different topological structures. Com-
partment F creates a bridge structure to connect to seven compartments. Compart-
ment D increases its size to allow two connections. Compartment B creates a bridge
structure to connect to five compartments. Compartment E allocates a third neuron
circuit not required by the minimal resource requirements or the number of connec-
tions but to allow for the placement of compartment M in the bottom row.
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Evaluation

The rule-based algorithm is tested regarding to the execution time and the rate of successful
placements. Therefore, random neurons are generated with a given number of compartments
and compartment connections. The algorithm then performs the placement. During the test
the time required for the placement of one neuron as well as the success rate of the algorithm
is measured over the iterations of the test.

The rule based algorithm has logical limitations for placeable neuron topologies. Therefore,
when finding a logical error in placement the algorithm aborts and a fail is recorded.

The test can be executed with cyclic or acyclic neurons. For the acyclic neurons only m = n−1
compartment-connections are possible (with n the number of compartments). For m > n− 1 a
cycle would occur and for m< n−1 the neuron would not be connected (not every compartment
has a path to every other compartment on the neuron). If cyclic neurons are allowed by the test
the number of compartment-connections is within the range n ≤m ≤ n·(n−1)

2 .

Since the rule-based algorithm can only connect loops if the compartments are placed adjacent
in one row by coincidence, limiting the test to acyclic neurons made the test results more
representative. Another reason to limit to acyclic neurons is the fact, that in many cases where
biological neurons are reviewed these neurons have a acyclic structure [1]. The results of the
test for the rule-based algorithm in its current state and its state at the end of the internship
are displayed in Figure 14. The testing shows that during this work the amount of placeable
neurons has increased. The execution time of the algorithm, see Figure 15, has increased for
higher numbers of compartments which results from the implementation of the backtracking.
Overall the execution time of the algorithm depends linearly on the number of compartments.
The peaks for higher number of compartments result from the backtracking which can require
the algorithm to place compartments multiple times with different allocated resources.

Figure 14: Testing of the ruleset algorithm for random neurons at its current state and its state
at the end of the internship. The algorithm is tested with 1000 randomly generated
neurons for each neuron size.

The topology of the neurons failed to be placed are used to determine future changes on the
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Figure 15: Testing of the ruleset algorithm for random neurons at its current state and its state
at the end of the internship. The algorithm is tested with 1000 randomly generated
neurons for each neuron size.

algorithm. The test was therefore repeated multiple time to accomplish the changes mentioned
above.

During the testing phase limitations to the current state of the algorithm are recognized. The
random neuron testing failed for some neurons that have different topology but share sub-
structures that cause the algorithm to fail. An example for two failing neurons with eight and
twelve compartments are shown in Figure 16. The failure of the algorithm for these two similar
neuron topologies results from a wrong order of placed compartments during the placement
step. Another reason for the failed placement is the inability to treat leaf compartments and
chains, which are single compartments and compartments connected to a maximum of two
other compartments, differently than branches that split up in multiple chains or leafs. Since
the algorithm only places compartments adjacent to already placed compartments, for some
combinations placement slots can get blocked.

This can be solved by either using backtracking and changing the placement order or by allowing
changing the shape of already placed compartments. The second issue of leaf compartments
and chains can be fixed by giving the algorithm more knowledge over the structure of connected
branches instead of only the next connected compartment during the placement. When taking
substructures into consideration leafs and chains can be placed differently, so they are not
blocking for other more complex structures. A plot of a failed placement, due to the described
issue, and a possible fix is shown in Figure 17.

3.4.3 Evolutionary Algorithm

The evolutionary algorithm developed uses a probabilistic approach to find valid solutions for
the placement of the multicompartment neuron models. The algorithm creates a population of
individuals which undergo multiple changes and then form a new generation. This process is
repeated until a solution is found or a specific time limit is exceeded, see section 2.3.2.
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Figure 16: The neuron on the left with 8 compartments failed to be placed, because the com-
partments have been placed in the wrong order. Compartments with more connec-
tions get placed before compartments with lower numbers of compartments possibly
blocking neuron circuits on the chip. The neuron on the right with 12 compartments
failed to be placed because the algorithm cannot handle leafs or chains of compart-
ments differently than splitting branches. Therefore, they are placed equally, which
blocks adjacent neuron circuits on the hardware. This leads to a failure in placement.

Figure 17: In the plot on top the placement done by the algorithm is shown in this case the
compartment H can not be placed since it requires a free slot adjacent to compartment
A. In the bottom plot a simple fix for this issue is shown.
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The operations of each generation can be classified in four steps. First a selection step makes a
selection of individuals from the last generation which continue to the new generation. In the
second step mating between individuals happens, where parts of the genomes are exchanged.
In the third step multiple different mutating operations are applied to the individuals in the
population. As a last step the fitness of each individual of the population is calculated, see
Figure 18.

Figure 18: Basic working principle of an evolutionary algorithm.

The genome of each individual is a bit-string, where each bit represents one switch or the
connection between the two rows of the coordinate-system, which is formed by two switches,
see Figure 19. Therefore, each neuron circuit requires 4.5bit to represent its switches. The
genome for one half of the BSS-2-chip has a length of 1152 bits. It follows a alternating pair
pattern so that two adjacent parts of the genome are also adjacent on hardware, see Figure 19.
The population is an unordered list of individuals, each represented by its genome.

Figure 19: On the left the genome as a representation of the single switches of the neuron
circuits on hardware is shown. The switches to connect the top and the bottom row
are represented in a single bit since both need to be set to establish a valid connection.
On the right the pattern in which the genome is formed is shown.

The first population is initiated with individuals where for each genome random bit flips are
applied. During the testing a rate of pflip,inital = 0.8 is found optimal.

Selection

The selection process happens in two steps, see Figure 20. First a number of individuals with the
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best fitness are selected, which will continue to the next generation unchanged. This so called
hall-of-fame is used to prevent the mating and mutation steps happening later to manipulate
the best individuals and making their fitness worse. Without the hall-of-fame concept it is
possible that e.g. because of a high mutation rate each well fitting individual gets mutated to a
worse fitting one. In the implementation the top five percent of the population were preserved
in the hall-of-fame.

During the second step a selection of the size of the previous generation minus the number of
hall-of-fame individuals is performed via a tournament. In a tournament multiple randomly
drawn individuals compete against each other. The one with the highest fitness wins the
tournament and proceeds to the new population. A higher number of contestants leads to
more well fitting individuals in the new population. This possibly leads to changes in the right
direction to find a valid solution but can as well cause a homogeneous population which does
not try out enough different configurations and therefore is stuck with an invalid solution.

Figure 20: Selection step of evolutionary algorithm.

Mating

During the mating step two individuals exchange parts of their genome, see Figure 21. There-
fore, two individuals are randomly selected and with a given chance randomly selected parts
of their genomes are exchanged. This allows to combine solutions that are partially good. The
mating can be improved by performing the mutational operations that change the genome in a
way that the exchange of parts of it create a better solution.

Figure 21: Mating step of evolutionary algorithm.
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Mutation

Three different mutations are applied to the population during this step, see Figure 22.

Two different more directed types of mutations are implemented as well; a shifting operation
and a mutation that adds and removes columns of the configuration.

The shifting operation translates the genome by a random distance in a specified range either
to the left or to the right with a probability pshift. The translation happens as a rotation, so
circuits represented by bits in the genome that are shifted out of the structure on one end are
inserted on the other end. This mutation can be beneficial for the mating of two individuals as
it repositions partial solutions that can form a better solution when mating.

The mutation of adding and removing columns, with probability padd/remove, of the configuration
grid allows to change configurations in the middle quite easily compared to the mutation that
flips random bits. To change the structure in the middle of a larger structure in the configuration
and shift the existing well fitting parts further to the sides requires a lot of bit flips which first
result in a worse fitness and are therefore unlikely to happen. This issue can be solved by
inserting a blank column at a random position that can be mutated during the next mutation.
The removal of columns serves the same purpose. By deleting blocking structures in the middle
of the configuration new connections can be formed by the undirected mutation that have better
fitness.

Figure 22: Mutation step of evolutionary algorithm.

Fitness

After the operations that manipulate the population and create a new generation of individuals
the fitness of each individual is calculated. Therefore, multiple factors are taken into account. To
calculate the fitness first the genome represented as a bit-string is converted into a coordinate-
system and a model neuron is constructed by looking on the switches set in the coordinate
system. This neuron is compared to the target neuron in terms of number of compartments,
number of compartment connections, allocated hardware-resources and the largest subgraph-
isomorphism.

The number of compartments and connections is simply compared to the number of required
compartments and connections of the target-neuron. The higher the difference the lower the
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fitness from this parameter. Fcompartments/ connections = 1− |
Ntarget−Nallocated|

max(Ntarget,Nallocated)

The fitness calculated by hardware resources uses the difference between allocated resources
and required hardware-resources. The number of required resources is the minimum number
of resources determined by the requirements of the mechanisms of the target-neuron. If the
number of allocated resources is lower than the required the fitness of this parameter is between

zero and one Fresources = 1− |
Ntarget−Nallocated|

Ntarget
. If the number of allocated resources is higher than

the required ones plus the additional resources allowed the fitness has a value between one and

two Fresources = 2− |
Ntarget−Nallocated|

Nallocated
. This distinction between more or less allocated resources than

required is done because a solution with minimal number of hardware resources can not always
be found. So the optimal solution can require more than the minimal number but should be
still as small as possible. On the other hand with fewer resources no valid solution is possible.

The subgraph isomorphism method performs a mapping of compartment-identifiers from the
neuron constructed out of the genome to the target-neuron. If a valid solution is found this
mapping is complete. Otherwise the largest subgraph is determined. The fitness is then
calculated by the difference of the number of compartments of the subgraph-neuron and the

target-neuron. Fisomorphism = 1− |
Ntarget−Nsubgraph|

Ntarget

Each comparison returns a value which is higher for neurons closer to the target neuron. These
factors are weighted and added up to form the total fitness of an individual Figure 23 by F =∑

i wi ·Fi =wcompartments ·Fcompartments+wconnections ·Fconnections+wresources ·Fresources+wisomorphism ·

Fisomorphism.

Figure 23: Fitness calculation during evolutionary algorithm.

During the development of the algorithm multiple other fitness values are taken into account
but discarded later. The main goal of these values is to keep the growth of the result local
and with minimal spatial extend to prevent disjunct solutions spread over the grid. Therefore,
a fitness value that is larger for a lower number of switches set in total is introduced as well
as a value that measures the distance between the neuron circuit with switches set on the
furthest left and the circuit with switches set furthest on the right. This value is smaller for
larger distances. Both these fitness values have the consequence that setting switches and
having larger structures in the configuration results in a smaller fitness and therefore inhibits
the growth of the configuration strongly so that no solution can be found.
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Valid solutions

The operations described above are repeated over multiple generations. Therefore, the order
in which the operations are performed is arbitrary. In the current implementation after each
generation only the best fitting individual in the population is checked for validity since this
check is computationally expensive, see Figure 24. However, this check is sufficient since the
fitness is always higher for a valid individual with worse e.g. allocated resources, than for an
invalid individual.

Figure 24: Validation in each generation of evolutionary algorithm.

Parameter optimization

The different operations applied to the population explained above have parameters like the
mating probability or the mutation probability for different types of mutations. To find an
optimal parameterization for the evolutionary algorithm, it is tested by different randomly
generated neurons. The test is run for each of the parameterizations in parallel and the results
are compared regarding to the success-rate which correlates to the execution time, since a failed
placement is equal to reaching the run-time limit. Throughout multiple tests the following
parameters have proven useful as they create the highest overall success rate. With multiple
test runs with different combinations of run parameters the in total best performing parame-
terization can be seen in Table 1. Up to 128 different parameterizations are tested in parallel to
distinguish whether some parts of parameterizations are superior to others and to find the best
combination. A comparison between the success rates of multiple different parameterizations
can be seen in Figure 25. It can be seen, that some parameterizations are overall superior to
others. The number of tested combinations is limited since the algorithm requires a time limit of
multiple minutes to achieve sufficient success rates and the testing therefore is time-consuming.
Additionally after setting fixed parameters for the mutation and mating probabilities the popu-
lation size is varied and different seeds for the random number generator are tested. The results
of this testing steps are shown in Figure 26 and Figure 27. While for the population size an
increase in the success rate for larger populations can be observed as well as a shorter execution
time, no dependency between the seed for the random number generator and the success rate
can be seen. Therefore, a population size of 10000 is chosen and the choice of the seed remains
arbitrary.

Another parameter that was part of the testing is the size of the genome. The algorithm was
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Figure 25: Comparison of different run parameter configurations. The test is performed with
an average of 150 randomly generated neurons per number of compartments. The
varied parameters are the probability for the mutational steps, the bit flip, the shift
and the add/ remove mutation as well as the number of contestants in a tournament,
the number of members in the hall of fame and the mating probability. It can be
seen that some parameterizations have a overall better success rate and are therefore
preferable to be used.

Population size 1000

Contestants in tournament 2

Member in hall-of-fame 50

Probability for random bit flips in individual 0.4

Probability for single bit to flip 0.01

Probability for mating 0.2

Probability for adding or removing a column 0.1

Probability for shifting the genome 0.1

Table 1: Optimal parameterization of the evolutionary algorithm.
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Figure 26: The plots show the dependency of the success rate and execution time of different
population sizes. The test is performed with 150 different randomly generated
neurons for each neuron size, with the optimal parameterization shown in Table 1.
The results show, that a larger population size is beneficial for the success rate and
the execution time of the algorithm.
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Figure 27: The plot shows the dependency of the success rate of different seeds for the random
number generator. The test is performed with 150 different randomly generated
neurons for each neuron size, with the optimal parameterization shown in Table 1.
The results show no dependency between the success rate of the algorithm and the
seed for the random number generator.

tested with different fixed lengths where for smaller neurons, with fewer compartments, a
smaller genome has shown beneficial. Therefore, an optimization of the algorithm that varies
the length of the genome or changes the limits in which mutations are applied during the
execution is likely to improve the algorithms performance and success rate. This change allows
to have a more local growth in the beginning but does not limit the number of neuron circuits
used during the placement.

In the current implementation the first valid solution is taken as a result. In the future further
steps can be introduced to optimise the valid result. This can happen in a constructive way by
determining unused neuron circuits and flipping switches to free them. Another option is to
optimise probabilistically by creating a population consisting out of individuals with the valid
result as genome and the algorithm is run for a specific amount of time to find a solution with
a higher fitness. Since a growth of fitness always means an improvement this method cannot
invalidate the given results.
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4 Discussion

This work aims at automating the placement of multicompartment neurons on BSS-2. Multi-
compartment neurons are useful since they replicate the behaviour of biological neurons better
than point neurons do, but also because of their computational power [9]. For example, the
structure of the dendrites can be used to pre-process a synaptic input before it reaches the soma
or the separation into multiple compartments can be used to establish different learning rules
on each compartment [3]. Since the mapping of an abstract multicompartment neuron model to
the hardware configuration of the BSS-2-chip is non-trivial for larger neurons, three algorithms
were implemented to automate the mapping.

During a preceding internship a neuron abstraction model was implemented that is used in
this work. It is used to create neuron models that consist of multiple logical compartments that
each fulfil a computational purpose. The neuron is represented in a graph structure and is the
only input required by the placement algorithm to perform the placement.

During this work two different new algorithms were developed and one, which was developed
during a preceding internship, was improved to solve the problem of placing multicompartment
neurons onto the BSS-2-chip.

The simplest approach is the brute force algorithm, which tries every possible combination of
switches, which control connections between neuron circuits on the chip. With 24256

∼ 2 ·10353

possible configurations of the switches, the complexity of the algorithm is not useful for neurons
with more than four compartments. Since the placement for neurons with few compartments
is trivial, the algorithm has no use.

Another approach is the rule based algorithm which constructs the neuron onto the coordinate
system starting with a center compartment and moving to the sides. For the general testing
with randomly generated neurons this algorithm performed best, see Figure 28, but has logical
limitations. For every structure this algorithm is unable to place, new rules for the placement
need to be established.

Therefore, a third algorithm with an evolutionary approach was developed with the goal to
create an algorithm capable of placing a large number of neurons while not being limited by
logical problems but rather by performance or a time limit.

In direct comparison the rule-based algorithm performs better than the evolutionary algorithm,
see Figure 28. The rule-based algorithm has execution times in the order of milliseconds
whereas the evolutionary algorithm requires multiple seconds up to multiple minutes to find
a valid solution. Another advantage of the rule-based algorithm is the higher success rate
compared to the evolutionary approach. It finds solutions for some neurons with more than 30
compartments, if their topologies are simple enough.

The testing results of random neurons on the brute force algorithm, the evolutionary algorithm
with the optimal parameterization as well as the rule based approach in its final state are shown
in Figure 28. The success rate displayed in the plots does not take into account whether a
neuron is placeable at all on the BSS-2-chip. Taking this into account would require a reliable
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algorithm that finds a valid solution for every placeable neuron, which was not achieved yet.
The brute force algorithm was intended to be used for this purpose but found no use since its
execution time is too high.

Figure 28: Comparison of the different algorithms. The evolutionary and the brute force algo-
rithm were tested with 150 neurons per number of compartments since they have
higher execution times. For both algorithms a time limit of 180s is chosen to be able
to test a sufficient amount of different neuron topologies. The ruleset algorithm was
tested with 1000 neurons per number of compartments since it executes faster.

In direct comparison the bad performance of the brute force algorithm can be seen. The
evolutionary algorithm can be ranked between the brute force and the rule based algorithm in
terms of success rate. With the current parameterization it is capable of placing neurons with
up to twelve compartments during the test. The rule based algorithm performs best in terms
of its success rate as well as its execution time. It is capable of placing some neurons with up
to 30 compartments during this test. The execution time is by far superior to the two other
algorithms. Even for small numbers of compartments the evolutionary algorithm requires
seconds for the placement and for larger neurons minutes are required to find a valid solution.
The rule based algorithm finds solutions in milliseconds.

However, the evolutionary algorithm still has its advantage in the theoretical power to solve the
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placement problem for any placeable neuron topology. The limiting factor is the time given to
find a solution. To make more neurons placeable during the given time a further optimization
of the single algorithmic steps is required.

The problem of automating the placement of multicompartment neurons has been solved for a
significant amount of neuron topologies by the implemented algorithms where the rule based
and the evolutionary algorithm have proven useful for the placement whereas the brute force
approach can not be used because of its bad scaling for larger neurons.

The brute force algorithm has a hard upper limit, since its execution time scales with the number
of possible states of the hardware configuration. Therefore, the brute force algorithm is limited
in use for small neurons.

The rule based algorithm is limited by the implemented rules. As mentioned above there are
structures that cannot be placed at the current state of implementation.

The evolutionary algorithm faces two challenges. First an optimal parameterization needs to be
found. Through the testing of different parameter combinations some parameter combinations
are found superior to others, but since not every combination was tested, because of the large
number of possible combinations, there might be a better configuration, that was not part of
the testing. Secondly the single steps in the algorithm can be further optimized to improve
the time a single generation requires. In combination with a longer run time during testing, a
higher success rate can be achieved.

In addition to the development of the three algorithm described above an API comparable to the
PyNN-multicompartment-interface was created. The abstract neuron models can be constructed
in Python and can be used to create PyNN-populations of neurons.

Solutions to overcome some of the limitations of the currently implemented algorithms men-
tioned above will be presented in the following.
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5 Outlook

The integration intoPyNNwill be continued. Currently, populations of the neurons can be created
but no experiment can be run. Therefore, the placement where the algorithm is performed
needs to be added before the run execution. To be able to use multicompartment neurons
on the hardware a final translation of the model parameters to calibration parameters for the
hardware needs to be performed.

The brute force algorithm will not receive any optimization in the future, since it was shown
that the scaling of the algorithm defies every optimization.

The rule based algorithm is limited by the currently implemented placement rules. In future
changes more rules for the placement can be established to make the placement of currently
not placeable neuron topologies possible. Promising options are a change of shapes during
the placement or a different treatment for different substructures. However, multiple iterative
steps with testing for unplaceable structures in the neuron topology will be necessary to bring
the algorithm to a state where it finds a valid solution for every neuron model placeable on the
BSS-2-chip.

The evolutionary algorithm is limited by its parameterization and its runtime. To improve the
parameterization further additional combinations of parameters can be tested to find superior
solutions than the current. To improve the runtime of the algorithm the single steps that are
performed during each iteration can be optimized to shorten the time a single generation needs.
These single steps can be performed in parallel for multiple individuals of a population at once,
however after each step and especially after each generation it is required to sync up the whole
population. Therefore, the parallelisation is limited to single steps in each generation.

Another improvement is the implementation of a variable genome length. The algorithm starts
applying mutations in a small area of the chip first and then increases the genomes’ length
to use more neuron circuits for the placement. This is useful since it preferably creates small
solutions if possible but has no hard upper limit for the size of the placed structure other than
the chip size. Mutations in a compact area of the grid are more likely to improve the result, since
the placement grows locally and forms substructures that grow to increase the fitness. With
this step there will be no need to lower the fitness if more resources are used than required by
hardware resources, since the variable length of the genome limits the size of the configuration.

Independent of the algorithmic concept used to find a valid solution for the placement an
additional step to optimize the result can be introduced. The goal of this step is to create a
solution which uses fewer neuron circuits and has fewer unused neuron circuits in between
used ones. This makes it possible to use more multicompartment neurons on one chip. This
can be implemented in a constructive way, similar to the rule based algorithm, where rules
are implemented that determine whether circuits are not required for a correct placement
or if compartments can be repositioned to decrease the overall size of the neuron. Another
implementation option is to let the evolutionary algorithm run to further maximize the fitness.
The new population can be initialized with the valid solution which then can undergo the same
steps as shown in section 3.4.3, to improve the result.
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Equipped with the changes mentioned above either the evolutionary or the rule based algorithm
are promising to solve the placement problem for a greater number of neurons and enable
experiments with even more complex neuron topologies than currently possible.
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Appendix

repository git hash commits

grenade 3f7d61693290b686146a707ff13a0130ab488196 22996

22890

22528

code-format 09f3a985a6f264359b10a6a129dd6dce7e55c9e8

logger 73dadb3ce413c521845ef7d36f818073eee4fefa

halco 85e685aab6e8ea68ff78ae4273e17a75420813f9

haldls 2dd2b267f1e283160972aa0190a4ea0cfc0f0f56

hate 35b3cb211cabbbc5c01036ae7878a73e338166c4

libnux fc3b137384596ea5adbd5d4ee1ddfc9761a2aabc

fisch 6120fc0ac0d90b3c66a212b3cc5cc25034bf584e

hxcomm 95abf25670bd8cb7cc5b499cde56f653130cf20c

rant 722edd57c9e42462a660db8a1febb0211ffad07c

ztl b6745261d8bfdce44516d58d632c3c73834839d2

pywrap 5e2af30e9593882b471d3cd02df00b93f13ff479

lib-boost-patches 136c5b41cb046afe2c726aa4646928bf5190622e

sctrltp 1d854f953f7e8c8ead44406a22bb80421ca3857c

hwdb 9607ff1f3090ec18e75b76ed90592be643b4cab2

visions-slurm 8f41ea4f5bd1573d8f4623e9ed698a29f30036a3

flange 28e729d59df3b4ff380f84351c40d4da3086bed8

lib-rcf 21fbcb0a7c30efed98278ee997754f28092b9736

bss-hw-params b7be7827b51536804f0bda76f8ba4be693df23a8

pynn-brainscales d51bbdabc14fc5da5cc63a0a1110781acef9c4e0 22827

calix a72f41e4a594ce82ab81d0d43f0ce2f3f67108ff

Table 2: Current software state of modified repositories.

key value

path /containers/stable/2024-04-17_ 1.img

link https://openproject.bioai.eu/containers

Table 3: Current state of the singularity container.
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