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Abstract

The aim of the Electron Capture in '®*Ho (ECHo) collaboration is to determine the
effective electron neutrino mass by analyzing the endpoint region of the 1%3Ho electron
capture spectrum. The spectrum is measured using metallic magnetic calorimeters
(MMC) enclosing '*Ho and subsequently the data is reduced to avoid the presence
of artifacts before further analysis can take place. Previously, a histogram-based ap-
proach has already proven to be a suitable choice for the analysis of the spectrum and,
in particular, of the endpoint region. To further improve the sensitivity of the fitting
algorithms to quantify the effect of tiny neutrino masses, we are testing methods of
unbinned analysis like a Kernel Density Estimation (KDE) to mitigate potential arti-
facts of binning the continuous event energies of the low-intensity endpoint region close
to the Q-value of the '%3Ho decay. We present the implementation of these algorithms
in the analysis of the ®3Ho spectrum acquired within the ECHo-1k experiment and

compare the results with those obtained with binned spectra.

Analyse der Endpunktregion des !®3Ho-Spektrums

ohne Verwendung von Histogrammen

Das Ziel der Electron Capture in '®*Ho (ECHo) Kollaboration ist es die effektive
Elektronneutrinomasse iiber die Analyse der Endpunktregion des '%*Ho Elektronenein-
fangspektrums zu bestimmen. Das Spektrum wird gemessen mithilfe von Metallischen
Magnetischen Kalorimetern (MMC) in denen '*Ho eingeschlossen ist, und anschlieBend
werden die Daten reduziert um das Auftreten von Artefakten zu verhindern. Zuvor hat
sich ein auf Histogrammen basierender Ansatz bereits als sinnvolle Methode bewiesen
das Spektrum und insbesondere die Endpunktregion zu analysieren. Um die Empfind-
lichkeit der Kurvenanpassungsalgorithmen zur Quantifizierung des Effekts winziger
Neutrinomassen weiter zu verbessern testen wir Analysemethoden die auf Verwendung
von Histogrammen verzichten wie beispielsweise eines Kerndichteschétzers (KDE) um
Artefakte des Einteilens kontinuierlicher Energien der Endpunktregion mit geringen In-
tensitdten nahe dem Q-Wert des '%3Ho Zerfalls in Klassen zu mildern. Wir prisentieren
die Implementierung der Algorithmen in der Analyse des '®*Ho Spektrums welches im
ECHo-1k Experiment gewonnen wurde und vergleichen die Ergebnisse mit denen eines

Spektrums in Histogrammdarstellung.






Contents

(1 _Introduction|

*Ho endpoint region fit|

[2.1 Phase space factor]

[2.2  Gaussian Detector

Response| . . . . . . . ..o

[2.3  Background| . . .

2.4 Atomic physics function| . . . . . ... ...

Kernel Density Estimation|

Method of testing the KDE]

4.1 Data reduction| .

[4.2  Preparing the spectral shapel . . . . . . ... ... ... ... ... ...

[4.3  Fraction of pile-up

events in the background| . . . . ... ... ... ..

[4.4  Detector response

[4.5  Endpoint region fit| . . . . . . ..o

[6_Results

6 Conclusions|

(7

Appendix|

T o= W W N



1 Introduction

As the Standard Model of particle physics describes, most of the fundamental particles
we know in our universe have mass. One exception is the photon, which is massless,
and the neutrinos were long believed to fall into this category as well, until evidence
for the existence of neutrino oscillation was given and thus neutrinos carrying a mass
was proven [I]. Determining the neutrino mass allows us to gain a better fundamental
understanding of particle physics, including giving insight into the history of the uni-
verse as well as how it will evolve in the future.

As for how the neutrino mass is to be determined, there are multiple approaches. One
of them would be the search for a neutrinoless double-beta decay. By finding the cor-
responding decay rate, it will lead us to direct conclusions concerning the neutrino
mass, as the two are closely linked [2]. Another possibility is by examining the cosmic
microwave background or the mass distribution in the universe [3].

Determining the neutrino mass through electron capture processes on the other hand
has the benefit of being model-independent. If the energy available in a decay involving
the release of a neutrino is known, then direct measurements of the energy after the
neutrino has been released leads to information on the mass of the neutrino thanks to
energy and momentum conservation. As we will see, determining this energy difference
requires us to look at the endpoint region of decay spectra, where only very few events
can be found. This poses a challenge for the analysis due to the low amount of data
available. It is the essence of this thesis to explore a method called Kernel Density Es-
timation (KDE) to help improve analysis methods, especially for the endpoint region,
by smoothing out the limited data which is still available.

In chapter 2, the general concept of the fit that is performed in the endpoint region
of the %3Ho decay spectrum is portrayed. The different parts making up the fitting
function are introduced and explained.

In chapter 3, Kernel Density Estimation as a mathematical model for estimating un-
derlying probability density functions from a data set is introduced. The benefits and
challenges with the use of KDEs are portrayed.

In chapter 4, the method that is used to test the viability and quality of the KDE
approach is presented, as well as a brief overview of the data reduction which is per-
formed on the raw data before a KDE is applied.

In chapter 5, the findings concerning the tests mentioned in the foregoing chapter are

presented.



2 16Ho endpoint region fit

With the help of the electron capture spectrum of **3Ho measured in the ECHo experi-
ment, it is possible to determine the effective electron neutrino mass. It is known from
nuclear physics that a specific maximum amount of energy is available in the decay of
163Ho, known as the Q-value Q = (2863.2 4 0.6) eV [4]. The analysis of the electron
capture spectrum will yield the part of this energy deposited in the atomic excitation
of the daughter %Dy atoms. This means the difference between the Q-value of the
163Ho decay and the endpoint determined in this experiment results in information
on the maximum amount of energy available to the electron neutrino. Therefore this
analysis gives an upper bound on the effective electron neutrino mass. The majority of
the electron capture spectrum shows very high intensities of detected events, in turn
making the spectrum in these areas very precise. Unfortunately, these areas of the
spectrum are not highly dependent on the effective electron neutrino mass and because
of this cannot be used to gain information on it. Instead, the area that shows the
highest effect in this regard is the endpoint region, close to the maximum amount of
energy available in this decay. The comparison on the exponential model between an
effective neutrino mass of 0eV and 5eV, as is modeled in [T, shows that the spectral

shape experiences a visible difference near the endpoint.
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Figure 1: Endpoint region close-up of exponential model for a) m, = 0eV and b)
m, = beV

Analysis in this area proves challenging because of the very low amount of events,
multiple orders of magnitude lower than the majority of the spectrum. This is why
the development of analysis methods specifically tailored to this problem is vital. A
previous attempt at this utilized a histogram to quantify the shape of the spectrum
from the list of energies detected in the events of the experiment. In the endpoint

region, a fit was made on the spectral shape which could ultimately determine the



Q-value of the decay, leading to information on the effective electron neutrino mass as

described before. I will now introduce the general structure of the fitting function %
and break down its several parts:

dN

Fioh C-[A(E)- PS(E)]*g(E)+ BC(FE) (2.1)

Equation describes the shape of the energy spectrum and is comprised of the phase
space factor PS(F), the Atomic Physics function AP(E), a Gaussian function g(F)
representing the detector response with a finite energy resolution and a constant back-
ground BC(E). The constant C' scales the spectrum to take into account the total

amount of events.

2.1 Phase space factor

The phase space factor P.S models the phase space becoming narrower when
approaching the endpoint from lower energies due to less energy being available for the
decay itself, which leads to events becoming increasingly unlikely. Events at Fgc =
Qrc, when the detected electron capture energy is equal to the Q-value, the phase
space factor reaches 0. At energies beyond the Q-value, the phase space factor remains

0 as events such as this are energetically impossible.

PS(Qrc — Exc) = H(Qrc — Erc —mw) - (Qrc — Erc) - \/(QEC — Egc)? —m2 (2.2)

As we will see, the undesired background in the spectrum is not directly confined by
the Q-value, the phase space factor only applies to the atomic physics and is therefore

multiplied with the atomic physics function before the background is added on.

2.2 Gaussian Detector Response

The detector used to collect the experimental data for this analysis, like all detectors,
operates at a finite resolution. This means that even for perfectly controlled events,
there is always a certain statistical error in the measured data. This is modeled by
convolving the product of the phase space factor and the atomic physics function with
a Gaussian kernel. The width of the kernel, or rather the resolution of the detector, is

determined as part of this analysis in section.



2.3 Background

Shielding of a detector to prevent a background disturbing the experimental data is
vital, however, it is not possible to perfectly remove all background sources. For this
experiment, two background sources need to be considered in particular. Firstly, cos-
mic radiation such as muons and natural radioactivity will be detected. In the energy
ranges relevant to this experiment, this background is assumed to be constant across
all energies, as no structures can be identified to attribute events to any possible back-

ground source.
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Figure 2: 1%3Ho spectrum and unresolved pile-up spectrum

Secondly, another background source is the unresolved pile-up spectrum as shown in
While the spectral data are reduced prior to analysis to remove detected events
unrelated to the experiment, or environmental noise sources, one effect that cannot
be mitigated is when two events pile up in such a short time frame that they cannot
be told apart. This leads to the detection of an apparent event with the combined
energy of the decay events that piled up. As any combination of energies between the
two events is possible, this pile-up spectrum is modeled by the autoconvolution of the
electron capture spectrum. Due to the relatively low intensity and little number of
peaks in the pile-up spectrum near the endpoint region, a constant background BC'

will be modeled and quantified, and is then added to the fitting function.



2.4 Atomic physics function

The atomic physics function is responsible for modeling the overall shape of the electron
capture spectrum of the '3Ho decay, such as the location of the different peaks that
can be found. However, no analytical solution for this is known as of yet. As we
have previously established, the greatest effect of the neutrino mass is to be seen in
the endpoint region and therefore fitting of the spectrum will be limited to this range.
This also allows us to choose simpler fitting functions. We will be testing the analysis
methods using both the exponential function in and the quadratic function in

to model the atomic physics.

fexp(x) = A - exp(T - 7) (2.3)

fquad(x) :a'l’2+b'l‘+0 (24)



3 Kernel Density Estimation

Displaying a spectrum in the form of a histogram is an effective method for recon-
structing the underlying probability density function of the decay that is observed.
While it works well in high-intensity regions of the spectrum and can be tweaked by
altering the bin width used to group the measured energies, especially in low-intensity
regions we are met with a dilemma. While decreasing the bin width increases the
resolution and accuracy of the representation of the spectrum, it comes at the risk of
generating empty bins, so bins in the histogram into which not a single energy has
fallen. This effect is undesirable, as the empty bins appear statistically, and therefore
do not represent a true dip in the probability density function. As we have established
before, it is exactly this low-intensity endpoint region in which the effective neutrino
mass shows the largest influence, so it is vital that the spectrum is as close to the
real distribution of event energies as possible. A potential way to mitigate the adverse
effect of histograms worth exploring is choosing a method of unbinned analysis, like
the Kernel Density Estimation (or KDE).

While a histogram has a predefined bin width and with that a regular step size at
which the raw energy data points are grouped together, which leads to a certain loss
in accuracy, a KDE takes each data point into account at its exact position. This
is done by placing a normalized kernel of a certain shape centered around each data
point, and then adding up all kernels resulting in a function resembling the probability
density function. Both the shape of the kernel as well as the corresponding width can
be chosen freely in theory, however a common choice is a Gaussian kernel, due to the
measured data points always underlying statistics. As we will see, the choice of the
width of a kernel, also referred to as the bandwidth of the KDE, is both highly relevant
to the overall quality of the results, but also a challenging task.

When the KDE is generated from a set of n data points, it is a continuous curve made
up of n overlaid kernels. Before the KDE can be used for analysis in similar ways
as a histogram, it needs to be discretized to a finite amount of points at which it is
evaluated. The amount of these points, as well as their positions and the step width
between adjacent points can be chosen freely, and can even change along the axis of
the data points within the same KDE. In figure |3| we can see an example of a KDE
generated from a set of data points that are Normal-distributed, as well as a histogram
of the same data set. Both of these representations give a reasonable impression of
the underlying distribution, however the histogram shows far more sudden jumps in
counts, which are instead smoothed out a bit on the KDE. If one wanted to smooth
out the histogram, there would be no other choice than to increase the bin width and
thereby decreasing the overall amount of bins. This is a loss in accuracy and results in

fewer points available for analysis, for example through curve fitting.



Spectrum: 1000 events, mean = 3000 eV, std = 4 eV
KDE: bandwidth = 0.1 eV, 1000 evaluation points
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Figure 3: Data set underlying Normal distribution, displayed as histogram and KDE
(bandwidth = 0.1eV)

Spectrum: 1000 events, mean = 3000 eV, std = 4 eV
KDE: bandwidth = 1.5 eV, 1000 evaluation points
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Figure 4: Data set underlying Normal distribution, displayed as histogram and KDE
(bandwidth = 1.5eV)

The selection of a bandwidth depends strongly on the respective data set that is to be
modeled. For every distribution, if the resulting estimation shows very narrow peaks
around some data points, then the selected bandwidth is too small. On the other hand,
selecting too large of a bandwidth (see figure |4]) results in the shape of the underlying
distribution not being shown correctly. Individually for each application of a KDE a
bandwidth needs to be chosen that appropriately models the distribution, depending

on how important the exact location of a single data point is or how much statistical



imbalances are supposed to be combated.

It is apparent that a KDE has benefits over a histogram when used to represent a
distribution, such as the configurable resolution which is entirely unrelated to the
bandwidth, whereas in a histogram the resolution and bin width are intrinsically tied
together. But a KDE also comes with its challenges, such as far longer processing
times. The steps required to build a KDE increase linearly with both the amount of
points in the data set, as well as the amount of points at which the KDE is being
discretized. Generating a histogram is a much simpler task, as data points are merely
being counted in regular steps. Another challenge of a KDE is the selection of a

reasonable bandwidth, as it will strongly influence the result.



4 Method of testing the KDE

In order to test the effect of Kernel Density Estimation on the analysis of the '3Ho
electron capture spectrum, the approach is to make direct comparisons with the same
analysis performed on the spectrum displayed through a histogram. For this, a program
set up by Daniel Behrend was used and built upon, to enable the use of a KDE while
being able to simply switch between the operational modes for using either a histogram
or a KDE for analysis. I will now lay out the steps which are taken in the program,

leading up to the final analysis.

4.1 Data reduction

Before any form of endpoint region analysis can take place, the data taken in the
ECHo experiment first needs to be reduced. This process follows the aim of reducing
undesirable effects like various background sources or data points that do not accurately
represent the spectrum. While these steps were not part of this thesis, I will briefly
introduce some of the steps taken for data reduction.

In a first step, a Holdoff filter is applied to the raw data points. Due to the MMC’s
nature of calorimetrically measuring excitations, the heat deposited in the calorimeter
slowly dissolves into a thermal reservoir. Because of this, the voltage measured by a
SQUID also only falls slowly over time. If a second event hits the same channel after
only a short amount of time, the peak of the new event lands on top of the tail of the
previous event - called a pile-up event - and the voltages stack. This throws off the
energy reading and so the Holdoff filter’s task is to wait a certain amount of time after
an event is triggered before accepting another events. A typical Holdoff cut is on the
order of ATHogo = 15 ms.

Next up, a Burst filter is used. Its purpose is to detect quickly repeating triggers
of events, indicating noise in a single channel, and discard the corresponding traces.
With '%3Ho decay and the current setup, on average about 1 event per second is to be
expected. The Burst filter first arranges the detected events into a histogram based
on their timestamps, and then checks whether each bin’s event count N¢y, deviates by
more than 40 from the average. Is a bin found that triggers this condition, a test is
performed where one of the neighboring bins has to exceed a deviation of 20 from the
average. If this condition is also met, the Burst filter considers these events as noise
and removes the bins.

A Coincidence filter is also used. Instead of acting per channel like the aforementioned
filters, the Coincidence filter acts globally to detect background radiation, which might
have sent a shower of particles over the entire detector, hitting different channels with

only a very short amount of time of difference. This is why this filter will check if any



events across the whole detector were triggered with a time difference AT < 8 ps, and

if so, these events are recognized as background radiation and will be discarded.

4.2 Preparing the spectral shape

Now that the acquired data has been stripped of as many faulty data points as possible,
it needs to be brought into a usable data format for analysis. Right now the spectrum
is only a list of energy values, each entry describing exactly one event that remained
after data reduction. In order to display the spectrum graphically, a common choice is
a histogram, binning data points into ranges on the order of 1eV. Due to the simplicity
of how the histogram delivers us a representation of the probability density function
governing the '3Ho decay, the spectrum is now already in place for use in subsequent
steps of the analysis.

In the case of a Kernel Density Estimation, more care is required to produce a usable
result in this step. A naive approach, even if it seems sensible at first, is to simply
perform a KDE on the entire data set at once, using only a single bandwidth value for
the entire range from 0eV to 7000eV. While the bandwidth can and has to be chosen
freely and through trial and error, it quickly becomes apparent that this produces sub-
par results. The reason for this is the general shape of the spectrum, being very unlike
a normal distribution itself. If it were purely a normal distribution, a KDE using a
Gaussian kernel could reasonably match this shape as seen in figure [3] However, the
163Ho spectrum shows peaks of very high intensity, while the endpoint region naturally
goes down to very low intensities, and it does so in a very rapid manner over multiple
orders of magnitude. The result is the extended tails of the millions of overlaid Gaus-
sians in the high-intensity regions bleeding into the lower-intensity regions, and in the
process strongly obscuring the spectrum in these areas. An exaggerated example is
shown in figure

A first attempt at mitigating this effect was decreasing the global bandwidth to values
in the milli electronvolts. While this does fix the problem and still properly preserves
the spectrum in the high-intensity regions, we are then met with another issue. A
close look at the endpoint region (see figure []) reveals, tiny bandwidth values lead
to very steep peaks around the few events that can be found here, with no notable
width and larger gaps between the events. The original idea behind using a KDE was
being able to smooth out the few scattered events of the endpoint region through the
Gaussian kernels extending left and right from the data point, and thus this fix defeats
the purpose of the KDE in the first place.

In the end, two possible solutions were found that deliver usable spectral shapes. The
first one involved sticking with a constant bandwidth across the entire spectrum, how-

ever the spectrum was evaluated in steps of a certain width, usually around the order
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163Ho decay spectrum, 0 - 4000 eV

—— Histogram, bin width = 2 eV
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Figure 5: KDE of spectrum applied with constant bandwidth of 0.1eV

of 50V, and the tails of all the Gaussians inside each step were cut at the edges and
could therefore no longer bleed into the next step. This prevents the high-intensity
regions of extending their range over hundreds of electronvolts, while almost entirely
preserving the shape of the spectrum inside each step respectively. This solution was
ultimately discarded though, as stepping through the spectrum in these fixed steps
and thereby cutting off the tails of the Gaussians means not only modifying the ac-
tual Gaussian shape of the kernels, but it even does so irregularly depending on where
inside the respective step each data point is. Data points close to the left boundary
lose a larger part on the left side, and analogously for data points close to the right
boundary. It was also noticeable that in this approach the graph evaluated from the
KDE sometimes did not match up on step boundaries and therefore introduced minor
artifacts that further have no physical interpretation. The mathematical validity of a
KDE modification such as this is questionable at best.

The second possible solution, and with that also the final one used in the rest of the
analysis, is to perform a Variable Kernel Density Estimation, meaning the adapting
of the bandwidth in specific energy ranges throughout the spectrum. By combining
knowledge from previous guesses at a sensible bandwidth value, a very low bandwidth
in the milli electronvolts is employed for the high-intensity region up to 2500eV, a
medium sized bandwidth is used going into the endpoint region up to 2800eV and
finally the bandwidths are further increased in the background past 3100eV. The
resulting spectrum closely matches the histogram in high-intensity ranges, and properly

smooths out the endpoint region as well as the background (figure .
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163Ho decay spectrum, 2600 - 3100 eV
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Figure 6: KDE of spectrum applied with constant bandwidth of 0.001 eV
163Ho decay spectrum, 2600 - 3100 eV
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Figure 8: KDE of spectrum applied with variable bandwidth, endpoint region

Seeing as the smoothed out KDE in the background still regularly drops in between
individual events, tests should be made to further increase the bandwidth in these
areas. Due to time constraints these could not yet be executed as part of this thesis

and instead the rest of the analysis was run in this configuration.

12



163Ho decay spectrum, 0 - 4500 eV
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Figure 7: KDE of spectrum applied with variable bandwidth

4.3 Fraction of pile-up events in the background

One of the background sources in the spectrum are pile-up events. As discussed before,
if two events are detected too close together in time on the same channel, the second
voltage peak stacks on top of the tail of the previous one, and the energy reading
is inaccurate. The Holdoff filter is an effective method for reducing this occurrence.
However, if the two events happen within a time frame shorter than the time resolution
of the detector, then it is not possible to tell both events apart, a trace can be seen that
appears to carry approximately an energy corresponding to the sum of the energy of
the single events. The spectrum resulting from all these events is called the unresolved
pile-up spectrum, and as it is not discarded during data reduction we need to take it
into account in the analysis.

Mathematically, the shape of the unresolved pile-up spectrum is described with the
autoconvolution of the ®3Ho decay spectrum, but the total intensity is yet to be de-
termined. As the decay spectrum ends at the Q-value of 2863 eV, the highest possible
pile-up energy is double of this, and beyond that point the background cannot be in-
fluenced through this effect. To be able to tell the unresolved pile-up spectrum apart
from different background sources, we first determine the average count rate in the
high-energy range from 5900 eV to 7000 eV to be approximately 1.36 - 1072 %\‘/‘“ This
background rate is assumed to be constant throughout the entire spectrum, so by
counting the events in the medium-energy range from 2900 eV to 5900 eV and subtract-
ing the expected amount of events based on the background rate, we can determine the

amount of events in this range that originate from the unresolved pile-up spectrum.
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We find 68 total events, approximately 27 of which we link to unresolved pile-up in
this way. Because we know the shape, but not yet the amplitude of the pile-up spec-
trum, we use this count to estimate the fraction of pile-up events in the background
to be fou & 2.447 - 1075, Multiplying the normalized autoconvolution of the spectrum
by this value as well as the total amount of events in the overall spectrum, we have
properly scaled our unresolved pile-up spectrum and can use this, as well as the con-
stant background determined in the high-energy region, to model the background of

the experimental data.

4.4 Detector response

As the detector used in the experiment does not operate at an infinitely high resolution,
the data points in the spectrum are statistically offset to their real values. We model
this effect by convolving the product of the phase space factor and the atomic physics
function with a normalized Gaussian of which the width corresponds to the detector
response.

To determine the detector response, we look at the M2-line of the *3*Ho decay spectrum.
This line can be described by a Voigt function (4.1)), a convolution of a Lorentzian and

a Gaussian function.

V(x;o,7) = G(x;0) * L(z;7) (4.1)

The Lorentzian corresponds to the intrinsic lineshape, while the Gaussian is caused by
the aforementioned detector response. We can fit a Voigt function to the M2-line of
the spectrum to extract the respective parameters, the intrinsic line width v from the

Lorentzian and the detector resolution o from the Gaussian.

4.5 Endpoint region fit

The final step of the analysis takes place in the endpoint region of the spectrum, where
we hope to see the greatest benefits of the unbinned analysis due to the low amount of
events. It is here that we apply the fitting function described in equation [2.1], in order
to acquire the fitting parameters, which can be used to further model the endpoint
region.

The fit that will be performed is confined to limited ranges of energies in the spectrum,
since the model used is tailored specifically towards the endpoint region only, and
does not describe the spectral shape in any other location. This limitation poses
no issue, since we established that the effect of the electron neutrino mass is felt most
significantly in the endpoint region. Therefore, for this analysis specifically, no model is

required to be given for the rest of the spectrum. With the background of the spectrum
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as well as the detector response already determined, the fit will now be applied on the
parameters of the respective models used for the atomic physics function. The fit is
performed for both the histogram-based representation of the spectrum as well as the
KDE counterpart, using the same initial parameters to allow for direct comparisons
to be made. The fit is also repeated on multiple varying energy ranges since the
exact boundaries of where our chosen model is capable of well-describing the data are
not known exactly. Also for the KDE, we repeat the process for varying resolutions,
meaning different amounts of points at which the KDE is discretized - something that
is not possible at all in binned analysis without altering the bin width itself.

The different configurations for the analysis are the following. One is the original
analysis method, a histogram with a bin width of 2eV, resulting in 3500 data points
in total from 0eV to 7000eV. The new KDE method is also tested, but on different
resolutions of a similar count of data points as the histogram (3501), double the amount
of data points (7001), five times the amount of data points (17501) and also 12001 data
points. The reason for the point count to always be 1 more is that the KDE is also
evaluated at one final data point at the end of the 7000 eV total spectrum range, while
the histogram is not. Since we are not fitting in that area this is of no concern though,
especially as the spacing of the individual data points remains exactly the same as on
the histogram in the case of the 3501 points, and the expected fractions of this for the
higher resolutions. Each of these 5 different configurations is run both with a quadratic
fit and also an exponential fit, and every single combination of this is run on 4 slightly
different fitting ranges. The lower boundary is 2450 eV, 2500V, 2550 eV and 2600 eV
respectively, while the upper boundary is always 2780 V.
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5 Results

5.1 Detector response

The first occasion for testing and comparing results between the binned and unbinned
analysis methods respectively is the determination of the detector response. A Voigt-
function fit was performed (see figure @ in the energy range from 1832¢eV to 1839eV.
Due to the relatively high intensity of events in this region thanks to the M2-line,
a lower bin width of 0.5eV was chosen for the histogram, resulting in 14 bins and
therefore 14 data points falling into the fitting region. The KDE is evaluated at 100
evenly spaced points between 1830eV and 1842 ¢V, resulting in 58 data points falling
into the fitting region.

For the fitting parameter o of the Gaussian portion of the Voigt function, we find the

values

it = (1.5 +0.7) 6V,

(5.1)

Analogously, for the fitting parameter ~ of the Lorentzian portion of the Voigt function,

we find the values

Vet = (5.3 £ 0.7) eV,

(5.2)
vkpE = (5.50 £ 0.14) eV,

As can be seen, in the case of both parameters, the two different spectral methods
of representing the spectrum produce values that are not significantly different within
their error margins. However, the parameter errors are noticeably lower on the KDE
fit.

For the intrinsic line width vy, a literature value of 6.0eV as well as an experimental
value of 4.8 eV are given with an uncertainty of < 1.0eV [5]. Our results for the fitting
parameter o correspond to the detector response, and were used in further parts of the

analysis.

5.2 Endpoint region fit

For the endpoint region fit, we have different means for quantifying the difference in
the results between the analysis methods. We will be looking at the x2, of the fits,

the relative residuals, the parameter values as well as the relative parameter errors.
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Figure 9: Voigt function fit of 1%3Ho M2-line

5.2.1 Residuals

In table[I] we see the reduced chi-squared of all fits that were performed, compiled from
the fitting results found in the appendix from figure [11] to It is notable that in all
configurations, y2, decreases as the lower fit boundary increases, or put differently it
decreases as the fitting range shrinks on the lower end. As we are looking at the reduced
form of chi-squared, we are taking into account the degrees of freedom of the fit. Since
the values are approaching a value closer to 1, this suggests an overall improvement
of the fit. A possible explanation may be the fact that both the exponential and the
quadratic function do not perfectly describe the spectrum in the endpoint region, but
are getting better when approaching the Q-value.

As for a direct comparison between the histogram-based fit and the KDE-based fit, it
is apparent that the KDE achieves a 2,4 closer to 1 in all cases, even in the case of
3501 total evaluation points of the KDE, where the amount of points used for the fit is
the same as for the histogram. In fact, higher resolutions of the KDE did not further
improve the reduced chi-squared.

On the residuals of the histogram fits (in the appendix, ﬁgures and, it is apparent
for both the quadratic as well as the exponential fit and also across all fitting range
configurations, that 1 residual very close to the endpoint has a value of around —4,
while all other residuals stay within the range of —1 to 1. This outlier is the effect
of a bin that got less events than the surrounding bins by statistical chance. It can
be seen in figure [10] at 2770eV. The KDE shows a small dip at this position, but the
smoothing through the Gaussian kernels prevents the value from dropping nearly as

far as the histogram. The same effect can be seen on multiple empty bins on energies
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Table 1: Reduced chi-squared of fits

. 2 L with lower boundary of
Spectrum kit 2450><§vd\ 25006V | 2550 eV \y2600 eV
Hist, 3500 bins Quad. 97.91 64.14 48.17 27.88
Hist, 3500 bins Exp. 107.41 64.58 48.13 28.04
KDE, 3501 points | Quad. | 60.17 | 3238 | 9.71 | 6.15
KDE, 3501 points | Exp. | 63.16 | 32.86 | 9.87 | 6.24
KDE, 7001 points | Quad. 62.81 36.72 9.71 6.14
KDE, 7001 points | Exp. 65.96 37.30 9.86 6.23
KDE, 12001 points | Quad. 62.93 36.95 9.76 6.17
KDE, 12001 points | Exp. | 66.18 | 37.51 | 992 | 627
KDE, 17501 points | Quad. 63.09 37.09 9.79 6.18
KDE, 17501 points | Exp. || 66.36 | 37.64 | 994 | 623

at or above 2800eV. We can see on the relative residuals of all KDE configurations
(figures 23] to that the outlier at 2770 eV does not show up, all values stay within

an interval from —0.7 to 0.3.

. 163Ho decay spectrum, 2700 - 2870 eV

Histogram, bin width = 2 eV
Autoconv. (Histogram)

— KDE

—— Autoconv. (KDE)

10t

100 4

107" 4

2700 2720 2740 2760 2780 2800 2820 2840 2860
Energy / eV

Figure 10: Closeup view on the endpoint region with Histogram and KDE

5.2.2 Parameters

Finally, we will be taking a look at the fit parameters and their corresponding error
values, which can be found in the appendix from figure to [40] First of all one
small note, the relative parameter error for the histogram fit of the quadratic function
(see figure found a parameter a = 1.85-107'3 & 0.08 on the fitting range with
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the highest lower boundary of 2600 eV, while the other ranges found a value for this
parameter a > 2-1072. This means the relative parameter error was multiple orders of
magnitude above all other values and it was therefore hidden from the plot to benefit
visibility.

As the parameters which are found for the different fitting ranges can sometimes be
quite different, a more useful way of checking the results is by taking a look at the
relative parameter errors. Due to less data points being used for fitting, we expect
parameters determined on the shorter energy ranges to show larger relative errors,
because less data results in lower significance of the results. For the parameters of the
exponential fit, we see this happening in all cases for both parameters A and 7, both
for the histogram-based fit as well as the KDE-based fits. On the other hand, while
the quadratic fit indeed generally shows the largest relative parameter error for the
smallest fitting range, for the histogram the second fitting range starting at 2500V is
the smallest, and for the KDE the third fitting range starting at 2550V is either the
smallest or at least smaller than the relative parameter error of the second range. We
can see that in each of these cases the parameter in question has the highest absolute
value out of the 4 fitting ranges, which of course leads to a decrease of the relative
parameter error. As for why this happens in the first place, this is not entirely clear.
It is possible that a local minimum is found in these cases which steers the parameter
value away from what the other configurations are finding. Since this effect appears
both in the histogram-based approach as well as the KDE-based one, one may assume
that this is a general risk when using the quadratic function, and might hint at it not

being an ideal fit function.
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6 Conclusions

In summary, a concept has been worked out to implement the use of Kernel Density
Estimation into the analysis of the 3Ho decay spectrum endpoint region, with the
aim of determining the effective electron neutrino mass. Different approaches were
explored until a variable bandwidth KDE seemed most promising under the conditions
of the spectrum. The detector response has been examined by performing fits on the
M2-line of the spectrum. While not being the most rigorous analysis of the detector re-
sponse, general improvements for the significance of the results over a histogram-based
approach were apparent. Finally, fits of the endpoint region have been utilized to in-
vestigate the performance of a KDE in low-intensity regions. Through the inspection
of fit residuals or the fit parameter errors, it was again possible to validate the benefits
of a KDE over histograms in this scenario.

With these results, it is now clear that a Kernel Density Estimation is a viable alter-
native to a histogram for use as a means of representing the “*Ho decay spectrum
with the aim to analyze both high-intensity regions like the M2-line for the detector
response, and also more importantly the low-intensity endpoint region which is crucial
for determining the effective electron neutrino mass.

The performance of the KDE still has potential for improvements. Firstly, the evalu-
ation of the KDE at a set of positions is a computationally intensive process. Loosely
speaking, producing a histogram and a KDE on the same data set and resulting in an
equal amount of points, the histogram might finish on the order of seconds, while the
KDE might take an hour or longer. While this needs to be considered when choosing
the representation method of the spectrum, fortunately it is not quite the end of the
story. At the moment, each point of the KDE is evaluated in sequence, and for each
point the Gaussian kernel of every single event is calculated before moving on to the
next point. Since the order in which points are evaluated is irrelevant in the case of
our method, it is possible to use multi-threaded computing to process as many points
of the KDE in parallel as is possible on the hardware used for the analysis. Therefore,
the generating of a KDE is highly scalable. Another task for optimizing the resulting
KDE is to determine better methods of selecting a bandwidth near the endpoint region
and in the background of the spectrum beyond the Q-value. Special care needs to be
addressed to the fact that the endpoint region cannot be allowed to be smoothed out
too far into the background, as this will lead to an incorrect fit and determination of
the energy that is left to be attributed to the effective mass of the electron neutrino.
Also, while it was possible to smooth out the background events to some extent, there
are still parts in the background of the spectrum where the intensity fluctuates by mul-
tiple orders of magnitude due to larger gaps in energy where no events were detected at

all. More testing with different bandwidths is necessary to ensure the highest possible
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quality for the fits.

In the case of the histogram-based analysis, it was already clear that the best step to
increase the accuracy of the results is to increase the total amount of events in the data
set. This would allow for choosing smaller bin widths leading to more fitting points,
while not risking the appearance of more empty bins. While the KDE does not run into
the risk of producing empty bins in the same way a histogram does, it is still susceptible
to regions of statistically lowered intensity. Further smoothing of the events can help,
however higher accuracies are achieved with the lowest possible bandwidths that still
result in a uniform curve while not yet being overly noisy. Therefore, an increase in the
total event count detected in the experiment is still highly desirable for the significance

of the results, regardless of the representation method of the spectrum.

21



7 Appendix

Quadratic Fit / Autoconv + Const. Background
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Figure 11: Histogram (3500 bins), quadratic fit
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Figure 12: Histogram (3500 bins), exponential fit
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Figure 13: KDE (3501 points), quadratic fit
Exp Fit / Autoconv + Const. Background
[2450, 2780]: x* = 63.16 . 12500, 2780]: * = 32.86
’
104 \
10%
102
100 \
Spectrum (Hist.) 100 Spectrum (Hist.)
Spectrum (KDE) Spectrum (KDE)
—— pS Scaled 101 | — PSscaled
— Exp Term —— Exp Term »
Exp *PS * Conv + Bg 07 - Exp* PS* Conv + Bg
104
[2550, 2780]: x> = 9.87 " [2600, 2780]: x* = 6.24
’
\ 104 | O |
10
107 -
10*
Spectrum (Hist.) 100 Spectrum (Hist.)
Spectrum (KDE) Spectrum (KDE)
— PS Scaled 1014 PS Scaled
e : Bk
BG: Const 10 = BG: Const
Exp * PS * Conv + Bg 1073{ ——- Exp*Ps *Conv + By
~—— Fit region ~—— Fit region
1074

Figure 14: KDE (3501 points), exponential fit
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Quadratic Fit / Autoconv + Const. Background
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Figure 15: KDE (7001 points), quadratic fit
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Figure 16: KDE (7001 points), exponential fit
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Figure 17: KDE (12001 points), quadratic fit
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Figure 18: KDE (12001 points), exponential fit
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Figure 19: KDE (17501 points), quadratic fit
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Figure 20: KDE (17501 points), exponential fit
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Figure 21: Histogram (3500 bins), quadratic fit, relative residuals
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Figure 23: KDE (3501 points), quadratic fit, relative residuals
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Figure 24:

KDE (3501 points), exponential fit, relative residuals
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Figure 26: KDE (7001 points), exponential fit, relative residuals
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Figure 27: KDE (12001 points), quadratic fit, relative residuals
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Figure 28: KDE (12001 points), exponential fit, relative residuals
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Figure 32: Histogram (3500 bins), exponential fit, parameters
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Figure 33: KDE (3501 points), quadratic fit, parameters
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Figure 34: KDE (3501 points), exponential fit, parameters
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Figure 35: KDE (7001 points), quadratic fit, parameters
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Figure 37: KDE (12001 points), quadratic fit, parameters
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Figure 38: KDE (12001 points), exponential fit, parameters
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Figure 39: KDE (17501 points), quadratic fit, parameters
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Figure 40: KDE (17501 points), exponential fit, parameters
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