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Abstract

In this thesis, we study a rotating, two-dimensional Bose gas on the surface of a sphere.

Herein, the Gross-Pitaevskii equation in spherical coordinates constitutes the principal

equation of investigation. Spectral methods based on the expansion of the wave function

in spherical harmonics are introduced and utilized extensively to treat this system. A

vortex dipole, which is the minimally allowed topological excitation in this geometry, is

initialized by stereographically projecting the phase profile of a dipole in the infinite,

flat plane. Its dynamics are investigated using the split-stepping formalism to evolve

the Gross-Pitaevskii equation in time which reveals the vortex dipole to be a traveling

wave solution. Subsequently, we find stationary solutions for incrementally decreasing,

negative external rotation frequency. Eventually, the frequency reaches a critical value

where the vortices overlap and annihilate, all vorticity vanishes from the system and only a

rarefaction pulse remains. This transition is the primary characteristic of Jones-Roberts

solitary waves which we have thus numerically proven to exist on the sphere. They

form a continuous family of solutions in the energy-angular momentum plane. Lastly,

critical properties such as the dynamics, stability and dispersion of the solitary waves are

examined.

Zusammenfassung

In dieser Arbeit untersuchen wir ein rotierendes, zweidimensionales Bose-Gas auf einer

Kugeloberfläche. Dabei stellt die Gross-Pitaevskii-Gleichung in Kugelkoordinaten die

primäre zu untersuchende Gleichung dar. Spektrale Methoden basierend auf der Entwick-

lung der Wellenfunktion in Kugelflächenfunktionen werden eingeführt und umfangreich

angewandt, um dieses System zu behandeln. Ein Vortex-Dipol, welcher den minimal

erlaubten topologische Defekt in dieser Geometrie darstellt, wird initialisiert durch eine

stereographische Projektion des Phasenprofils eines Dipols in der unendlich ausgedehnten,

flachen Ebene. Seine Dynamik wird untersucht, indem die Gross-Pitaevskii-Gleichung

mithilfe des Split-Stepping-Formalismus in der Zeit entwickelt wird, was aufzeigt, dass

es sich bei dem Vortex-Dipol um eine laufende Welle handelt. Anschließend finden wir

stationäre Lösungen für schrittweise abnehmende, negative externe Rotationsfrequenzen.

Schließlich erreicht die Frequenz einen kritischen Wert, an dem die Vortizes überlappen
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und annihilieren, die gesamte Vortizität aus dem System verschwindet und nur eine Zone

verringerter Dichte verbleibt. Dieser Übergang ist das Hauptmerkmal der solitären Jones-

Roberts-Wellen, deren Existenz wir damit auf der Kugel numerisch nachgewiesen haben.

Diese bilden eine kontinuierliche Familie von Lösungen in der Energie-Drehimpulsebene.

Abschließend werden entscheidende Eigenschaften der solitären Wellen wie Dynamik, Sta-

bilität und Dispersion untersucht.
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Chapter 1

Introduction

When Satyendra Nath Bose penned a letter to Albert Einstein in 1924, enclosing his

seminal article “Planck’s Law and the Hypothesis of Light Quanta,” he could not possibly

have imagined the size of the ball he was about to get rolling [1]. Even though the existence

of Bosons and Fermions was not yet established, Einstein understood the importance

of Bose’s findings and followed up with two papers of his own suggesting the possible

emergence of condensation [2, 3]. Over a century later, the study of ultracold bosonic

gases has seen incredible progress in experiment and theory alike. The first experimental

realization of a Bose-Einstein condensate (BEC) with novel laser and evaporative cooling

techniques in 1995 was a massive milestone that ushered in a new age of probing a variety

of phenomena present in these systems in labs around the world [4, 5]. Presently, the

progress in experimental setups allows it to accurately adjust all the various terms of the

many-body Hamiltonian: kinetic contributions, external potentials or interactions. It is

thus possible to realize a variety of systems with differing parameters [6]. The readily

available tunability of BECs has made them a renowned stage for quantum simulations

[7, 8].

In this thesis, we will concern ourselves with a relatively novel geometry in the field of

ultacold atomic gases: the sphere. Until now, most of the research in dimensions below

three discusses infinite, flat geometries or 3D systems that are forced into a quasi-2D/1D

regime by trapping potentials. The history of the spherical quantum gas begins in 2001,

when the possibility of confinement into “matter-wave bubbles” was first elucidated by

the interplay of a static and a radiofrequency magnetic field [9]. These techniques have

been refined and nowadays it is possible to create quantum gases occupying thin, hollow,

shell-shaped volumes. The primary roadblock for these experiments is gravitational sag

which leads to an accumulation of atoms in the bottom of the trap. Various remedies

have been suggested and successfully carried out. The Cold Atom Laboratory (CAL)

onboard the International Space Station conducts experiments in microgravity and has

been able to produce a BEC and quantum bubbles [10, 11, 12]. CAL will be superseded
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1 Introduction

by the Bose-Einstein Condensate and Cold Atom Laboratory (BECCAL) which promises

further experimental progress in the field [13]. Furthermore, counteracting gravity has

also seen success in drop tower experiments [14], onboard a rocket [15] and on the ground

using magnetic bubble traps [16].

The advances in experiment have been accompanied by a sizeable amount of theoretical

research. We have a wealth of results concerning the quantum statistics and thermody-

namics of spherical quantum gases. First and foremost, the phenomenon of Bose-Einstein

condensation and its critical temperature has been discussed extensively [17, 18, 19]. The

thermodynamical properties have been studied in Refs. [20, 21]. Additionally, the physics

of vortices in shell-shaped BECs has been analyzed in great detail [22, 23]. For further

background, please consult the introduction of Ref. [24].

In this work, we will make an effort to contribute to the ongoing research of spherically

shaped quantum gases by studying the physics of specific traveling wave solutions of the

Gross-Pitaevskii equation describing a BEC on the surface of a sphere.

We begin in Chapter 2 by introducing basic mathematical concepts needed to tackle the

spherical geometry. Among other things, we stress the importance of spherical harmonics

giving access to spectral methods which greatly facilitate the numerical treatment of the

system.

In Chapter 3, we first give a general overview of the theory of Bose-Einstein condensation

and then specify it to arrive at the mean-field Hamiltonian for a rotating, spherical BEC.

From this, the equation of motion for the wave function of the BEC - the Gross-Piatevskii

equation - is derived. Next, we discuss a range of theoretical results, some of which are

mentioned above, pertaining to the properties of BECs on the sphere to gain a broader

background knowledge.

Chapter 4 covers the basics of the numerical methods used throughout the thesis. Most

importantly, a framework for the numerical spherical harmonics expansion based on the

sampling theorem by Driscoll and Healy is presented [25]. Additionally, the split-stepping

formalism to evolve the spherical Gross-Pitaevskii equation in time is introduced.

Next, we turn to the physics of vortex dipoles in Chapter 5. When it comes to topologi-

cal defects, a single vortex-antivortex pair is the minimally allowed configuration on the

spherical surface which will be the main object of study. First, the procedure to initialize
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1 Introduction

the vortex dipole is established. Then, we collect evidence that the vortex dipole consti-

tutes a traveling wave solution by examining its dynamics. Additionally, we observe the

formation of vortex lattices in the ground state of a rotating spherical BEC where the

number of dipoles in the lattice depends on the external rotation.

Finally, Chapter 6 deals with the main results of this thesis. The question of existence of a

class of dark solitary waves, so-called Jones-Roberts solitary waves, in the spherical Gross-

Pitaevskii equation is explored. We start off with the vortex dipole and find stationary

solutions for specific vortex separations. A transition to a rarefaction pulse is observed as

their angular velocity increases which is the principal identifier of Jones-Roberts solitary

waves. Lastly, we examine properties of the solitary waves such as their dynamics and

dispersion.
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Chapter 2

The Sphere

In the present thesis, a physical system that lives on the surface of a sphere - a curved

surface - will be studied. While mathematical methods to understand Bose-Einstein

condensation in flat space are well-understood, the spherical geometry, specifically due to

its curvature, presents its own, unique challenges. Before jumping into the physics, let

us begin by having a look at the underlying mathematical concepts necessary to examine

the sphere.

2.1. Geometry

The sphere is the only compact, simply-connected, Riemannian surface of constant pos-

itive curvature. It is a two-dimensional surface embedded into three-dimensional space

R3. We will use the standard parametrization whereby the two coordinates are the polar

angle θ ∈ [0, π] and the (periodic) azimuthal angle ϕ ∈ [0, 2π). Their relation to the

coordinates of R3 is as follows:

x = R sin θ cosϕ ,

y = R sin θ sinϕ , (2.1)

z = R cosϕ ,

where R is the (fixed) radius of the sphere. Later on, it will often be useful to express

lengths in units of the radius, the sphere thereby becoming a unit sphere S2 = {x⃗ ∈
R3
∣∣|x⃗| = 1}. Inversely, spherical coordinates can be expressed as

θ = arccos
( z
R

)
, (2.2)

ϕ = atan2(y, x) ,

where atan2 is the two-argument arctangent. The metric γ on the sphere is

γ =


R

2 0

0 R2 sin2 θ


 , (2.3)
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2 The Sphere

from which follows the surface element

√
det γ dθdϕ = R2 sin θ dθdϕ . (2.4)

We will introduce here the shorthand

∫
dΩ =

∫ 2π

0

dϕ

∫ π

0

dθ sin θ , (2.5)

where Ω is the solid angle. Finally, the gradient and Laplacian transform as follows:

∇ =
e⃗θ
R
∂θ +

e⃗ϕ
R sin θ

∂ϕ , (2.6)

∆ =
1

R2 sin θ
∂θ(sin θ ∂θ) +

1

R2 sin2 θ
∂2ϕ =

1

R2
∆Ω . (2.7)

2.2. Spherical harmonics

In spherical geometry, it is useful to employ the help of spherical harmonics Y m
l (θ, ϕ).

These perform a very similar role and have similar properties to plane waves in flat space,

where the method of expansion is a Fourier transform. Expansion in spherical harmonics

gives access to spectral methods based on the manipulation of expansion coefficients

which is an immensely powerful numerical tool. Spherical harmonics are complex-valued

functions on the unit sphere S2, defined as eigenfunctions of the angular Laplacian

∆Ω =
1

sin θ
∂θ(sin θ ∂θ) +

1

sin2 θ
∂2ϕ . (2.8)

From this, their form can be derived as

Y m
l (θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimϕ , (2.9)

where l is the spherical harmonics degree and m the spherical harmonics order. These

indices take the place of the wave vector k⃗ related to the plane waves in flat space. In

quantum mechanics l is the angular momentum (or azimuthal) quantum number and m

the magnetic quantum number. The associated Legendre Polynomials Pm
l (x) are defined

as follows:

Pm
l (x) = (1− x2)

m
2
dmPl(x)

dxm
, (2.10)

5



2 The Sphere

and

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l (2.11)

are the standard Legendre Polynomials. The spherical harmonics form an orthonormal

basis on the unit sphere with

∫
dΩ Y m

l (θ, ϕ)Y m′
l′

∗
(θ, ϕ) = δm,m′δl,l′ , (2.12)

where δi,j is the Kronecker-Delta. The completeness relation reads

∞∑

l=0

l∑

m=−l

Y m
l (θ, ϕ)Y m

l
∗(θ′, ϕ′) = δ(cos θ − cos θ′)δ(ϕ− ϕ′) , (2.13)

with the Dirac delta function δ(x). It follows that any square-integrable function f :

S2 −→ C can be expressed as a series of spherical harmonics:

f(θ, ϕ) =
∞∑

l=0

l∑

m=−l

fml Y
m
l (θ, ϕ) . (2.14)

From the relations above, one concludes that the spherical harmonics expansion coeffi-

cients fml can be calculated via

fml =

∫
dΩ Y m

l
∗(θ, ϕ)f(θ, ϕ) . (2.15)

The orthogonality properties of the spherical harmonics suggests a generalization of Par-

seval’s theorem on the sphere. Namely, for two functions f(θ, ϕ) =
∑

l,m f
m
l Y

m
l (θ, ϕ) and

g(θ, ϕ) =
∑

l,m g
m
l Y

m
l (θ, ϕ), the integral of their product is given by

∫
dΩf(θ, ϕ)g∗(θ, ϕ) =

∞∑

l=0

l∑

m=−l

fml g
m
l

∗ . (2.16)

This relation will be especially useful to write the conserved quantities in spectral repre-

sentation. Furthermore, some useful expressions for the spherical harmonics are

∫
dΩ Y m

l (θ, ϕ) =
√
4πδm,0δl,0 ,

∆ΩY
m
l (θ, ϕ) = −l(l + 1)Y m

l (θ, ϕ) ,

∂ϕY
m
l (θ, ϕ) = imY m

l (θ, ϕ) . (2.17)
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2 The Sphere

The derivative with respect to θ takes a slightly more complicated form, but can still be

expressed with spherical harmonics.

∂θY
m
l (θ, ϕ) =




m cot θY m

l (θ, ϕ) +
√

(l −m)(l +m+ 1)e−iϕY m+1
l (θ, ϕ) for m ≥ 0 ,

−m cot θY m
l (θ, ϕ)−

√
(l +m)(l −m+ 1)eiϕY m−1

l (θ, ϕ) for m < 0 .

(2.18)

It is occasionally expedient to break down a product of two spherical harmonics into an

expansion of a single spherical harmonic, where the expansion coefficients are then given

by the Clebsch-Gordan coefficients C lm
l1m1l2m2

:

Y m1
l1
Y m2
l2

=
∑

l,m

√
(2l1 + 1)(2l2 + 1)

4π(2l + 1)
C l0
l10l20

C lm
l1m1l2m2

Y m
l . (2.19)

This is a useful relation to reduce a product of many spherical harmonics into a (some-

times) more manageable expression. It is important to note that the properties of the

Clebsch-Gordan coefficients demand that m = m1 +m2 and |l1 − l2| ≤ l ≤ l1 + l2, which

simplifies the summation somewhat.

2.3. Real spherical harmonics

It is, in principle, possible to expand a purely real function in terms of the standard

complex spherical harmonics. However, by doing so, one introduces redundancies in

the expansion coefficients. Therefore, it is sometimes computationally advisable to use

real spherical harmonics to expand real functions. Similarly to above, any real square-

integrable function f : S2 −→ R may be expressed as a series of the real spherical

harmonics which are denoted here as Ym
l :

f(θ, ϕ) =
∞∑

l=0

l∑

m=−l

fml Ym
l (θ, ϕ) . (2.20)

The real spherical harmonics are defined as

Ym
l (θ, ϕ) =





√
(2l+1)(2−δm,0)

4π
(l−m)!
(l+m)!

Pm
l (cos θ) cos(mϕ) if m ≥ 0 ,

√
(2l+1)(2−δm,0)

4π
(l+m)!
(l−m)!

P−m
l (cos θ) sin(−mϕ) if m < 0 .

(2.21)

Real spherical harmonics also obey the orthonormality relation
∫

dΩ Ym
l (θ, ϕ)Ym′

l′ (θ, ϕ) = δm,m′δl,l′ , (2.22)

7



2 The Sphere

and the expansion coefficients are computed via

fml =

∫
dΩ Ym

l (θ, ϕ)f(θ, ϕ) . (2.23)

Real spherical harmonics retain their defining feature of being eigenfunctions of the an-

gular Laplacian. Unfortunately, they are no longer eigenfunctions of ∂ϕ (compare with

(2.17)), which may hinder their numerical applicability in some scenarios.
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Chapter 3

The weakly-interacting Bose gas

In the following, the system of interest will be a Bose-Einstein condensate placed on

the surface of a sphere. Before going over to the sphere, we will give a general outline of

Bose-Einstein condensation itself. We start off by noting that we are dealing with a dilute

gas of indistinguishable bosonic particles with mass M . Let Ψ̂†(x⃗) be the field operator

that creates such a particle and Ψ̂(x⃗) the field operator that annihilates a particle at

the position x⃗. Since these are Bosons, the field operators must follow the commutation

relation

[Ψ̂(x⃗), Ψ̂†(x⃗′)] = δ(x⃗− x⃗′) , (3.1)

where δ(x⃗) is the Dirac delta function. Creation and annihilation operators commute

with themselves for any two arguments x⃗ and x⃗′. In addition, let the wave functions of

the single-particle states available in the system be denoted by Ψi(x⃗), where the index i

signifies the i-th state. Then, the field operator can be expanded as

Ψ̂(x⃗) =
∞∑

i=0

Ψi(x⃗)âi . (3.2)

Here, âi is the annihilation and â†i the creation operator for a particle in the state i.

Similarly to above, they also follow the bosonic commutation relations

[âi, â
†
j] = δi,j (3.3)

and operators commute with themselves for any two states. The occurrence of conden-

sation suggests that the single-particle ground state of the system is macroscopically

occupied, meaning that the number of particles in the ground state N0 ≫ 1 and for all

other states Ni ≪ N0. We now introduce the Bogoliubov theory which transforms the

field theoretical approach into a mean-field description by the substitution [26]

âi, â
†
i −→

√
N0 . (3.4)

9



3 The weakly-interacting Bose gas

Then, the field operator takes the form

Ψ̂(x⃗) =
√
N0Ψ0(x⃗) + δΨ̂(x⃗) , (3.5)

with a small perturbation δΨ̂(x⃗). In a dilute Bose gas at very small temperatures, one

may now drop the remaining operator δΨ̂(x⃗) which represents the non-condensed particles.

Then, the field operator is represented by a classical field only. In the following, we will

therefore simply replace Ψ̂(x⃗) by a complex-valued function Ψ(x⃗) which is then called order

parameter or wave function of the condensate. The condensate density is straightforwardly

obtained from this as n(x⃗) = |Ψ(x⃗)|2 and we may rewrite the wave function with the

Madelung transformation

Ψ(x⃗) =
√
n(x⃗)eiS(x⃗) , (3.6)

where S(x⃗) is the phase of the condensate. Note that one may always add a constant

real number to the phase without impacting the physics which is a consequence of the

fundamental gauge symmetry of the system.

Let us now take a step back and look at the weakly-interacting Bose gas. The dilute

character of the gas implies that the average distance between particles is much larger than

the range of the interaction. It follows that interactions involving more than two particles

are exceedingly unlikely. Thus, it is adequate to only consider two-body interactions. The

Hamiltonian in terms of the field operators Ψ̂(x⃗, t) in d dimensions takes the generic form

Ĥ (t) =

∫
ddx Ψ̂†(x⃗, t)

(
− ℏ2

2M
∆

)
Ψ̂(x⃗, t) +

1

2

∫
ddxddy Ψ̂†(y⃗, t)Ψ̂†(x⃗, t)V (y⃗ − x⃗)Ψ̂(y⃗, t)Ψ̂(x⃗, t) ,

(3.7)

where the field operators now also change with time. In an ultracold, dilute Bose gases,

the de Broglie wavelength of the particles is so large that the details of the two-body

potential V (y⃗ − x⃗) can no longer be resolved. Only low-energy scattering processes are

relevant to the interactions. It is thus sufficient and customary to replace the potential by

a contact interaction term V (y⃗− x⃗) = gδ(y⃗− x⃗), where the contact interaction strength g

is entirely characterized by the s-wave scattering length a. In flat space, g takes the form

g =





4πℏ2a
M

for d = 3 ,

− 4πℏ2
M ln(na2)

for d = 2 .

(3.8)
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3 The weakly-interacting Bose gas

The mean-field Bogoliubov theory introduced above suggests that the field operators can

now be replaced by their classical field counterpart. The Hamilton operator thus becomes

a mean-field energy functional of Ψ(x⃗, t):

H [Ψ] =

∫
ddx

{
Ψ∗(x⃗, t)

(
− ℏ2

2M
∆

)
Ψ(x⃗, t) +

g

2
|Ψ(x⃗, t)|4

}
. (3.9)

In order to specify the energy functional for spherical coordinates and to then find the

equations of motion in these coordinates, we now examine these aspects in closer detail.

3.1. Gross-Pitaevskii equation in spherical coordi-
nates

There are two approaches to the system at hand. The first one is to consider the full 3D

Hamiltonian and add an external potential to it. The potential confines the wave function

to a thin spherical shell around the radius R, in effect freezing out any degrees of freedom

in radial direction. In the lab, this is the only possibility where the confining potential is

usually achieved with the careful interplay of a static magnetic field and a time-dependent

magnetic radiofrequency field. In theory, we have the luxury of choosing another option

which is what we opt to do. That is to restrict oneself to the spherical geometry only and

to profess no knowledge of the three-dimensional world around it, making the problem

truly two-dimensional. The wave function is then a function of the angles, θ and ϕ, the

Laplacian takes the form of (2.7) and the integral measure becomes
∫

ddx→
∫

dΩR2 . (3.10)

In addition to the form of the energy functional in (3.9), it will be a goal to study the

BEC under the effects of an external rotation with the frequency ω⃗. To achieve that, the

term
∫

dΩR2ω⃗ ·
(
Ψ∗L̂Ψ

)
(3.11)

is added to the Hamiltonian. The angular momentum operator is given by L̂ = −iℏ(x⃗×∇).

Without loss of generality, one may set the axis of rotation to be the z-axis, i.e. ω⃗ = ωe⃗z. It

then follows that the only relevant component of the angular momentum is in z direction,

which is

L̂z = −iℏ(x⃗×∇)z = −iℏ(x∂y − y∂x) = −iℏ∂ϕ (3.12)

11



3 The weakly-interacting Bose gas

in spherical coordinates. The Hamiltonian without potential of a rotating BEC on a

sphere is then

H =

∫
dΩR2

{
ℏ2

2M
|∇Ψ|2 + g

2
|Ψ|4 − iℏωΨ∗∂ϕΨ

}
. (3.13)

After obtaining the final form for the mean-field energy functional, one may now turn to

the derivation of the equation of motion which is known as the Gross-Pitaevskii equation

[27, 28]. Since we are working in spherical coordinates, it will henceforth be abbreviated

as sGPE. The equation is derived via the variational principle, i.e.

iℏ∂tΨ =
δH

δΨ∗ . (3.14)

With the Hamiltonian (3.13), the sGPE takes the form

iℏ∂tΨ = − ℏ2

2MR2
∆ΩΨ+ g|Ψ|2Ψ− iℏω∂ϕΨ , (3.15)

= − ℏ2

2MR2

(
1

sin θ
∂θ(sin θ ∂θΨ) +

1

sin2 θ
∂2ϕΨ

)
+ g|Ψ|2Ψ− iℏω∂ϕΨ , (3.16)

in terms of the wave function Ψ = Ψ(θ, ϕ, t). Additionally, one may impose the ansatz

Ψ(θ, ϕ, t) → Ψ(θ, ϕ, t)e−iµt/ℏ with the chemical potential µ. Then, the sGPE is

iℏ∂tΨ = − ℏ2

2MR2
∆ΩΨ+ g|Ψ|2Ψ− iℏω∂ϕΨ− µΨ . (3.17)

3.1.1. Non-dimensionalization

In order to numerically treat this system, it is necessary to cast the sGPE in a dimen-

sionless form. In flat space a weakly-interacting Bose gas has one length scale given by

the healing length

ξ =

√
ℏ2

2µM
. (3.18)

On the sphere, we gain an additional length scale by the existence of the radius R which

naturally suggests to measure distances in units of this radius. Thus, let us introduce the

following relations to render the sGPE dimensionless:

t −→ t
MR2

ℏ
, Ψ −→ Ψ

R
. (3.19)
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3 The weakly-interacting Bose gas

Quantity Unit R = 10µm R = 50µm

Length R 10µm 50µm

Density 1
R2 0.01µm−2 0.0004µm−2

Time MR2

ℏ 0.137s 3.42s

Frequency ℏ
MR2 7.31Hz 0.292Hz

Energy ℏ2
MR2 4.81× 10−15eV 1.92× 10−16 eV

Angular Momentum ℏ ℏ ℏ

Table 1: Translation of dimensionless quantities to real units for differing radius.

Inserting this into (3.17) yields

i∂tΨ = −1

2
∆ΩΨ+ g̃|Ψ|2Ψ− iω̃∂ϕΨ− µ̃Ψ , (3.20)

with g̃ = gMℏ2 , ω̃ = ωMR2

ℏ and µ̃ = µMR2

ℏ2 . We will later return to the discussion of the

exact form of g, a result that is known from scattering theory on the sphere. These units

are considerably different than the ones usually used in flat 2D. To gain some intuition,

let us consider a BEC made out of Rb-87 atoms, i.e. M = 1.443 × 10−25kg, spread over

a spherical surface with radius R = 10µm and R = 50µm, values that are reasonable in

light of recent experiments [11, 12]. Then, the corresponding unit values are given by

Table 1.

3.1.2. Conserved quantities

The Gross-Pitaevskii equation conserves a number of quantities. It will be required to

evaluate these a number of times throughout the thesis for various reasons and often it is

useful to rewrite them in spectral representation. Let

Ψ =
∞∑

l=0

l∑

m=−l

ψml Y
m
l (3.21)

be the wave function of the system in terms of spherical harmonics and expansion coef-

ficients ψml and the units are as in section 3.1.1. Then, the particle number takes the

13



3 The weakly-interacting Bose gas

form

N =

∫
dΩ |Ψ|2 =

∞∑

l=0

l∑

m=−l

|ψml |2 , (3.22)

which follows from Parseval’s theorem (2.16). Similarly, the angular momentum in z-

direction is

Lz = −i

∫
dΩ Ψ∗∂ϕΨ =

∞∑

l=0

l∑

m=−l

m|ψml |2 . (3.23)

In the present work, we will not encounter a case of rotation around the x- or y-axis, so

the other components of the angular momentum vector

Lx = i

∫
dΩ Ψ∗(cosϕ cot θ ∂ϕ + sinϕ ∂θ)Ψ ,

Ly = i

∫
dΩ Ψ∗(sinϕ cot θ ∂ϕ − cosϕ ∂θ)Ψ (3.24)

will be zero. Furthermore, the kinetic and rotational energy are

Ekin = −
∫

dΩ
1

2
Ψ∗∆ΩΨ =

∞∑

l=0

l∑

m=−l

1

2
l(l + 1)|ψml |2, (3.25)

Erot = −iω̃

∫
dΩ Ψ∗∂ϕΨ = ω̃Lz = ω̃

∞∑

l=0

l∑

m=−l

m|ψml |2, (3.26)

It is not so straightforward to express the interaction energy in a spectral representation in

terms of the spherical harmonics expansion coefficients ψml of the wave function. Suppose

instead that the density n = |Ψ|2 is expanded in real spherical harmonics such that

n =
∑

l,m n
m
l Ym

l and likewise |Ψ|4 =∑l,m a
m
l Ym

l . Then, one can write

Eint =
g̃

2

∫
dΩ |Ψ|4 = g̃

2

∞∑

l=0

l∑

m=−l

(nml )
2 =

√
πg̃a00. (3.27)

3.2. The weakly-interacting Bose gas on the sur-
face of a sphere

To get a better grip on the similarities and differences between flat space and the sphere,

we discuss a number of vital properties of the homogeneous Bose gas on the spherical

surface in this section. A great deal is known about Bose-Einstein condensation on the

surface of a sphere. We owe much of our theoretical insight into this particular geometry

14



3 The weakly-interacting Bose gas

to the research of Andrea Tononi and Luca Salasnich in recent years [17, 21, 24, 29]. We

will recount here an abridged version of some of their most important findings. For a

more detailed understanding of the calculations, please reference the cited publications.

3.2.1. Grand Potential

In equilibrium, the statistical properties of the spherical BEC can be derived from the

partition function

Z =

∫
DΨDΨ∗e−S[Ψ,Ψ

∗]/ℏ . (3.28)

The Euclidean action S[Ψ,Ψ∗] takes the form

S[Ψ,Ψ∗] =

∫ ℏβ

0
dt

∫
dΩR2L(Ψ,Ψ∗) =

∫ ℏβ

0
dt

∫
dΩR2

{
Ψ∗
(
ℏ∂t −

ℏ2∆
2MR2

− µ

)
Ψ+

g

2
|Ψ|4

}
.

(3.29)

Here, µ is the chemical potential and β = 1/(kBT ). Subsequently, one decomposes the

order parameter as Ψ =
√
n0 + δΨ, where n0 is the condensate density and δΨ represents

complex quantum fluctuations on top of it. It is then possible, by discarding the cubic and

quartic terms in the Lagrangian L, to transform the partition function into a Gaussian

integral which can be solved exactly. From there on, we are interested in the grand

potential to access thermodynamical and other vital properties of the condensate:

Φ = − lnZ

β
. (3.30)

For the sake of brevity, the full calculation will not be illustrated here but instead we will

simply give the result. The grand potential as a function of the chemical potential then

reads

Φ = −2πR2µ2

g2
+

1

2

∞∑

l=0

l∑

m=−l

(El − ϵl − µ) +
1

β

∞∑

l=0

l∑

m=−l

ln
(
1− e−βEl

)
, (3.31)

where ϵl = ℏ2l(l+1)/(2MR2) is the energy of a free condensate and El =
√
ϵl(ϵl + 2µ) is

the Bogoliubov dispersion (see also section 3.2.4). The first term reflects the mean-field

result, and the two following terms are beyond mean-field, at zero temperature and finite

temperature, respectively. Notably, the zero temperature term may be calculated explic-

itly and analytically, while the finite temperature terms needs numerical evaluation. Let

us further remark that the Bogoliubov approximation employed here is only dependable

in low-temperature regimes and where the condensate density is sufficiently high.
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3 The weakly-interacting Bose gas

3.2.2. Condensate fraction and critical temperature

From the grand potential follows the particle density as

n =
1

4πR2

∂Φ

∂µ
, (3.32)

with Φ as in (3.31). The aim is to phrase the total particle density as a function of the

condensate density n0 and ultimately find an expression of the condensate fraction n0/n.

A rather lengthy calculation involving variational perturbation theory finds

n0
n

= 1− Mg

4πℏ2
− 1

4πnR2

(
1 +

√
1 +

2MgnR2

ℏ2

)
+

M

2πℏ2nβ
ln

[
exp

(
ℏ2β
MR2

√
1 +

2MgnR2

ℏ2

)
− 1

]
.

(3.33)

Taking the limit T → 0 of the above result, the condensate fraction at zero temperature

is then given by

n0

n
(T = 0) = 1− Mg

4πℏ2
− 1

4πnR2

(
1−

√
1 +

2MgnR2

ℏ2

)
. (3.34)

Sending the radius and the particle number to infinity N,R → ∞, but keeping the density

fixed produces n0/n = 1− Mg
4πℏ2 . This result is equal to what is known for the flat 2D BEC

[30] for g as in (3.8) which is a valuable consistency check. These matters are illustrated

in Fig. 3.1.

Setting the condensate fraction to zero and rearranging equation (3.33), one finds an

implicit but analytic expression for the critical temperature below which condensation

occurs:

βc =

ℏ2βc
2MR2

(
1 +

√
1 + 2MgnR2

ℏ2

)
− ln

[
exp

(
ℏ2βc
MR2

√
1 + 2MgnR2

ℏ2

)
− 1

]

2πℏ2n
M

− gn
2

. (3.35)

It must be reiterated that the results presented here are well within Bogoliubov theory

and thus may not be reliable outside that regime. Future research could focus on the

extension of analytic or numerical methods to generalize these results.

To find the superfluid density as a function of temperature, one may assume a Landau-

type formula [31], modified for the specific geometry (detailed derivation in Ref. [21]):

ns = n− β

∫ ∞

1

dl
2l + 1

4πR2

ℏ2l(l + 1)

2MR2

eβEl

(eβEl − 1)2
. (3.36)
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Figure 3.1: The left panel shows the condensate fraction at zero temperature.

As the dimensionless parameter nR2 becomes larger, it approaches the result

known from flat 2D. The right panel shows the condensate fraction as a function

of temperature for differing values of the particle number N . It follows that

nR2 = N/(4π).

Kosterlitz and Nelson found that the quantity T/ns(T ) approaches a universal constant

as the transition temperature Ts is approached from below, also known as the Kosterlitz-

Nelson criterion [32], or more precisely

lim
T↗Ts

T

ns(T )
=

πℏ2

2MkB
. (3.37)

Making use of this criterion, one can then numerically extract the transition temperature

from (3.36). Thereof follows the phase diagram in Fig. 3.2.

There are a few important observations to be made here. Bose-Einstein condensation is a

purely quantum statistical phenomenon, whereby the lowest energy state is macroscopi-

cally occupied below the critical temperature and can thus occur no matter the value of g.

On the other hand, superfluidity is an effect of the collective interaction of the atoms and

thus needs a non-zero value of g to exist. Hence, in an exponentially small region around

gM/ℏ2 → 0 Ts drops to zero, while Tc stays finite and takes the value known for the non-

interacting Bose gas [17]. For small values of nR2 (the topmost panel in Fig. 3.2), the

phase diagram shows a large area of condensation without superfluidity. This seems to be

an immediate effect of the curvature. When nR2 is small, the gas is either very dilute or

the sphere small, which inhibits any kind of collective superfluid behavior. In this regime,
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3 The weakly-interacting Bose gas

Figure 3.2: The phase diagram of a spherical Bose gas for differing values of

the dimensionless parameter nR2 (Top: nR2 = 102, Middle: nR2 = 104, Bottom:

nR2 = 105) as a function of the dimensionless interaction strength gM/ℏ2. g0 and

m in this figure correspond to g andM in the text. The dashed red line shows the

transition temperature of the condensation as specified by (3.35). The solid black

line represents the transition temperature of superfluidity. The system shows

both a mixed phase of BEC and superfluid coexistence, as well as condensation

without superfluidity and superfluidity without condensation. Reused from Ref.

[24, Fig. 4]. Copyright (2024) by Elsevier.
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the curvature may have a similiar effect on the superfluid transition as applying a specific

external potential to a flat 2D Bose gas [33]. After increasing nR2, the phase diagram

resembles that of a 2D Bose gas, the transition temperatures of condensation and super-

fluidity almost coinciding. However, at nR2 = 105, one even observes a superfluid region

without the presence of a condensate, a phenomenon that requires further reflection and

more elaborate analysis. Is it a physical effect or merely a consequence of the deficiencies

of the method?

3.2.3. Scattering theory

Turning to scattering theory, the ultimate goal in this context is it to find an expression for

the dimensionless contact interaction strength g̃ = gM/ℏ2. In the following calculation,

a sphere of radius R ≫ a is considered, where a is the s-wave scattering length on the

sphere. Furthermore, one may assume the simplification that the wavelengths are much

smaller than the radius. It follows that the waves do not “sense” the curvature very

strongly, and the calculations are carried out in the near-Euclidean regime. With these

restrictions in place, scattering processes give only a perturbative correction to the flat 2D

problem. The sphere is parametrized as in Chapter 2, such that |θ, ϕ⟩ is a position vector.

The non-interacting scattering states |l,m⟩ are the eigenstates of the free Hamiltonian

Ĥ0 = −∆Ω with eigenvalues ϵ̃l = l(l + 1). Both sets {|θ, ϕ⟩}, {|l,m⟩} form a complete,

orthonormal eigenbasis on the sphere. Their completeness relations read

1 =

∫
dΩ |θ, ϕ⟩ ⟨θ, ϕ| ,

1 =
∞∑

l=0

l∑

m=−l

|l,m⟩ ⟨l,m| . (3.38)

Then, the spherical harmonics are given by

Y m
l (θ, ϕ) = ⟨θ, ϕ|l,m⟩ . (3.39)

Only s-wave scattering is relevant, so m = 0 for all scattering states, and a scattering

process from l to l′ is considered. The contact interaction potential is introduced as

V̂ = g̃δ(1− cos θ)δ(ϕ), where without loss of generality ϕ′ and θ′ were set to zero. Thus,

the potential matrix element for the transition from one scattering state to another takes
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the form

Vl′,l = ⟨l′, 0| V̂ |l, 0⟩ =
∫

dΩ ⟨l′, 0|θ, ϕ⟩ g̃δ(1− cos θ)δ(ϕ) ⟨θ, ϕ|l, 0⟩

= g̃

√
(2l′ + 1)(2l + 1)

4π
, (3.40)

where it was used that Y 0
l (cos θ = 1, ϕ = 0) =

√
2l+1
4π

. The full Hamiltonian in the units

of section 3.1.1 and with particles of reduced mass M/2 then reads

Ĥ = Ĥ0 + V̂ = −∆Ω + V̂ . (3.41)

Let us now introduce the (unknown) eigenstates of Ĥ as |Ψl⟩ and the transition operator T̂
as the operator whose action on the free eigenstates |l,m⟩ is equal to action of the potential

on the full eigenstates |Ψl⟩, i.e. T̂ |l,m⟩ = V̂ |Ψl⟩. From this an implicit expression, also

known as a Lippmann-Schwinger equation, can be found for the transition operator:

T̂ = V̂ + V̂
1

ϵ̃l +∆Ω − iη
T̂ , (3.42)

where η is an infinitesimal parameter to regularize. Next, we turn to the matrix elements

of the transition operator Tl′,l = ⟨l′, 0|T̂ |l, 0⟩, yielding a closed integral equation typical

of the Lippmann-Schwinger approach:

Tl′,l = Vl′,l

(
1 +

∞∑

L=0

√
2L+ 1

2l + 1

TL,l
ϵ̃l − ϵ̃L + iη

)
. (3.43)

To solve this equation iteratively, the whole right hand side is repeatedly inserted into

the term TL,l in summation resulting in the formation of a geometric series which can be

evaluated to find

1

Tl′,l
=

1

Vl′,l
+

1√
(2l′ + 1)(2l + 1)

∞∑

L=0

2L+ 1

ϵ̃L − ϵ̃l − iη
. (3.44)

Similarly to (3.40), the effective interaction strength g̃e is now defined as proportional to

the transition matrix element Tl′,l in the following way:

Tl′,l = g̃e

√
(2l′ + 1)(2l + 1)

4π
. (3.45)

This finally leads to a familiar expression in scattering theory relating the bare interaction

strength g̃ and the effective interaction strength g̃e:

1

g̃e
=

1

g̃
+

1

4π

∞∑

L=0

2L+ 1

ϵ̃L − ϵ̃l − iη
. (3.46)
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The sum on the right hand side is replaced by an integral

∞∑

L=0

2L+ 1

ϵ̃L − ϵ̃l − iη
→
∫ lc

0

dL
2L+ 1

ϵ̃L − ϵ̃l − iη
, (3.47)

where a cutoff lc was imposed to avoid a UV divergence. The integral can be solved

analytically and an expression for the effective interaction strength is retrieved:

g̃e = − 2π

−2π
g̃
+ 1

2
ln
(
ϵ̃l
ϵ̃lc

)
− iπ

2

. (3.48)

To find the bare interaction strength g̃ as a function of the cutoff lc and the s-wave

scattering length a, one may use the ansatz

f0(ϵ̃l) = g̃e , (3.49)

where f0(ϵ̃l) is now the s-wave scattering amplitude which takes the general form

f0(ϵ̃l)) = − 4

cot (δ0(ϵ̃l))− i
. (3.50)

The cotangent of the phase shift δ0(ϵ̃l) reads [34]

cot (δ0(ϵ̃l)) = − 2

π

(
Ql(cos θ0) +B−1

)
, (3.51)

where Ql(x) is the Legendre function of the second kind, θ0 is the angular range of the

potential and B−1 a constant that depends on the properties of the potential inside the

range θ0. This constant can be fixed by introduction of the scattering length and setting

it to B−1 = ln(θ0/θs), with scattering angle θs = a/R. The large wave vector regime

suggests that l ≫ 1 and for a small potential range θ0 < 1/l, the Legendre function can

be approximated as

Ql(cos θ0) = − ln

(
θ0le

γE

2

)
+O(θ0, 1/l) , (3.52)

where γE is the Euler-Mascheroni constant. Thus, the scattering amplitude takes the

form

f0(ϵ̃l)) = − 2π

ln
(
θsleγE

2

)
− iπ

2

. (3.53)
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Finally, putting this result into (3.48), the bare interaction strength reads to leading order

in l

g̃ = − 2π

ln

[√
lc(lc+1)eγE

2
a
R

] , (3.54)

where it was used that

1

ln
[
αl/

(√
l(l + 1)

)] =
1

lnα
+O(1/l) (3.55)

for l ≫ 1. The central result of (3.54) is interesting in a number of ways. Firstly, it

depends on the UV cutoff lc, a number that is unknown and, in principle, unknowable,

since it derives from the precise shape of the true interaction potential which is not

captured by the simplified contact interaction approach. The only thing that is known

is that lc ≫ l. However, due to the logarithmic scaling of the interaction strength with

the system parameters, in the weakly-interacting limit it is not critical to know any

factor appearing in the logarithm exactly. Furthermore, the scattering length a in the

calculations is the scattering length for the spherical Bose gas which has a different value

compared to flat 2D and is currently experimentally inaccessible. Nonetheless, working in

the large radius limit, R ≫ ξ =
√

ℏ2/(2Mµ), justifies to use parameters known from the

flat case, once again noting the logarithmic scaling. In the following, we set a/R = 10−4

and lc = 255 (an inference from the grid format, compare with section 4.1), which gives

g̃ ≈ 1.66 . (3.56)

3.2.4. Bogoliubov dispersion and speed of sound

To close out this section, the Bogoliubov dispersion of a rotating spherical Bose gas is

calculated. In Bogoliubov theory, an infinitesimal delocalised excitation is placed on

top of an otherwise homogeneous background. To treat this problem, units are once

again included. First, the condensate is set to be of uniform density with some small

Bogoliubov-type excitations and the classical field takes the form

Ψ =
√
n0e

−iµℏ t + ϵ
[
AY m

l e
−i(µℏ+ω

m
l )t +B∗Y −m

l e−i(µℏ−ω
m
l )t
]
, (3.57)
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with ϵ ≪ 1. The chemical potential µ is included to satisfy energy conservation upon

creation of the two excited modes. To compute the excitation spectrum, this function is

plugged into (3.16). On order O(ϵ0), the well-known relation

µ = gn0. (3.58)

is found. On order O(ϵ1), the terms in the sGPE yield

iℏ∂tΨ = AY m
l (µ+ ℏωml )e−i(µℏ+ω

m
l )t +B∗Y −m

l (µ− ℏωml )e−i(µℏ−ω
m
l )t , (3.59)

− ℏ2

2MR2
∆ΩΨ =

ℏ2

2MR2
l(l + 1)

[
AY m

l e
−i(µℏ+ω

m
l )t +B∗Y −m

l e−i(µℏ−ω
m
l )t
]
, (3.60)

g|Ψ|2Ψ = µ
(
A∗(−1)mY −m

l e−i(µℏ−ω
m
l )t +B(−1)mY m

l e
−i(µℏ+ω

m
l )t (3.61)

+ 2AY m
l e

−i(µℏ+ω
m
l )t + 2B∗Y −m

l e−i(µℏ−ω
m
l )t
)
,

−iℏω∂ϕΨ = mℏω
(
AY m

l e
−i(µℏ+ω

m
l )t −B∗Y −m

l e−i(µℏ−ω
m
l )t
)
, (3.62)

where it was used that Y m∗
l = (−1)mY −m

l . Collecting all terms that are proportional to

Y m
l e

−i(µℏ+ω
m
l )t and to Y −m

l e−i(µℏ−ω
m
l )t, A and B satisfy the two equations

Aωml = A

(
mω +

ℏ
2MR2

l(l + 1) +
µ

ℏ

)
+B(−1)m

µ

ℏ
, (3.63)

Bωml = B

(
mω − ℏ

2MR2
l(l + 1)− µ

ℏ

)
− A(−1)m

µ

ℏ
. (3.64)

These are equivalent to the eigenvalue equation

mω + ℏ

2MR2 l(l + 1) + µ
ℏ (−1)mµ

ℏ

−(−1)mµ
ℏ mω − ℏ

2MR2 l(l + 1)− µ
ℏ




A
B


 = ωml


A
B


 . (3.65)

To find the non-trivial eigenfrequencies, the following determinant must be equal to zero:

det


mω + ℏ

2MR2 l(l + 1) + µ
ℏ − ωml (−1)mµ

ℏ

−(−1)mµ mω − ℏ
2MR2 l(l + 1)− µ

ℏ − ωml


 !

= 0. (3.66)

This finally results in the expression for the Bogoliubov dispersion:

ωml = mω ±
√

ℏ
2MR2

l(l + 1)

(
ℏ

2MR2
l(l + 1) +

2µ

ℏ

)
. (3.67)
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3 The weakly-interacting Bose gas

Unsurprisingly, this relation takes the familiar form of
√
E(E + 2µ), where E is the energy

of the free Bose gas. The rotation merely adds a term of linear scaling to it. To cast the

dispersion relation into a dimensionless form, we can write ω̃ml =
ωm
l MR2

ℏ , ω̃ = ωMR2

ℏ ,

µ̃ = µMR2

ℏ2 to find

ω̃ml = mω̃ ±
√

1

2
l(l + 1)

(
1

2
l(l + 1) + 2µ̃

)
. (3.68)

The eigenvalues of the square of the angular momentum operator L̂2 are given by ℏ2l(l+1).

By analogy to the linear momentum operator in flat space, the wave number is given by

kl =
√
l(l + 1)/R. One can therefore calculate the phase velocity of the Bogoliubov

modes:

vp(l) =
|ω0
l |
kl

=

√(
ℏ

2MR

)2

l(l + 1) +
µ

M
. (3.69)

From this follows the speed of sound as the minimal phase velocity via

vs = min
l
vp(l) =

√
µ

M
, (3.70)

which is the same as in flat space. The angular speed of sound then reads

ωs =
vs
R

=

√
µ

MR2
. (3.71)

We may therefore also use the following heuristic line of argument. On the equator, the

speed of sound vs and the angular speed of sound are related via (3.71). In the limit of

large radii, the value of vs must eventually approach the result known for the flat plane,

that is vs =
√
µ/M . For the speed of sound to approach a constant value as R goes to

infinity, ωs must go to zero as ωs ∝ R−1. This suggests that the speed of sound on the

equator is constant and equal to the flat case, so one can write for the large-radius limit

ωs
R→∞
=

√
µ

MR2
, (3.72)

which means that the expression above reproduces the large radius limit and, in fact,

coincides with it. Finally, in dimensionless form, this equation takes the simple form

ω̃s =
√
µ̃ . (3.73)
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Chapter 4

Numerical methods

In this chapter, the numerical and computational methods to treat the system of a spher-

ical Bose gas, as discussed in the previous chapter, will be introduced. None of this

thesis would have been possible without the aid of large-scale, high-performance com-

puter clusters at our disposal. Employment of numerical computations has achieved

great success in the understanding of ultracold atomic physics. We follow the footsteps

of well-known numerical procedures in flat space and adapt them to the geometry at

hand. The code that produced the present thesis was inspired by a previously exist-

ing numerical implementation written by Davide Proment but was otherwise created

from scratch. It is open source and can be found at https://github.com/n-cuadra/

Master-thesis-on-quantum-vortices-in-spherical-geometry.

In flat space, the fast Fourier transform (FFT) plays a vital role to be able to efficiently

compute the discrete Fourier transform of a data set. The most commonly used FFT

algorithm was published by Cooley and Tukey in 1965 and computes the Fourier transform

of a data set of length n in O(n log n) time [35]. As introduced in section 2.2, the spherical

harmonics expansion takes the critical role of the Fourier transform on the sphere and all

the numerical methods that follow will make extensive use of it.

4.1. Grid and spherical harmonics expansion

The first step to a working numerical implementation of the spherical geometry requires

the discretization of its coordinates. To that end, the two angles θ and ϕ that parametrize

the sphere are mapped onto an equally spaced N × 2N grid. Unless otherwise noted,

N = 512 will be used in the following which is a value that strikes a sensible balance

between grid resolution and computation time. It follows then that the angle between

two neighboring grid points in both directions is π/N and the angles are discretized as

θi =
iπ

N
and ϕj =

jπ

N
, (4.1)
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4 Numerical methods

where i ∈ {0, 1, . . . , N − 1} and j ∈ {0, 1, . . . , 2N − 1}. The wave function Ψ is then

formally stored as a 2D array of shape (N, 2N) and the entry with index [i, j] gives the

complex number Ψ(θi, ϕj), i.e. the rows of this array represent constant latitude and

the columns constant longitude. Next, let us turn to the computation of the spherical

harmonic transform from this discretized wave function.

The algorithm to determine the expansion coefficients is based on the sampling theorem

by Driscoll and Healy [25], as implemented in the Python package SHTOOLS [36]. This

theorem provides exact quadrature for two types of regular grid formats. First, an equally

sampled N × N grid, where N = 2k with some natural number k. This means that a

function is sampled at N equidistant grid points in both latitudinal and longitudinal

direction. However, the distance between two neighboring longitudinal points is twice the

distance of two neighboring latitudinal points. The other option is to have an equally

spaced N × 2N grid, where two neighboring points in both directions have the same

spacing. As was outlined above, the latter is the grid format employed in this thesis.

That is to say, that the grid points correspond to the angles

θ = 0,
π

N
,
2π

N
, . . . ,

(N − 1)π

N
,

ϕ = 0,
π

N
,
2π

N
, . . . ,

(2N − 1)π

N
. (4.2)

The bands at the south pole (θ = π) and at ϕ = 2π (which is the same as ϕ = 0) are not

required by the transformation routines and are thus not included in the gridded data.

These two grid formats are numerically equivalent, except that an equally spaced grid

has twice as many data points n = 2N2 = 22k+1. This kind of sampling means that in

terms of distance in real space, the sample points are denser near the poles and one must

account for this by properly weighting them. As an example, it follows that the band at

the north pole is downweighted to zero and thus has no influence on the computation of

the expansion coefficients. Let us now turn to a function f(θ, ϕ) with spherical harmonics

expansion coefficients fml . The sampling theorem is exact if the function is band-limited,

i.e. fml = 0 for l > lmax, and the function is sampled such that N = 2(lmax +1). Next, we

can define the necessary sampling weights ai to be the unique solutions to the equations

a0Pl(cos θ0) + a1Pl(cos θ1) + . . .+ a2lmax+1Pl(cos θ2lmax+1) =
√
2δl,0 , (4.3)
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4 Numerical methods

for l = 0, . . . , 2lmax + 1, Pl(x) are again the Legendre polynomials (2.11) and the grid

points are given as in (4.1). From this follows eventually the closed expression

ai =
2
√
2

N
sin

(
iπ

N

) lmax∑

l=0

sin
(
(2l + 1) iπ

N

)

2l + 1
. (4.4)

With this knowledge, the sampling theorem for the expansion coefficients fml can be

formulated:

fml =

√
2π

N

N−1∑

i=0

2N−1∑

j=0

aif(θi, ϕj)Y
m
l

∗(θi, ϕj) . (4.5)

At first glance, the two sums seem to suggest that a computation would cost O(n2) time.

However, Driscoll and Healy developed an algorithm that makes use of O(n log n) FFTs

at appropriate waypoints to arrive at an implementation of the sampling theorem that

takes O(n(log n)2) time. The back transform is simply given by

f(θi, ϕj) =
lmax∑

l=0

l∑

m=−l

fml Y
m
l (θi, ϕj) . (4.6)

Unlike the IFFT which is functionally equivalent to the FFT except for a sign and normal-

ization difference, the back transform is a numerically distinct operation and there exists

no method to reduce the complexity of the above expression and thus the summation

must be carried out naively which gives a computation time of O(n3/2).

One interesting consequence of the sampling theorem is that lmax = N/2− 1 < N which

means that total number of expansion coefficients is

lmax∑

l=0

(2l + 1) =
N2

4
=
n

8
. (4.7)

The number of degrees of freedom in the space of spherical harmonics is thus eight times

smaller than the number of grid points, another peculiarity of the numerical analysis on the

sphere. Consider now the wave function Ψ with expansion coefficients ψml . Typically, Ψ

will not be band-limited and so the expansion will not be numerically exact. Nonetheless,

the prescription by which the expansion is cut off above lmax = N/2− 1 is still necessary,

because the system of equations (4.3) does no longer hold for any larger value of lmax.

For such a truncation, all areas of the sphere are equally well resolved by the spherical
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Figure 4.1: Line spectrum and 2D Spectrum of an exemplary wave function

of a vortex-antivortex pair situated on the surface of a sphere. The left panel

shows the spectrum as in (4.8) in a semilog plot and the spectrum exhibits an

exponential decay for l ≳ 20, where roughly Sl ∝ 10−0.08l. The right panel

shows the 2D spectrum of the same function where the pixel corresponding to

the indices l and m is color-coded by the value of ln |ψml |2.

harmonics (see chapter 18 of Ref. [37]). One must, however, make sure that the spectrum

which is defined by

Sl =
l∑

m=−l

|ψml |2 (4.8)

decays sufficiently fast, otherwise the cutoff was either too small (and thus the grid cannot

resolve the function well enough) or the function may not be represented by a finite

expansion. For non-pathological functions, this is usually the case. Throughout the

thesis, special care was taken examining the spectra to ensure proper convergence, as

exemplified in Fig. 4.1.

With this knowledge, one can now illustrate the computation of the Laplacian and the

angular momentum operator as present in the sGPE (3.16). Following the considerations

above, the wave function may be written as

Ψ(θi, ϕj) =
lmax∑

l=0

l∑

m=−l

ψml Y
m
l (θi, ϕj) . (4.9)

Since the spherical harmonics are eigenfunctions of ∆Ω with eigenvalues −l(l + 1), the
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4 Numerical methods

action of the Laplacian on Ψ is

∆ΩΨ(θi, ϕj) =
lmax∑

l=0

l∑

m=−l

−l(l + 1)ψml Y
m
l (θi, ϕj) . (4.10)

In conclusion, applying the Laplacian onto the wave function is equivalent to the operation

ψml → −l(l + 1)ψml . (4.11)

This is very similar to the flat case where the Laplacian simply gives a multiplication with

k2 in Fourier space. Similarly, applying ∂ϕ to the wave function is identical to

ψml → imψml . (4.12)

These simple results demonstrate the extraordinary power that the spherical harmonic

transform brings to the table.

4.2. Split-stepping

In the previous section, the discretization of the spatial coordinates was formulated. A

vital part of the numerical treatment of the spherical Bose gas is to solve the dimensionless

sGPE (3.20), i.e. to evolve the wave function Ψ(θ, ϕ, t) in time. To that end, the time

coordinate is discretized as well, with time steps of length δt. The method of choice for the

time propagation of the sGPE is the split-stepping approach, a popular numerical solver

for any type of nonlinear Schrödinger equation, known to conserve particle number and

energy [38]. To that end, the sGPE is reformulated with the linear operator L = −1
2
∆Ω−

iω̃∂ϕ and the nonlinear operator N = g̃|Ψ|2 − µ̃ (which are both time-independent) as

i∂tΨ = (L + N )Ψ . (4.13)

Formally, the solution to this equation for an initial condition Ψ0 = Ψ(t0) may be written

as

Ψ(t0 + δt) = e−iδt(L+N )Ψ0 .

Unless |Ψ|2 is constant in time, this expression is only first order accurate. The split-

stepping procedure now prescribes that the exponential is split up to generate

e−iδt(L+N ) = e−iδtL e−iδtN +O(δt2) . (4.14)
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which, by the the Baker-Campbell-Hausdorff formular, produces a second order error.

That is to say, the sGPE is split into two parts

i∂tΨ = N Ψ , i∂tΨ = LΨ , (4.15)

which are solved in sequential order and the solution of the left equation serves as an

initial condition for the right equation. This splitting scheme is profoundly helpful since

the operator L is diagonal in the space of spherical harmonics and the operator N can

easily be evaluated on the grid which makes solving the equations (4.15) straightforward.

A full, singular time step then takes the following form. First, the action of the nonlinear

operator on the initial wave function Ψ0 produces an intermediate result

Ψ̄(θi, ϕj) = e−i(g̃|Ψ0(θi,ϕj)|2−µ̃)δtΨ0(θi, ϕj) (4.16)

for all grid points (θi, ϕj). Next, the spherical harmonics expansion coefficients ψ̄ml of Ψ̄

are calculated according to section 4.1. So we can write

e−iδtL Ψ̄ =
lmax∑

l=0

l∑

m=−l

ψ̄ml e
−iδt(− 1

2
∆Ω−iω̃∂ϕ)Y m

l

Since the spherical harmonics are eigenfunctions of L and their eigenvalues are as in

(2.17), the argument of the exponential simply becomes a complex number involving these

eigenvalues. One can then conclude that it suffices to modify the expansion coefficients

by

ψ̄ml −→ ψ̄m
′

l = e−i 1
2
l(l+1)δte−imω̃δtψ̄ml . (4.17)

To complete the time step, we return back to real space with the transform

Ψ(t0 + δt) =
lmax∑

l=0

l∑

m=−l

ψ̄m
′

l Y m
l . (4.18)

4.2.1. Imaginary time

It is often helpful to also consider an evolution in imaginary time. This means that the

time t is replaced by a purely imaginary number τ = it which is equivalent to replacing

i∂t by −∂τ in the sGPE. The time evolution is methodologically exactly identical to what
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was shown for real time, only iδt changes to δτ . That means the nonlinear time step

becomes

Ψ̄(θi, ϕj) = e−g̃|Ψ0(θi,ϕj)|2δτΨ0(θi, ϕj) . (4.19)

We do not need to add the chemical potential term here because particle conservation is

enforced otherwise (see below). Similarly, the linear time step is modified as

ψ̄m
′

l = e−
1
2
l(l+1)δτe−mω̃δτ ψ̄ml . (4.20)

The principal idea behind imaginary time evolution is the following. The equation of

motion is transformed into

−∂τΨ = H Ψ , (4.21)

where H is some (nonlinear, time-independent) quantum-mechanical Hamilton operator.

Let now Ψn denote its energy eigenstates and ϵn their energies. Then, for an initial

condition Ψinit =
∑

n cnΨn with complex coefficients cn, the imaginary time evolution

takes the form

Ψ(τ) =
∑

n

cne
−ϵnτΨn . (4.22)

Imaginary time evolution thus produces an exponentially decaying superposition of the

Hamiltonian eigenstates, where the decay rate is proportional to the energy of the eigen-

states. Since the ground state has the lowest energy, it decays the slowest and thus, in

the limit of long imaginary time, the evolution will transport the system into its ground

state. The only caveat being that the initial condition must contain a contribution by the

ground state, i.e. Ψinit = cΨgs + ..., otherwise the imaginary time evolution will converge

to the lowest present energy state or some other meta-stable state. Noting the exponen-

tial decay, the imaginary time does not conserve particle number on its own. It is thus

necessary to externally enforce this condition. This is done by calculating the particle

number N for the initial condition and the particle number N ′ after each time step and

then multiplying the wave function by
√
N/N ′ to finalize the time step.
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Chapter 5

Vortex dipole physics

In section 3.2.4, the form of the dispersion for the Bogoliubov quasiparticles was already

established. However, an ultracold Bose gas can, even at zero temperature, exhibit another

type of excitation. These are topological in nature and take the form of quantized vortices,

which means there is a point in space around which the field rotates, carrying quantized

angular momentum. If the order parameter is written as

Ψ(θ, ϕ) =
√
n(θ, ϕ)eiS(θ,ϕ) , (5.1)

then the velocity of the condensate takes the form

v⃗(θ, ϕ) =
ℏ
m
∇S(θ, ϕ) , (5.2)

where the gradient is as in (2.6). By construction, the velocity is irrotational which is to

say that ∇× v⃗ = 0. However, the phase field S(θ, ϕ) may still contain topological defects,

singular points (the vortex core) where its value is undefined. Since the wave function

must be single-valued, the density n must go to zero in the vortex core. One can then

write the velocity as v⃗ = v⃗ir + v⃗v, where v⃗ir denotes the completely irrotational part and

v⃗v the velocity of the vortices with nonzero curl. Consider now a small region on the

surface that contains a single vortex, enclosed by the curve C. If one follows the curve

once around the defect the phase can increase by 2π or an integer multiple of it. In other

words [39]

∮

C

v⃗v · ds⃗ =
2πqℏ
m

, (5.3)

where q ∈ Z is the topological charge or the winding number of the vortex and ds⃗ =

Re⃗θdθ + R sin θe⃗ϕdϕ is the line element on the sphere. In the present thesis, we set out

to study the most simple system containing such topological defects. In the flat, infinite

plane it is possible to excite a single vortex. On the sphere, however, such an excitation

is topologically prohibited. Consider again (5.3), but now with the curve enclosing all

vortices, which means the rest of the sphere contains no vortices. It is not possible to
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5 Vortex dipole physics

distinguish between “inside” and “outside” the path, hence the total charge must be equal

on both sides. One can then conclude that the BEC must exhibit charge neutrality due

to the compactness of the sphere. If there are N vortices with charges {qi}, it holds that
N∑

i=1

qi = 0 . (5.4)

Furthermore, a vector field v⃗ defined on a given surface with Euler characteristic χ is

beholden to the Poincaré-Hopf index theorem, whereby

∑

s

indv(s) = χ . (5.5)

Here, s denotes a singular point of the vector field, that is to say a point on the surface

where the vector field vanishes or becomes infinite. In flat 2D, the index of the vector field

at the point s indv(s) is then given by the amount of times the vector field rotates when

traversing a closed path that contains only this one singular point. It is a non-trivial claim

that an analogous point on a curved surface has the same index, but it turns out to be

true. Then, the theorem states that the sum over indices of all singular points of the vector

field (if there is only a finite number of singular points) is equal to the Euler characteristic,

a topological invariant describing important properties of the topological space. For the

sphere χ = 2 and a singly-charged vortex or antivortex (q = ±1) has index 1. Hence, the

minimally permitted configuration is a vortex-antivortex pair which naturally conforms

to the index theorem and the creation of vortices on the sphere happens in these pairs.

Such a vortex dipole will be the object of study in the coming sections. Although at

first glance a relatively unassuming system, it harbours rich physics which might also give

insight into more complicated problems. However, in order to proceed we must first take

a quick detour.

5.1. Numerical verification of Bogoliubov disper-
sion

Before we finally turn to the discussion of topological excitations, it is instructive to

look a the Bogoliubov dispersion in some detail within the present numerical apparatus.

Bogoliubov modes are, after all, the most basic excitations of the systems and one ought

to examine their proper reproduction. Following the ansatz in (3.57), the wave function
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is initialized as

Ψ =
√
n0 + ϵ

lmax∑

l=1

l∑

m=−l

Y m
l , (5.6)

with ϵ ≪ 1. Since Y 0
0 = 1/

√
4π, the coefficient ψ0

0 is accordingly set to
√
4πn0 and all

other coefficients are set to ϵ. This wave function is then propagated in time using the

split-stepping method outlined in section 4.2 and the expansion coefficients are recorded

throughout to find them as a function of time ψml (t). To now recover the dominant

frequencies of the coefficients, it is necessary to perform a Fourier transform. However,

the functions ψml (t) are not necessarily periodic in time. While periodicity is not a strict

numerical prerequisite (it is possible to apply an FFT to a non-periodic function), it

is expedient to window the coefficients before the Fourier transform. Mathematically

speaking, a window function is a function that is non-zero only inside a certain interval,

typically symmetric around a maximum in the middle and varying smoothly to zero.

When a signal is multiplied with a window function, one therefore retrieves the signal seen

“through the window.” In practice, the interval of window functions is often chosen to be

of same length as the signal, so its purpose is not to window but instead to taper the signal

off to zero. Whether the expansion coefficients are periodic or not, due to the arbitrary

termination point of the time evolution, their beginning and endpoints are not continuous.

These discontinuities appear in the FFT as high-frequency contributions absent in the

original function. These frequencies can be higher than the Nyquist frequency and thus get

mapped to a lower frequency alias. This phenomenon is known as spectral leakage because

frequencies tend to “leak” into the surrounding area. This effect is most pronounced

for the peaks of the spectrum and so they get smeared out and broaden. The aim of

windowing, then, is to reduce the amount of spectral leakage. In signal processing, it is

generally agreed upon that the Hann window (see chapter 3.9 of Ref. [40] for more detail)

w(t) =
1

2

[
1− cos

(
2πt

T

)]
(5.7)

is best suited for signals with unknown content. Here, T is the size of the interval and

0 ≤ t ≤ T . For our present purpose, T is chosen to be the length of the time evolution.

Then, the windowed coefficients take the form

ψ̃ml (t) = ψml (t)w(t) . (5.8)
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Figure 5.1: Bogoliubov dispersion relation of a spherical Bose gas. The top

panels show the spectrum for fixedm = 0. The bottom panels show the spectrum

for fixed l = 140. The two panels on the right also include the analytically known

result for the dispersion relation to show that it accurately overlaps with the

spectral peaks. To make the spectrum visible, the logarithm of the magnitude

of the coefficients ψ̃ml (ω̂) is plotted. The parameters used are n0 = 10, ϵ = 10−6,

g̃ = 1.66 and ω̃ = 30.

After this procedure is complete, an FFT is performed to find the coefficients ψ̃ml (ω̂) in

frequency space, where ω̂ denotes the dimensionless Fourier complement to the time t.

Next, one can either set a fixed l or m and plot ψ̃ml (ω̂) as a function of both frequency

and the non-fixed index to indeed find that the spectra reproduce the dispersion relation

(3.68) as shown in Fig. 5.1. This is an important consistency check which confirms the

integrity of the numerical implementation.
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5.2. Initial condition

Having understood the Bogoliubov dispersion, the next step is the introduction of vortices

into the condensate. The first hurdle to the study of vortex dipoles is to find a method

to properly initialize the topological defects. In the flat plane in polar coordinates (r, ϕ),

the wave function of a single vortex situated at the origin is simply

Ψ = f(r)eiϕ . (5.9)

The transformation rules from polar to Cartesian coordinates tell us that ϕ = atan2(y, x).

The phase of two or more vortices may simply be written as the sum of the phases of the

single vortex. Therefore, the phase profile of a dipole with the vortex at (x+, y+) and the

antivortex at (x−, y−) is

Spl = atan2(y − y+, x− x+)− atan2(y − y−, x− x−) . (5.10)

The next step in the procedure is to map this phase onto the spherical surface the means

of which will be the stereographic projection. To this end, the center of the sphere is

placed at the origin and the projection is carried out through the North Pole (0, 0, 1) of

the sphere, such that the xy-plane, where the dipole (5.10) sits, is perpendicular to the

diameter through the North Pole. This leads to the standard form of the stereographic

projection:

(x, y) = cot
θ

2
(sinϕ, cosϕ) , (5.11)

with the polar angle θ and the azimuthal angle ϕ. It is then straightforward to insert this

transformation into (5.10) to find the general form of the spherical phase

S = atan2

(
cot

θ

2
cosϕ− cot

θ+
2

cosϕ+, cot
θ

2
sinϕ− cot

θ+
2

sinϕ+

)

− atan2

(
cot

θ

2
cosϕ− cot

θ−
2

cosϕ−, cot
θ

2
sinϕ− cot

θ−
2

sinϕ−

)
, (5.12)

where now the positions of the vortex pair are (θ+, ϕ+) and (θ−, ϕ−). This mapping

suggests that a vortex dipole placed on the y-axis is projected onto the antimeridian, a

vortex with positive y will end up on the Northern Hemisphere and an antivortex with

negative y will end up on the Southern Hemisphere. Translating these considerations into
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numbers, we have ϕ+ = ϕ− = π and θ− = π − θ+ with θ+ ∈
[
0, π

2

)
. It then follows that

y+ = − cot
θ+
2
,

y− = − cot
θ−
2

= − tan
θ+
2
,

x+ = x− = 0. (5.13)

With this in mind, the position of the dipole is entirely characterized by θ+ and the phase

then simplifies to

S = atan2

(
cot

θ

2
cosϕ+ cot

θ+
2
, cot

θ

2
sinϕ

)
− atan2

(
cot

θ

2
cosϕ+ tan

θ+
2
, cot

θ

2
sinϕ

)
.

(5.14)

As dicussed above, the vortex is on the Northern Hemisphere and the anti-vortex on the

Southern Hemisphere this way. If the mirrored configuration is desired, the phase can

simply be multiplied by −1. In the following, the polar angle of the vortex will always

be denoted as θ+. Note that the stereographic projection is a conformal mapping, i.e.

it preserves angles which means that circles on the plane are mapped to circles on the

sphere. However, it does not preserve lengths or areas. It is therefore expected that

eq. (5.14) has introduced distortions into the phase profile, yet it is not critical to get

the phase exactly right. The initial condition proposed here will be subject to a short

imaginary time evolution to properly form the vortex cores which will smooth out any

distortions. Nonetheless, numerically comparing the phase (5.14) to the phases of several

fully stationary solutions of (3.20), the differences were always smaller than 10−8 which

suggests a remarkable degree of accuracy present in this approach.

In general, the wave function of the condensate can then be written in the following form:

Ψ =
√
nbgfξe

iS , (5.15)

with the background density nbg and where fξ is a function that is zero at the vortex cores

and rises to one on the length scale of the healing length which is given by ξ = 1/
√
2n̄g̃

in the units of section 3.1.1 and n̄ = N/(4π) is the average particle density. This function

must typically be evaluated numerically. In the flat plane, a popular choice to initalize

the density is to employ a Padé approximation of varying order [41]. Whether Padé

approximations exist on the sphere is currently unknown, and in any case needs careful
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consideration due to the compact geometry. It is not vital to imprint the density at all

since an imaginary time evolution of the phase will produce the vortex cores one way or

the other. In the name of expediency, consider the following model nonetheless. Let us

assume the vortex and antivortex are positioned in Cartesian coordinates at

x⃗+/− = (sin θ+/− cosϕ+/−, sin θ+/− sinϕ+/−, cos θ+/−) . (5.16)

Then

fξ =
(
1− e−ℓ+/ξ

) (
1− e−ℓ−/ξ

)
, (5.17)

where ℓ+/− are the arc lengths separating a point on the sphere

x⃗ = (sin θ cosϕ, sin θ sinϕ, cos θ) (5.18)

from the vortex or anti-vortex. On the unit sphere, the arc length is simply given by the

angle the two vectors enclose:

ℓ+/− = ∢(x⃗, x⃗+/−) . (5.19)

Since the two vectors form the legs (of length one) and their difference the base of an

isosceles triangle, this angle is given by

ℓ+/− = ∢(x⃗, x⃗+/−) = 2 arcsin

( |x⃗− x⃗+/−|
2

)
. (5.20)

Fig. 5.2 shows a wave function initialized with the phase (5.14) after an imaginary time

evolution.

5.3. Dynamics

The starting point of this section is Ref. [42]. The authors put a vortex dipole as in

(5.14) on the spherical surface which means its position is entirely characterized by the

polar angle θ+ of the vortex on the Northern Hemisphere. Then, its energy is calculated

as a function of θ+ and the external rotation ω̃ according to the mean-field functional

(3.13). They found an energy landscape where the position of the maximum is dependent

on ω̃. Specifically, for a vortex pair where the anti-vortex is on the Northern (Southern)

Hemisphere, there is a critical value ω̃c = 0.5 (ω̃c = −0.5) below (above) which the energy
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Figure 5.2: Initialized wave function of a vortex dipole for θ+ = 45°. The

particle number was set to be fixed at N = 750 and g̃ = 1.66. The two panels

at the top show the density and the phase of the wave function in a 3D plot, the

bottom panel shows them in a 2D plot. Note that the 2D depiction makes the

form of the vortex cores slightly distorted (i.e. not circular) since the grid points

are denser in terms of distance the closer they are to the poles.
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Figure 5.3: Energy of a vortex dipole (vortex on Northern Hemisphere, antivor-

tex on Southern Hemisphere) as function of the position θ+ for different values

of the external rotation ω̃. Etot is the total energy (3.13) and the energy of the

homogeneous condensate with same particle number Ec is substracted such that

the graph goes to zero as θ+ = 90° is approached. The right panel shows that

the ground state for a single vortex dipole can be at the poles for a sufficiently

large |ω̃|. Parameters used are N = 3020 and g̃ = 1.66.

exhibits a global maximum at θ+ = 0, i.e. the two vortices situated at the poles. Away

from the poles, the energy decreases strictly monotonic towards the equator where the two

vortices meet and annihilate. Ergo, the ground state of the system is the homogeneous

condensate. If one increases (decreases) the external rotation above (below) ω̃c, the picture

changes. The global minimum at the equator persists at first, but another minimum forms

at the poles, and a global maximum sits in between. Since the rotational energy is given

by Erot = ω̃Lz and the angular momentum is zero for the homogeneous condensate, one

can set the energy for the vortex pole solution to any arbitrary value by modifying ω̃. It

is then possible to create a true ground state at the poles. These matters are illustrated

in Fig. 5.3.

One can then argue that it is always energetically favorable for the dipole to relax towards

the equator and annihilate when ω̃ < ω̃c (ω̃ > ω̃c ). Thus, there is an attraction between

the two vortices in this regime. For ω̃ > ω̃c (ω̃ < ω̃c), however, it is possible to energetically

40



5 Vortex dipole physics

stabilize the system by placing the vortex pair on the poles. Nevertheless, it is not

apparent whether there is an actual mechanism by which the vortices are allowed to

either move towards the equator or the poles (depending on the values of ω̃ and θ+).

In an infinite, flat, two-dimensional BEC, the energy similarly decreases the smaller the

distance between the vortices. However, their motion follows the local velocity field of

the superfluid which induces a uniform translation rather than decreasing the separation.

Furthermore, within the GPE time evolution, there is no dissipation and thus no process

through which the vortices can lose energy and move closer together. It is not immediately

obvious why this should be any different in spherical geometry. To test this statement, the

vortex dipole will be propagated in time and the exact position of the cores determined.

To that end, a sophisticated vortex tracking procedure is necessary.

5.3.1. Vortex tracking

To examine the dynamics of moving vortices, it is crucial to have a method to track their

movement, that is to detect the position of the vortices on the surface during the time

evolution. Since the vortex cores are situated at the roots of the wave function Ψ, we

present here a root finding approach based on the Newton-Raphson method which will be

able to produce the vortex positions with spectral accuracy, degrees of magnitude more

precise than the grid spacing. Let us outline the basic principles of the method. For a

simple function f : R −→ R with a root at x0, the function can be Taylor-expanded

0 = f(x0) = f(xg) + f ′(xg)(x0 − xg) +O
(
(x0 − xg)

2
)
, (5.21)

with a point xg that is close to x0. If x0 − xg is sufficiently small, then one may truncate

the expansion after the linear term and invert to find

x0 = xg −
f(xg)

f ′(xg)
. (5.22)

This is the basic idea behind the Newton-Raphson method. One starts out with a guess

xg that must be close to the actual root for the method to converge, then one iteration is

performed by computing x0 via (5.22) and finally x0 is used as a new guess. This process

is repeated until satisfactory convergence is achieved. A great number of algorithms to

solve systems of (nonlinear) equations are based on this method. We will see later a
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much more complicated implementation to find stationary solutions of the sGPE. For the

present purpose, it needs to be modified such that it can find the roots of a complex-valued

function on the unit sphere. Let us begin by defining

Ψ⃗ =


Ψr

Ψi


 (5.23)

where Ψr = ReΨ and Ψi = ImΨ are the real and imaginary part of the wave function.

The position of the vortices is then defined by the points where Ψ⃗ vanishes identically.

We will assume that it is possible to find a good inital guess (θg, ϕg) that is in the vicinity

of the actual vortex core position, such that |Ψ(θg, ϕg)|2 < ηnbg for a sufficiently small

number η. Typically, it will be easy to find an initial guess by simply using the points of

local minima within the gridded data. If we now denote the actual position of the vortex

as (θv, ϕv), we can Taylor-expand around the initial guess:

0 ≡ Ψ⃗(θv, ϕv) = Ψ⃗(θg, ϕg) +


∂θΨr(θg, ϕg)

1
sin θg

∂ϕΨr(θg, ϕg)

∂θΨi(θg, ϕg)
1

sin θg
∂ϕΨi(θg, ϕg)




︸ ︷︷ ︸
J(θg ,ϕg)

·


θv − θg

ϕv − ϕg


+ . . . .

(5.24)

To find the position of the vortex, this whole structure can now be inverted (assuming

that the Jacobian J(θg, ϕg) is invertible) to find


θv
ϕv


 =


θg
ϕg


− J−1(θg, ϕg) · Ψ⃗(θg, ϕg) . (5.25)

In order to compute the expression above numerically, first the spherical harmonic co-

efficients are determined via the relation (2.15). With this knowledge, we can then find

spectral expressions for Ψr(θg, ϕg) and Ψi(θg, ϕg) by doing a spherical harmonic expansion,

i.e.

Ψ(θg, ϕg) =
lmax∑

l=0

l∑

m=−l

ψml Y
m
l (θg, ϕg) . (5.26)

Note that (θg, ϕg) need not be a point on the grid. Once the expansion coefficients are

calculated, the above expression can be evaluated for any point on the sphere and thus

the root can be determined with great precision. Similarly, for the derivatives we then
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have

∂ϕΨ(θg, ϕg) =
lmax∑

l=0

l∑

m=−l

imψml Y
m
l (θg, ϕg) (5.27)

∂θΨ(θg, ϕg) =
lmax∑

l=0

l∑

m=−l

ψml ∂θY
m
l (θg, ϕg) (5.28)

where the derivative with respect to θ is given by (2.18). To get the entries for the Jaco-

bian, one only needs to take the real or imaginary part, e.g. ∂θΨr(θg, ϕg) = Re(∂θΨ(θg, ϕg)).

This procedure can be repeated as many times as necessary by using the new coordinates

(θv, ϕv) as the next initial guess. We then assume that the solution has converged suffi-

ciently well once |Ψ(θg, ϕg)|2 < ϵnbg for a small tolerance ϵ. For the initial condition (5.15),

it is observed that this algorithm does not converge to the actual - in this case - known

positions of the vortices, but it is ever so slightly off in polar direction only. In fact, if the

density at the vortex core is calculated via (5.26), one finds that n(θv, ϕv) ≈ 8×10−10nbg,

whereas the vortex tracking converges to a point of lower density. One can attribute this

numerical inaccuracy to the fact that the spherical harmonic expansion is truncated at

lmax by virtue of the finite grid and that information is ultimately lost due to this trun-

cation. It is in principle possible to fix ϵ to the machine precision but considering these

matters, we conclude that it is sufficient to set ϵ = 10−9.

5.3.2. Aliasing

Before going over to the discussion of the time evolution itself, it is advisable to spend

some time on a common ailment of integrating nonlinear equations of motion: Aliasing

instabilities. Aliasing is an effect of the finite truncation of the expansion in basis functions

whereby high wavenumbers, which can not be resolved by the grid, are “aliased” to low

wavenumbers that can be resolved. This eventually leads to the spectrum blowing up and

the simulation crashing. To discuss these matters, let us look at the one-dimensional flat

space. It will be straightforwards to extend these concepts to higher dimensions or the

spherical case. Suppose that the grid spacing is ∆x, the total length of the grid is 2L and

the grid points are situated at x ∈ {−L,−L+∆x, . . . , 0, . . . , L−∆x, L}. It follows that
the spacing in Fourier space is ∆k = π/L and the grid points in Fourier space are

k ∈ {−π/∆x,−π/∆x+∆k, . . . , 0, . . . , π/∆x−∆k, π/∆x} . (5.29)
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That is to say there is a maximum wavenumber

|k|max =
π

∆x
, (5.30)

which is also called the aliasing limit wavenumber, and any higher wavenumber can not

be represented by the grid anymore. However, it is possible to show that any |k| > |k|max

will be aliased to a wavenumber permissible by (5.29). In practice, this means that a

wavenumber k = |k|max + j∆k (j ∈ N) will appear in the numerics as |k|max − j∆k and

k = −|k|max − j∆k will appear as −|k|max + j∆k. If j is very large, this “folding back”

into the range (5.29) might have to be performed multiple times. One can then state that

the truncation of the Fourier expansion introduces two errors. First, an error due to the

truncation itself which discards any components with |k| > |k|max. Second, an error of

the expansion coefficients because they include contributions from higher wavenumbers

due to aliasing and are therefore not identical to those of the exact expansion. This is

entirely a consequence of the nonlinearity. The discretization of a linear equation does

not lead to aliasing and thus the expansion coefficients will be exact. The first error will

stay constant. The second, however, can grow without bounds because continued aliasing

will eventually lead to numerical instabilities.

Thankfully, these instabilites are relatively easy to spot. It is sufficient to visually monitor

the spectrum because the wavenumbers with |k|max are the first to be excited by aliasing

(see Chapter 11 of Ref. [37]). Consequently, the absolute value of the corresponding

expansion coefficients must grow. This leads to a phenomenon called “spectral blocking”

which means that the spectrum exhibits a rise in value near the highest wavenumber

instead of a uniform exponential decay which would be the non-pathological behavior.

This signifies that the high wavenumbers have accumulated a lot of noise due to aliasing

and it is a precursor to the complete breakdown of the numerical method. Aliasing is a

secular effect, meaning that it gets worse over time and will eventually cause a blow-up

if no countermeasures are taken. However catastrophic that may sound, it is indeed a

boon in some situations because the blow-up tells you unequivocally that something has

gone horribly wrong where the remedies to aliasing might sometimes skillfully hide such

a numerical failure.

Before turning to the antidotes, let us remark that spectral blocking can additionally
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be caused by choosing a time step that is too large, specifically when it violates the

Courant–Friedrichs–Lewy condition [43].

There are a wide variety of possibilities to remedy this issue. Orszag proposed in 1971 an

effective and simple de-aliasing method (in seven sentences no less!) [44]. This is a rule

of thumb that works sufficiently well for many systems in flat space. At the end of every

time step, all expansion coefficients corresponding to wavenumbers |k| > 2
3
|k|max are set

to zero while all others are left untouched. Consequently, it is also known as “Orszag’s

two-thirds rule.” The two-thirds rule is an example of a broader class of spectral filtering

methods where a filter function is applied to the coefficients in every time step to ensure

their proper decay. In that sense, the filter for the two-thirds rule is simply a step-

function. This is a rather brutal method, completely erasing one third of the spectrum,

and relatively costly since you effectively reduce the degrees of freedom while still having

to include all grid points in the computations. Therefore, continuous and smooth filters

have become more and more popular. We will thus focus here on a filtering approach

to combat aliasing in the time integration of the sGPE. But let it be said that there are

other cures for aliasing. One example is the forceful conservation of the discretized energy

[45]. The build-up of spectral blockage implies that the energy of the system increases

unphysically. If one enforces exact conservation of energy within the numerical method,

then the occurrence of spectral blockage is prohibited.

The time evolution of the sGPE is a fairly stable affair. Aliasing does occur, but at a

slow rate. The effect is most pronounced when the features of the wave function are not

well-resolved. In the present case, this means that the size of the vortex core must be

sufficiently big, or, in other words, the radius of the sphere must not be much larger than

the healing length. At a step size of δt = 2× 10−5, it is possible to time-evolve the sGPE

for a few hundred thousand steps before spectral blockage becomes visible.

While the two-thirds rule works well as a de-aliasing tool in the flat case, it has no

effect in spherical geometry. It creates a discontinuity in the spectrum which leads to

spectral blocking at that point instead of the edge of the spectrum. Indeed, aliasing is

even stronger then, because the base value of the coefficients corresponding to 2
3
lmax is

higher. It seems that this method simply relocates the issue and causes the modes with
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2
3
lmax < l ≤ lmax to be aliased as well. Instead, inspired by Ref. [46], we propose here an

exponential, isotropic filter to suppress the high-l modes which is multiplied with every

coefficient during every time step:

Fl =




1 l < lcut,

e−α(l−lcut) l ≥ lcut.

(5.31)

This method has two distinct advantages. First, it provides a continuous transition from

the unfiltered to the filtered part of the spectrum. Second, at the cutoff point lcut, below

which no filtering is applied, instabilities can still grow even with a continuous filter. The

numerical procedure is most stable when the strength of the filter α is tuned to respect

the exponential decay exhibited by the spectrum. For long time-evolutions, however, not

even this is sufficient. Therefore, the spectrum is recorded periodically and lcut is adjusted

dynamically if the spectrum grows above a certain threshold at that point. The efficacy

of this method is outlined in Fig. 5.4.

However promising these results might be, there are certain pitfalls to de-aliasing. First

of all, unless the filter exactly filters out the noise accumulation due to aliasing (it does

not), then the conserved quantities of the sGPE (total energy, particle number, angular

momentum) are no longer conserved, but will decay instead. One must therefore make

sure that the loss is tenable compared to the initial values. Otherwise, the solution might

be complete nonsense even though it will be smooth. Filtering is accordingly a last resort.

If the flow is well-resolved, the time evolution will be stable for a long time, even if some

amount of aliasing is unavoidable. A small spectral blockage is still acceptable and the

filter should only be turned on once the danger of a blow-up arises.

5.3.3. Stationary dipoles?

A numerical method to determine the vortex positions with spectral accuracy and a filter

that prevents the time evolution from exploding in place, we have all the tools necessary

to examine the dynamics of the vortex dipole in detail. The procedure is simple. The

wave function is initialized as in section 5.2 for differing values of θ+ and particle number

N , then propagated in time using the split-stepping method with different values of ω̃.

The particle number does not directly influence the dynamics, but the average particle

46



5 Vortex dipole physics

Figure 5.4: The top left panel shows the density and phase of a wave function

containing a single vortex dipole with θ+ = 60° while the top right panel shows

its spectrum, initialized as in section 5.2. The wave function is then propagated

in time. The bottom left panel shows the spectrum at the end of the time

evolution without filtering. The buildup of spectral blockage is clearly visible

and, if the time evolution is continued, would eventually lead to a complete

break-down of the numerical method. The same time evolution was repeated

with the filter (5.31) in place, shown in the bottom right panel. The spectrum

is then visually unchanged in comparison to the initial condition. With a time

step of δt = 2 × 10−5 and end time of t = 14, the total number of steps was

700,000. Without filter, spectral blockage begins to be visually perceptible after

around 250,000 time steps. The strength of the filter was set to α = 0.01 and

lcut = lmax − 20.
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density is related to it by n̄ = N/(4π) and so the particle number affects the size of

the vortices and thus how well the grid is able to resolve them. This is relevant for the

amount of aliasing, as discussed above. The (angular) velocity of the vortex dipole in the

rest frame of the sphere depends on their separation. The closer they are together, the

higher their velocity. This is directly analogous to the flat case where the linear velocity

is inversely proportional to their separation. A dipole with the vortex on the Northern

Hemisphere and an antivortex on the Southern Hemisphere travels eastward, while the

mirrored configuration travels westward. It was made sure that the dipole completes at

least on rotation in the rest frame.

The first example of such a simulation is illustrated in Fig. 5.5. For a rotation frequency of

ω̃ = 0, it is energetically favorable to reduce the separation of the vortices and eventually

annihilate. The result of the time evolution shows that no such movement occurs. The

polar position of the vortices oscillates slightly, but within a very small band around the

initial position (pay specific attention to the numbers on the y-axis!). These oscillations

may be related to imperfections in the initial condition. One can see the effect of the

filtering in the conserved quantities that do decay, but on an absolutely miniscule scale

compared to their initial values which constitutes another proof of concept for the filtering

approach.

Secondly, in Fig. 5.6, the time evolution for a rotating sphere is shown. Here, the

frequency of rotation was set to ω̃ = −17.1. For the vortex-antivortex pair, this suggests

that θ+ = 0 constitutes the ground state of the system. In addition, the particle number

was set much higher, corresponding to a maximum density of n = 2000. This makes

the vortex cores tiny compared to the grid spacing. Here, we encounter the limits of the

filtering method, which is reflected in the conserved quantities decaying on much larger

scales and particularly fast towards the end of the time evolution. Roughly 22 particles

are lost where it was below the numerical precission before. Due to the loss of energy,

vortex separation also decreases somewhat monotonically. Still, this change in the polar

position remains very small compared to the initial value of θ+ = 30°.

Lastly, the wave function was initialized with a slightly different initial θ+, but a much

smaller particle number, as shown in Fig. 5.7. The rotation frequency was kept the same

to be able to compare to the previous time evolution. The results are very similar to the
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Figure 5.5: Wave function initialized with θ+ = 60° and N = 3020, time

evolution with ω̃ = 0. The two top panels show the polar angle of the vortex (in

olive) and antivortex (in purple) as a function of time. The initial condition is

exactly that of Fig. 5.4. The three panels in the bottom show the total energy,

the particle number and the angular momentum of the wave function.
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Figure 5.6: Wave function initialized with θ+ = 30° and N = 25126, time

evolution with ω̃ = −17.1. The two top panels show the polar angle of the

vortex (in olive) and antivortex (in purple) as a function of time. The three

panels in the bottom show the total energy, the particle number and the angular

momentum of the wave function.
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Figure 5.7: Wave function initialized with θ+ = 36° and N = 5020, time

evolution with ω̃ = −17.1. The two top panels show the polar angle of the

vortex (in olive) and antivortex (in purple) as a function of time. The three

panels in the bottom show the total energy, the particle number and the angular

momentum of the wave function.
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first example Fig. 5.5. There is an oscillating behavior around the initial positions, the

conserved quantities decay very slowly, but no indication of a change in separation. This

goes to show that one must stay vigilant when applying de-aliasing methods. A change

in vortex size can have untenable consequences on the result of the time evolution.

Many more (too many to be shown here) simulations have been carried out and they all

corroborate the same statement: Analogously to flat space, there is no mechanism through

which the vortex pair can lose energy and increase or decrease its separation. Once their

positions are set, they are very happy to remain at a constant distance and rotate with

uniform speed around the sphere which suggests that the vortex dipole forms a traveling

wave solution, i.e. Ψ(θ, ϕ, t) = ψ(θ, ϕ+ωt), where ω is the dimensionless angular velocity

of the dipole. This brings us to an interesting question. If the sphere is rotated with some

frequency ω̃, can one then find a stationary solution of the sGPE for a dipole travelling

on the sphere with angular velocity −ω̃? A dipole with this configuration would then

simply stay put, meaning that ∂tψ = 0. This is the central question of the present thesis

and will be explored in the next chapter.

5.4. Ground State

Before turning to the discussion of stationary solutions in the rotating spherical BEC, let

us briefly examine the effect of the rotation on its ground state which is a crucial char-

acteristic of ultracold Bose gases. The ground state of an infinite 2D Bose gas responds

to an external rotation with the formation of a vortex lattice, thereby breaking transla-

tional and rotational symmetry [47]. If ω is the frequency of external rotation, then the

characteristic length scale between vortices is

ℓ =
ℏ

2Mω
, (5.32)

with which eventually follows an estimation for the density of vortices in the ground state

[39]

nv =
Mω

πℏ
. (5.33)

This result is also known as the “Feynman rule.” The creation of vortex lattices in the flat

plane has been studied in Refs. [48, 49]. For a system of finite size such as the surface of
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Figure 5.8: Vortex lattices in the ground state of a rotating spherical Bose gas

for ω̃ = 6 (left) and ω̃ = 8.5 (right). Density in the top panels, phase in the

bottom panels. The parameters were set to µ̃ = 400 and g̃ = 1.66.

the sphere, it is more instructive to talk about the absolute number of vortices instead of

the density. As outlined in the beginning of this chapter, the creation of vortices is only

allowed in vortex-antivortex pairs, therefore we will look at the number of dipoles Nd in

relation to the external rotation ω̃. To study the ground state of the system, the wave

function is initialized as

Ψ =
√
µ̃/g̃ eiSr . (5.34)

The density is set to be of constant, uniform value but the phase profile is imprinted with

a number of dipoles. Sr sums up the phases (5.12) of the dipoles at randomly chosen

angular positions θ+, ϕ+, θ−, ϕ−. Next, this initial condition is propagated in imaginary

time for different values of ω̃. In theory, as long as the initial condition has at least as

many dipoles as the ground state it contains a contribution by the ground state, and thus

we expect the imaginary time evolution to converge to the ground state.

The numerical results, however, suggest that reality is a bit more subtle and complicated.

The imaginary time evolution is volatile with respect to the initial condition. While

the numerical procedure itself is deterministic, the randomized initial positions generate

different outcomes for a constant value of ω̃. In practice, this means that the imaginary
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Figure 5.9: Energy of vortex lattices with Nd dipoles as a function of ω̃. Ec

is the energy of the homogeneous condensate which is the ground state below

ω̃ ≈ 2.22. The dashed vertical lines mark the transition to the vortex lattice

with next highest Nd being the new ground state.

time converges to a wave function where Nd can take different values. This implies that

the true ground state and excited states have comparable energies, and the imaginary

time evolution is not consistently able to find the global energy minimum but instead

converges to a local minimum. Consequently, for every ω̃, there exist several energy

minima associated with a specific vortex lattice and dipole number Nd. For a set Nd > 1,

the lattice spacing changes depending on ω̃. That is to say, the positions of the vortices

responds to a change of ω̃. IfNd = 1, then the lowest energy state is simply always the pole

solution. Two of these vortex lattices are shown in Fig. 5.8. To make matters worse, even

for fixedNd and ω̃, there may be more than one energy minimum. For example, the ground

state for ω̃ = 7.5 contains Nd = 5 dipoles but there are two possible configurations. An

antivortex at the North Pole, a row of four antivortices on the Northern hemisphere and

a row of five vortices on the Southern hemisphere. Alternatively, a row of 5 antivortices

on the Northern hemisphere, a row of four vortices on the Southern hemisphere and a
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vortex at the South Pole. However, these different states have numerically indiscernible

energies so it stands to reason that they are degenerate. We will therefore not distinguish

between them in the following.

To remedy these issues, both the initial number of phase defects in Sr is varied and many

runs for different random initial positions are carried out to find the state with the lowest

energy. Once a state with minimum energy has been found, we can follow the energy

of that state by doing an imaginary time evolution with modified ω̃. Thus, an energy

landscape is created from which it can be numerically determined when Nd of the ground

state changes its value. The results are illustrated in Fig. 5.9.

The important lesson here is that there is a linear relationship betweenNd and ω̃, similar to

flat space. ForNd > 1, the difference between neighboring transition frequencies is roughly

one. It is plausible that this relation does not hold for Nd = 1. The pole solution allows

the vortices to have a single separation, whereas the vortex lattices characteristically

exhibit different separations in longitudinal and latitudinal directions. From this follows

a marked increase in the kinetic energy that accounts for the later transition to the next

ground state.
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Chapter 6

Jones-Roberts solitary waves

In this chapter, we will discuss a special class of solutions of the 2D and 3D GPE known

as Jones-Roberts solitary waves (JRSW), or sometimes Jones-Roberts solitons. Let us

begin by having a look at solitons as they materialize in the one-dimensional GPE and

then how JRSWs form in two and three dimensions.

6.1. Solitons and solitary waves in the flat GPE

In general, solitons are solutions to nonlinear equations which take the form of strongly

stable, completely localized excitations travelling with constant velocity (which can be

zero). Additionally, they scatter elastically with other solitons, meaning that a soliton

interaction retains their shape and velocity at large distances after the collision. Their

stability is a consequence of the interplay between nonlinear and dispersive effects in the

equations. More strictly speaking, they appear as solutions of integrable systems which are

characterized by an infinite set of conservation laws ultimately giving rise to the localized

solutions interacting elastically. The first such solution was described by Korteweg and de

Vries modelling shallow-water waves, eventually formulating a 1D nonlinear PDE which

was later named after them [50]. Nowadays, solitonic solutions are the focus of intense

research in a wide variety of fields such as fluid dynamics, nonlinear optics and, in this

case, Bose-Einstein condensation. The 1D GPE

iℏ∂tΨ = − ℏ2

2M
∂2xΨ+ g|Ψ|2Ψ (6.1)

has been shown to be integrable by the inverse scattering method [51], and indeed may be

mapped onto the KdV equation with the application of a perturbational treatment [52].

The equation permits two different types of solitonic solutions. For a repulsive interaction

(g > 0), the soliton travels with uniform speed v which is bound from above by the speed

of sound c =
√
µ/M and its density profile is characterized by a zone of depletion whose
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size is fixed by the healing length ξ =
√

ℏ2/(2µM). This “dark soliton” takes the form

Ψ =
√
n

(
i
v

v
+

√
1− v2

c2
tanh

[
x− vt√

2ξ

√
1− v2

c2

])
e−iµt/ℏ , (6.2)

where n is the bulk density and µ = ng the chemical potential (see section 5.5 of Ref.

[53]). The density is symmetric around its minimum at x = 0 and its value there is

n(0) = nv2/c2. Thus, a stationary dark soliton has a minimum of zero. For an attractive

interaction (g < 0), the GPE admits the presence of a different soliton

Ψ =
√
n

e−iµt/ℏ

cosh
(
x/(

√
2ξ
) , (6.3)

which is a localized wave packet with a peak at x = 0, and is thus referred to as a “bright

soliton.” Here, n refers to the density at the peak, µ = 1
2
ng and ξ =

√
−ℏ2/(2ngM).

Closed analytic expressions for dark and bright solitons exist also in the presence of

a harmonic confining potential and the formation of bright [54, 55] and dark [56, 57]

solitons has been verified experimentally.

The picture changes considerably for higher dimensions. In 2D or 3D, the GPE is no longer

an integrable PDE. Consequently, the existence of solitons is not permitted anymore.

However, in their seminal paper from 1982, Jones and Roberts found a continuous family

of localized solutions consisting of axisymmetric waves in two and three dimensions [58].

In the literature, similar solutions of nonlinear, non-integrable systems are often still

referred to as solitons although they typically scatter inelastically and thus lose energy

upon interaction, indicating that they are not true solitons. For the sake of clarity, we

will strictly refer to these as solitary waves in the following. In two and three dimension,

solitary waves are subject to instabilities like the snaking instability and are thus prone

to decay [59, 60]. The solutions found by Jones and Roberts are the only known stable,

dark solitary waves in the 2D and 3D GPE to date. They take the form of axisymmetric

shape-preserving excitations whose speed, again, is bound from above by the speed of

sound.

In three dimensions, there are two different regimes. At low velocities, the JRSWs ap-

pear as a vortex ring whose radius becomes larger as the speed decreases. In the limit

of linear momentum p → ∞ of the condensate, the radius becomes infinite and scales

as r ∝ √
p. As the velocity increases, the radius of the vortex ring decreases until one
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eventually reaches a minimum in the energy-momentum (E−p) plane, where both energy

and momentum are minimized. This constitutes the lower branch of the family of solu-

tions. If the velocity is further increased, the topological defect disappears and a zone of

density depletion remains. This transition marks the onset of the second, upper branch

of solutions. This rarefaction pulse extends in all directions as its velocity increases, but

becomes increasingly one-dimensional (thin and elongated) as the velocity reaches the

speed of sound. At the same time, its amplitude decreases, but not sufficiently to prevent

the energy and momentum from rising. From the minimum in the energy-momentum

plane, both energy and momentum increase again with increasing velocity and the veloc-

ity approaches the speed of sound as p → ∞ on the upper branch. Accordingly, for any

momentum value above the minimum, there are two different solutions, one on the lower

(vortex) branch and on the upper (rarefaction pulse) branch.

In two dimensions, there is only one branch of solutions. For small velocities, these

are a single vortex dipole. As the velocity decreases, their separation and momentum

increases and eventually becomes infinite for zero velocity. Increasing the velocity brings

the two vortices closer together until they eventually overlap and annihilate. Here, too,

an elliptically shaped rarefaction pulse remains that becomes elongated as the velocity is

further increased. Unlike 3D, no second branch forms. Instead, as the velocity approaches

the speed of sound, both energy and momentum go to zero. The rarefaction pulse becomes

shallower and eventually gives way to a homogeneous condensate. In both two and three

dimensions, the velocity of the JRSW is given by ∂E/∂p where the derivative is understood

to be taken along the family of solutions. It has been established that solutions with

∂E/∂p = 0 do not exist in 3D and thus the minimum in the energy-momentum plane

is not smooth but instead forms a cusp, even though both energy and momentum have

smooth minima as a function of the velocity. Both the lower 3D branch and the entire

2D branch have been shown to represent stable solutions [61]. For a visual representation

of the energy-momentum curve, consult Figs. 2 and 3 of Ref. [58].

Although experimentally challenging, these predictions have been verified both in an

atomic BEC [62] as well as in a quantum fluid of light [63].

Hereby follows the connection to the previous chapter. If stationary vortex dipole solutions

of the sGPE can be found, then they constitute the low-velocity regime of the 2D JRSW

58



6 Jones-Roberts solitary waves

branch. Is it then possible to incrementally increase the angular velocity of these solutions

to eventually discover the transition from a vortex dipole to a rarefaction pulse just like

Jones and Roberts have shown in flat space? This question will be addressed in the

following sections.

6.2. Stationary solutions of the sGPE

In this section, we will discuss a numerical method to find the roots of the sGPE (i.e.

a steady-state solution). Earlier, we have already encountered a root finding method in

section 5.3.1 to track the movement of vortices. There, the Newton-Raphson method

was employed to find the zeros of the complex wave function Ψ. Now, we wish to find

a function Ψ, such that the sGPE becomes zero, that is ∂tΨ = 0. Let ψ(θ, ϕ) be such a

stationary solution of (3.20) to find

0 = −1

2
∆Ωψ + g̃|ψ|2ψ − iω̃∂ϕψ − µ̃ψ =: F (ψ) . (6.4)

Additionally, the nonlinear operator F was defined which formally is a mapping

F : L2(S2,C) −→ L2(S2,C) , (6.5)

and L2(S2,C) is the space of complex, square-integrable functions on the unit sphere.

The generalization to nonlinear equations to find the roots of operators like F is often

referred to as the Newton-Kantorovich method. We proceed as before, assuming that ψ0

is a root of F and ψg is a guess which is sufficiently close to the root such that ||F (ψg)||
(definition of the norm below) is small. Let the subscripts r and i denote the real and

imaginary parts. One can then employ the same “trick” as for the vortex tracking and

write

F⃗ (ψ) =


Fr(ψ)

Fi(ψ)


 . (6.6)

Next, F⃗ is expanded around ψ0 and the expansion is truncated after the linear term:

0 = F⃗ (ψ0) = F⃗ (ψg)−




∂Fr

∂ψr

∂Fr

∂ψi

∂Fi

∂ψr

∂Fi

∂ψi



∣∣∣∣∣
ψ=ψg


δψr
δψi


+ . . . , (6.7)
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where δψ = ψg−ψ0. The matrix entries of the linear term are no longer real numbers but

instead linear operators, and thus it is non-trivial to invert. To continue, the linearized

system of equations




∂Fr

∂ψr

∂Fr

∂ψi

∂Fi

∂ψr

∂Fi

∂ψi



∣∣∣∣∣
ψ=ψg


δψr
δψi


 =


Fr(ψg)

Fi(ψg)


 (6.8)

must be solved. To do so, the operator (or Fréchet) derivative is introduced as

∂F

∂ψ
(δψ) = lim

ϵ→0

F (ψ + ϵδψ)− F (ψ)

ϵ
. (6.9)

Then, the linear operator matrix in (6.8) takes the form




∂Fr

∂ψr

∂Fr

∂ψi

∂Fi

∂ψr

∂Fi

∂ψi



∣∣∣∣∣
ψ=ψg

=


−1

2
∆Ω + g̃(3ψ2

g,r + ψ2
g,i)− µ̃ 2g̃ψg,rψg,i + ω̃∂ϕ

2g̃ψg,rψg,i − ω̃∂ϕ −1
2
∆Ω + g̃(3ψ2

g,i + ψ2
g,r)− µ̃


 .

(6.10)

Additionally, the right hand side of (6.8) is given by


Fr(ψg)

Fi(ψg)


 =


−1

2
∆Ωψg,r + g̃(ψ3

g,r + ψg,rψ
2
g,i) + ω̃∂ϕψg,i − µ̃ψg,r

−1
2
∆Ωψg,i + g̃(ψ3

g,i + ψg,iψ
2
g,r)− ω̃∂ϕψg,r − µ̃ψg,i


 . (6.11)

The following procedure is then very similar to before. One starts with an initial guess

ψg, and better approximations are found iteratively with ψnew = ψg − δψ. This iteration

can be repeated as many times as necessary with ψnew as the next guess. The theory of

the Newton-Kantorovich method suggests that the algorithm will necessarily converge if

the initial guess is good enough. The asymptotic convergence will be quadratic, meaning

that ||δψ(i)|| ∼ ||δψ(i−1)||2, where (i) denotes the i-th iteration. There are, however, a

few caveats to this statement. Quadratic convergence will only set in for sufficiently large

i. It will furthermore not continue indefinitely, but ||δψ|| will rather converge to a point

that is determined by the machine precision (if the algorithm is not stopped earlier).

Furthermore, convergence speed may be reduced to geometric in certain circumstances,

particularly if errors are accumulated when solving the linearized problem (6.8). For the

present purpose, we define the operator norm of F as

∥F (ψ)∥ =

√
1

N

∫
dΩ|F (ψ)|2 =

√
1

N

∫
dΩ

∣∣∣∣−
1

2
∆Ωψ + g̃|ψ|2ψ − iω̃∂ϕψ − µ̃ψ

∣∣∣∣
2

, (6.12)
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where N is the particle number of ψ. One assumes sufficient convergence once the norm

of the operator has fallen below a certain tolerance, i.e. ∥F (ψnew)∥ < ϵ.

To find the stationary solutions in the spherical geometry, the major challenge is to solve

the linear system of equations (6.8).

6.3. Linear solvers

Very generally, one may write a system of linear equations in the form

A · x = b , (6.13)

where x and b are vectors with n and m entries respectively and A is a m × n matrix.

A and b are given and one wants to solve for x. In the simplest case, A is invertible and

the solution is x = A−1 · b, as it was done in section 5.3.1. If A is not invertible, the

linear solvers are still able to find solutions. There are a number of iterative algorithms to

solve linear systems when A is square but not symmetric, including the biconjugate gra-

dient stabilized method (BiCGSTAB) [64] and the generalized minimal residual method

(GMRES) [65]. These methods are based on the creation of Krylov vectors. The basic

idea is to apply A onto the right hand side repeatedly and thereby create the Krylov

vector of n-th order Kn = An · b. Krylov methods approximate the solution as a linear

superposition of Krylov vectors:

x ≈
k−1∑

n=0

cnKn . (6.14)

The challenge is then to reduce the computation time by minimizing the number k of

Krylov vectors needed to construct the solution. For the present purpose, A is given

by (6.10), b by (6.11) and solving (6.8) constitutes the main numerical bottleneck of

the Newton-Kantorovich method. Thus, x and b each contain two entries given by real

functions defined on the N×2N grid. Linear solvers require the input vector to be stored

as a 1D array, so the gridded data of the two functions is flattened and then the two are

concatenated to give a 1D array of length 4N2. The flattening is done in such a way that

the rows of the gridded data are glued next to each other. It is, in principle, possible to

discretize the linear operator (6.10) and represent it as a matrix. For the usual grid size

of N = 512, the matrix would have 240 entries, a size that is prohibitively expensive. To
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remedy the issue, most programming languages provide a Linear Operator class. In that

case A need not be a matrix, but instead can be implemented as an object of that class

which behaves as a function with the vector x as its input and the vector A · x as its

output.

The most relevant optional argument to accelerate the convergence of linear solvers is

to provide a preconditioner. In effect, preconditioning aims to provide an approximation

of the inverse of A. There are well-known preconditioning methods to find stationary

solutions of the GPE in flat space. Refs. [66, 67] seem to suggest that a sensible choice

to use for the preconditioner is

(1− L )−1 =

(
1 +

1

2
∆Ω + iω̃∂ϕ + µ̃

)−1

, (6.15)

where L is the linear part of F . The inversion is done easily enough, since L is diagonal

in the space of spherical harmonics. In the vector notation this would translate to the

preconditioner M taking the form

M


δψr
δψi


 =


[(1− L )−1δψ]r

[(1− L )−1δψ]i


 . (6.16)

Unfortunately, neither this nor any other attempted choice forM brings the desired result.

None of the plausible preconditioning methods in the literature have shown any impact on

the performance of the linear solver. A successful preconditioner can reduce the number

of iterations necessary for convergence by up to two orders of magnitude while (6.16)

slows it down. Future research could focus on working out the proper expression for the

preconditioner. For now, we must be content with a rather slow convergence.

The next question to ask is which iterative method is most suitable for the problem

at hand. While both BiCGSTAB and GMRES have their adherents, the decision is

taken off our hands. The BiCGSTAB algorithm does not provide sufficient convergence

consistently in the spherical geometry. The typical behavior is that it only converges up

to the second or third Newton-Kantorovich iteration and not afterwards. BiCGSTAB is

therefore unsuited to find stationary solutions of the sGPE. The performance of GMRES

has seen improvements by the development of new techniques to accelerate its convergence.

These improvements have been implemented as the methods LGMRES [68] and GCROT

[69]. LGMRES provides convergence in fewer iterations, reducing the overall convergence
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time despite a slower computation time per iteration compared to GMRES. LGMRES

has therefore been the linear solver of choice. Incidental testing with GCROT has also

been promising, and its performance may be similar to LGMRES.

With the linear solver established, let us turn to the input parameters to produce the

fastest convergence time. The Newton-Kantorovich method itself has a tolerance to de-

termine when the solution is sufficiently stationary. Similarly, the linear solver must be

given a tolerance to check for convergence. That is to say it produces a vector x(i) in the

i-th iteration that will be returned as the solution to (6.13) if the residual

||b− A · x(i)||
||b|| (6.17)

is smaller than the tolerance. In spherical geometry, the convergence of the linear solver

is considerably slower than in flat space. A tolerance of 0.09 to extract the stationary

solutions has proven to be appropriate and will be used in the following. If no starting

guess is given, the solver starts with a vector of zeros such that the initial residual is one.

A good guess that puts the residual below one reduces the time to convergence but has no

influence on the number of iterations needed from the starting residual. No other input

arguments of the LGMRES algorithm impact the performance in any meaningful way,

therefore it is not necessary to deviate from the default values.

Lastly, it is instructive to briefly talk about the form of the initial guess ψg. It is essential

to the convergence of the linear solver that the solution one is looking for is properly

resolved by the grid in every Newton iteration. In the present case, this means that the

size of the vortices must be sufficiently large. This will be done by appropriately tuning

the dimensionless chemical potential µ̃ and thereby the healing length (ξ = 1/
√
2µ̃). It is

likely that the linear solver accumulates aliasing errors if the vortex cores are not covered

by enough grid points and therefore cannot converge. While solving (6.8) has been made

possible by LGMRES for a broad set of parameters, many intricacies of the numerical

treatment of the spherical geometry remain mysterious, and we will see that the method

is not universally reliable.

6.4. From dipole to rarefaction pulse

With the discussion of the methods to find stationary solutions of the sGPE under our

belt, it is time to turn theory into practice. The dimensionless coupling constant g̃ = 1.66

63



6 Jones-Roberts solitary waves

will be kept constant throughout. We will aim to find different branches of solutions

for µ̃ ∈ {50, 333, 400, 529}. The initial guess ψg will be given by a short imaginary time

evolution of the initial condition as in section 5.2. Its particle number is set to N = 4πµ̃/g̃.

To get an idea which value to put in for the rotation frequency, ψg is propagated in time

and its angular velocity recorded. The negative of that value is then used for ω̃. Since the

initial dipole travels eastward, ω̃ is smaller than zero. Thus, all the parameters of F are

fixed and the Newton-Kantorovich method can begin. The tolerance is set to ϵ = 9×10−5

and convergence is typically achieved within four to seven iterations. Once a converged

solution is found, it is used as a new initial guess for a modified rotation frequency

ω̃− δω̃ < ω̃. All other parameters are kept fixed. The vortices are therefore compelled to
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Figure 6.1: Energy-momentum curve of Jones-Roberts solitary waves for dif-

ferent µ̃. The solid lines represent dipole solutions, the dashed lines represent

rarefaction pulse solutions. The black dots show where the solution for ω̃ = −6.1

is situated. The blue dot shows the position of the pole solution (θ+ = 0) for

µ̃ = 50. The energy of the solitary waves Esw is given by adding kinetic and

interaction energy of the solution and subtracting the homogeneous condensate

energy of equal particle number.

move closer together. Since the Newton method is quite sensible to the initial guess, it

is vital to choose δω̃ to be small. Then, the procedure begins anew, and in that way one
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follows a branch of solutions for a particular value of µ̃. As ω̃ is decreased incrementally,

new solutions with decreasing dipole separation are found iteratively. Eventually, the

vortices overlap and annihilate, thereby eliminating all vorticity from the wave function.

What remains is a rarefaction pulse that is symmetric around the equator. As the rotation

frequency is further decreased, the size of the pulse increases in latitudinal direction while

becoming shallower. This transition from a vortex dipole to a rarefaction pulse is identical

to the description of Jones and Roberts in their paper. The existence of families of Jones-

Roberts solitary waves has therefore been established numerically for the spherical case.

It is important to stress that this is a central result of the thesis as it was initially unclear

whether these solutions exist, and if so, in what form. The energy-momentum curve for

the four branches is shown in Fig. 6.1 where the angular momentum Lz replaces the

linear momentum. For a visual representation of the wave function as it transitions to a

rarefaction pulse, see Fig. 6.2.

One can further extract the maximal angular velocity ω̃max and the critical angular velocity

ω̃c at which the transition occurs. Since ξ = 1/
√
2µ̃, increasing the chemical potential

relates to a smaller size of the vortices. Accordingly, their separation must become small

for them to overlap and annihilate from which follows that ω̃c increases with µ̃. These

matters are illustrated in Table 2. Note that these are all positive numbers. While ω̃ is

negative and refers to the frequency with which the sphere is rotated, the JRSWs move in

the opposite direction and their velocities are therefore positive. Near the transition, there

are two solutions where vorticity disappears from one to the other. ω̃c is taken to be the

value exactly in between the velocities of these two solutions and its error is the distance

from either one. As the density dip becomes shallower it is increasingly difficult for the

linear solver to converge which is especially true the smaller the vortex size. Therefore,

ω̃max does not constitute the maximally available angular velocity. The higher µ̃, the

larger the distance in energy to the homogeneous condensate of the ω̃max-solution.

Interestingly, ω̃max exceeds the speed of sound (3.73) in all cases, a phenomenon that

is entirely prohibited in the infinite, flat plane for which a rigorous mathematical proof

exists [70]. The idea is that the speed of sound is the minimum speed of delocalized

Bogoliubov excitations (phonons). As soon as a traveling wave reaches the speed of

sound, energy is transferred onto the delocalized excitations. Thus, the wave must emit
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µ̃ ω̃c ω̃max ω̃s

50 4.535 ± 0.005 8.0 7.1

333 11.23 ± 0.01 19.6 18.3

400 12.25± 0.05 21.2 20

529 14.05 ± 0.05 23.8 23

Table 2: ω̃c is the angular velocity where the transition from dipole to rarefac-

tion pulse occurs, ω̃max is the maximum angular velocity for which a solution was

found. ω̃s is the angular speed of sound.

sound, therefore lose energy and its localized character, and disappear. Mathematically,

localized solutions with supersonic speed are not allowed to decay asymptotically. Instead,

they have oscillating tails that radiate away energy. However, the story gets a little more

subtle when leaving the infinite plane and introducing periodicity. In section 6.7, we will

encounter a physical reason why these supersonic solutions may exist. For the moment,

we can also make arguments based on the geometric situation. While periodic boundary

conditions are a numerical tool in flat space, periodicity is an intrinsic feature of the

spherical geometry. The notion of a localized solution is therefore different since one

cannot speak anymore of asymptotic decay as the distance grows to infinity. Instead,

the localized object must be much smaller than the domain size, as it might interact

with itself otherwise. This self-interaction can stabilize solutions that would otherwise

be unstable. Due to the periodicity, phonons are not able to escape towards infinity

but instead wrap around and can in principle re-interact with the structure that emitted

them. Additionally, finite systems feature a discrete phonon spectrum (see the Bogoliubov

dispersion (3.68)), which means that a solution might not properly couple to any phonon

mode. Notably, the supersonic JRSW solutions exhibit a strongly nonlocalized density

profile (see Fig. 6.3), reinforcing these suspicions. We therefore contend that supersonic

JRSWs likely do not constitute fully localized solutions.

In two and three dimensions, it has been shown that the flat GPE may be mapped onto the

Kadomtsev–Petviashvili (KP) equation in the limit of speeds close to the speed of sound
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Figure 6.2: JRSW solutions for µ̃ = 50 and decreasing ω̃. The top panels show

the density and the bottom panels the phase of the respective wave function in

a region around the disturbance. One starts out with two vortices that draw

closer as ω̃ decreases. The solution for ω̃ = −5.0 is shortly after the transition to

a rarefaction pulse. Then, the extent of the excitation grows and its amplitude

shrinks while the phase gradient diminishes.

[58, 61]. The KP equation arises in fluid dynamics as a (2 + 1)D generalization of the KdV

equation and likewise models weakly dispersive shallow-water waves [71]. Importantly,

the KP equation constitutes an integrable system and explicit analytic expressions for

solitonic solutions are known (see Ref. [72] for the first such solution). These solitons

are characterized by an algebraic decay and are called “lump” solitons. It has thus been

conjectured that in this limit, the JRSWs transition to solutions of the KP equation and

become true solitons, but no rigorous proof exists. However, it was shown that lump

solitons can be mapped to traveling wave solutions of the GPE in the transonic limit

[73]. The general relation between JRSWs and lump solitons is not yet established but

continues to be investigated. Let us end the discussion of the high velocity regime for the

spherical geometry by noting that the density profiles of supersonic solutions as shown

in Fig. 6.3 resemble those of lump solutions of the KP equation (e.g. compare with

Refs. [74, 75]). The typical structure being a peak in the density next to the depletion

zone. Therefore, it might well be the case that these already constitute solitons or near-
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Figure 6.3: Density profiles of supersonic JRSWs along the equator for µ̃ = 50

solitonic solutions. Additional evidence is brought forward by the fact that these fast

solutions emit next to no sound upon scattering, indicating that the interactions might

be (almost) completely elastic (see Fig. 6.4).

The other regime of interest is presented by the low velocity dipole solutions. Here, we

encounter a qualitative difference to the flat case necessitated by the compact geometry.

In the infinite plane, a vortex dipole may have any arbitrary separation and their velocity

goes to zero as the separation goes to infinity. This is no longer possible on the sphere

because there is a maximum separation which is reached when both vortices are situated

at the poles. For this vortex pole configuration, any external rotation ω̃ yields a stationary

solution as the wave function is then given by ψ(θ, ϕ) = f(θ)eiϕ and

−µ̃ψ − iω̃∂ϕψ = −(µ̃− ω̃)ψ . (6.18)

Hence, the external rotation merely modifies the chemical potential. The stationary

solutions for the pole configuration are easily found and the respective angular momentum

and energy for one such solution (µ̃ = 50 and ω̃ = 0) have been inscribed into Fig. 6.1 as
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Figure 6.4: Scattering simulation of two JRSWs of equal but opposite speed

for µ̃ = 400. All panels show the density of the wave function in units of 1/R2.

The left panels show the initial condition, the right panels are snapshots shortly

after the interaction. The top panels correspond to an angular velocity of 13 ℏ
MR2 ,

the bottom panels to an angular velocity of 19.6 ℏ
MR2 . After the scattering event,

the slower waves emit visually perceptible sound while the faster ones do not.

a reference (the blue dot). By the above argument, it is impossible to move the vortices

away from the poles by changing ω̃. Therefore, one cannot follow the family of solutions by

starting at the poles. The other direction proves equally troublesome. While it is possible

to increase ω̃ for a while and find new solutions with increasing vortex separation, the

numerical procedure eventually fails at around ω̃ = −0.69, where the linear solver is no

longer able to converge. Only the energy-momentum curve for µ̃ = 50 in Fig. 6.1 shows

the branch of solutions until numerical failure, but this has been true for all values of

µ̃. It is unclear why this occurs. Perhaps additional solutions do not exist, perhaps the

energy-momentum curve is discontinuous, perhaps the wave function changes very rapidly

with varying ω̃. On the other hand, there might be an issue with the numerical method

itself. Whatever the reason, the completion of the full branch of JRSWs remains beyond

the scope of this work.
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6.5. Stability analysis

While Jones-Roberts solitary waves have been numerically shown to exist on the spherical

surface, it remains to be seen whether they are stable objects. To begin with, the solitary

waves are propagated in time with a white noise perturbation added

ψ = ψsw + η , (6.19)

where ψsw is the wave function of a solitary wave and η is a Gaussian white noise signal

whose amplitude is 10−3 · max(|ψsw|). The temporal evolution of ψ does not result in a

change of shape of the disturbance, nor is the height of the density depletion zone affected

by it (see Fig. 6.5). This is first tentative evidence for the stability of the solutions. To
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Figure 6.5: The minimum density of a JRSW time evolution in the top panel.

The bottom panels show the density of the initial JRSW (µ̃ = 400, ω̃ = −16.9)

+ noise and of the wave function after it has completed one revolution.

test the stability of the system rigorously, one must perform a linear stability analysis.

As a start, consider the configuration where both vortices are at the poles. Then, the
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wave function is simply given by ψpole = f(θ)eiϕ. Add now linear perturbations to its

magnitude in the form

ψ(θ, ϕ) =
(
f(θ) + a(θ)eσt + b∗(θ)eσ

∗t
)
eiϕ . (6.20)

Inserting this ansatz into the sGPE yields the following set of equations after collecting

all the terms proportional to eσt and eσ
∗t:

iσa = L0a+ g̃f 2(2a+ b) , (6.21)

−iσb = L0b+ g̃f 2(2b+ a) , (6.22)

where the linear operator

L0 := − 1

2 sin θ
∂θ(sin θ∂θ) +

1

2 sin2 θ
− (µ̃− ω̃) (6.23)

was introduced. Inspired by Ref. [76], this expression can be further simplified by writing

u = a+ b , (6.24)

v = a− b , (6.25)

which leads to

iσu = L0v + g̃f 2v , (6.26)

iσv = L0u+ 3g̃f 2u . (6.27)

This is equivalent to the eigenvalue equation

σ


u
v


 = −i


 0 L0 + g̃f 2

L0 + 3g̃f 2 0




u
v


 . (6.28)

To test the stability of the pole solution, it is therefore necessary to compute the eigen-

values of the matrix on the right hand side.

In contrast, for a solitary wave solution away from the poles, the linear stability analysis

is very similar but numerically considerably more complex. Consider a solitary wave

solution ψsw with added linear perturbations, i.e.

ψ(θ, ϕ) = ψsw(θ, ϕ) + α(θ, ϕ)eσt + β∗(θ, ϕ)eσ
∗t . (6.29)
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Figure 6.6: Eigenvalues of (6.28) for µ̃ = 50 and ω̃ = 0 in the left panel.

Eigenvalues of (6.30) on a 64× 128 grid for µ̃ = 15 and ω̃ = −2.885 in the right

panel.

Different than before, α and β are now functions of both angles which spells trouble.

Proceeding as above, the ansatz is inserted into the sGPE and the terms proportional to

eσt and eσ
∗t are collected, leading to the eigenvalue equation

σ


α
β


 = −i


−1

2
∆Ω + 2g̃|ψsw|2 − iω̃∂ϕ − µ̃ g̃ψ2

sw

−g̃ψ2
sw

1
2
∆Ω − 2g̃|ψsw|2 − iω̃∂ϕ + µ̃




α
β


 ,

(6.30)

which, in this case, cannot be further simplified. The complications arise because the

matrix in (6.30) has 220 eigenvalues for a 512 × 1024 grid while the matrix in (6.28) has

210. It is computationally infeasible to calculate all of them, both in terms of memory

and computation time, but the problem can be made accessible by reducing the grid size.

The largest grid size where all eigenvalues (minus two) can be computed is a 64 × 128

grid. As shown in Fig. 6.6, for both eigenvalue equations, there exist a large number

of eigenvalues with positive real value suggesting that the solitary waves are unstable

objects. This leads to an obvious contradiction with the result from the dynamics where

- even with large-amplitude noise signals - no decay of the disturbance was observed. It

is unclear where this contradiction arises and it will need further study in the future.
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6.6. Variational approach for solitary wave speed

Jones and Roberts have shown in Ref. [58] for the flat case that the speed of the solitary

wave is given by ∂E/∂p. We will follow their lead and extend the argumentation to the

spherical geometry. The energy and angular momentum of the JRSWs are formally given

by

Esw =

∫
dΩ

{
1

2
∇ψ · ∇ψ∗ +

g̃

2
|ψ|4 − µ̃|ψ|2

}
, (6.31)

Lz = −i

∫
dΩψ∗∂ϕψ , (6.32)

and the wave function ψ is a stationary solution, i.e. it obeys

−1

2
∆ψ + g̃|ψ|2ψ − µ̃ψ = iω̃∂ϕψ . (6.33)

One may then perform the infinitesimal variation

ψ → ψ + δψ (6.34)

in the above integrals. For the angular momentum, one finds

Lz + δLz = −i

∫
dΩ(ψ∗ + δψ∗)∂ϕ(ψ + δψ)

= −i

∫
dΩ (ψ∗∂ϕψ + δψ∗∂ϕψ − δψ∂ϕψ

∗) . (6.35)

The terms nonlinear in δψ are discarded, and one assumes the same symmetry around

the equator for δψ that is present for ψ to set the “boundary” terms arising from the

integration by parts to zero. It follows that

δLz = −i

∫
dΩ (δψ∗∂ϕψ − δψ∂ϕψ

∗) . (6.36)

The procedure for the energy is very similar and leads to

Esw + δEsw =

∫
dΩ

{
1

2
∇(ψ + δψ) · ∇(ψ∗ + δψ∗) +

g̃

2
(ψ + δψ)2(ψ∗ + δψ∗)2 − µ̃(ψ + δψ)(ψ∗ + δψ∗)

}

= Esw +

∫
dΩ

{
δψ

(
−1

2
∆ψ∗ + g̃|ψ|2ψ∗ − µ̃ψ∗

)

︸ ︷︷ ︸
−iω̃∂ϕψ∗

+δψ∗
(
−1

2
∆ψ + g̃|ψ|2ψ − µ̃ψ

)

︸ ︷︷ ︸
iω̃∂ϕψ

}
.

(6.37)

73



6 Jones-Roberts solitary waves

0 100 200

Lz [~]

2

4

6

8

∂
E

sw

∂
L
z

[
~

M
R

2

]

−ω̃

Figure 6.7: The blue line shows the derivative of energy with respect to angular

momentum for µ̃ = 50. The red dots are the angular velocities of the JRSWs at

the corresponding angular momentum.

Therefore, the variation of the energy is

δEsw = −iω̃

∫
dΩ (δψ∂ϕψ

∗ − δψ∗∂ϕψ) = −ω̃δLz . (6.38)

If δψ is the variation that takes ψ to the next member of the branch of solutions, then the

variation of the energy is proportional to the variation of the angular momentum. This

means that

∂Esw

∂Lz
= −ω̃ , (6.39)

if we understand the derivative to be taken along the energy-momentum curve which is in

line with the flat case since −ω̃ is the angular velocity of the JRSWs. This analytic result

is complemented by numerical calculations. Fits of the curves in Fig. 6.1 are created by

constructing smoothing splines to generate a fit function that passes through the points

given by the data. The spline fit can then be differentiated with the finite difference

method which neatly overlaps with the corresponding values of −ω̃. This result is shown
for µ̃ = 50 in Fig. 6.7.
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6.7. Dispersion relation

To round out the discussion of solitary waves on the surface of a sphere, let us look at the

dispersion relation they produce. If the external rotation of the sphere is turned off, it is

clear that the JRSWs are no longer time-independent. Instead they move in longitudinal

direction with the negative of ω̃ for which they are stationary, i.e. ψ(θ, ϕ, t) = ψ(θ, ϕ−ω̃t).
If ψml are the spherical harmonics expansion coefficients of the stationary solution, then

ψ(θ, ϕ− ω̃t) =
∞∑

l=0

l∑

m=−l

ψml e
−imω̃tY m

l (θ, ϕ) , (6.40)

which follows from the form of the spherical harmonics. In other words, the expansion

coefficients become functions of time and take the form ψml e
−imω̃t. This means that they

oscillate with the frequency −mω̃. Thus, we expect that this behavior is reproduced in

the spectrum of the expansion coefficients. To examine this statement, the procedure is

exactly as in section 5.1, the result of which is shown in Fig. 6.8.

While the spectrum accurately displays the dispersion relation, the Bogoliubov dispersion

(3.68) is still visible. This is likely the effect of aliasing errors present after the Newton-

Kantorovich method. Which is to say that the numerical expansion coefficients deviate

from their exact values, and these deviations correspond to infinitesimal Bogoliubov ex-

citations. This statement is corroborated by the fact that the spectra of the solitary
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Figure 6.8: Dispersion of JRSW moving with −ω̃ = 14. The left panel shows

the spectrum for m = 0. The right panel shows the spectrum for l = 150. The

numerical dispersion exactly overlaps with the analytical result −mω̃. Addition-
ally, the Bogoliubov dispersion is still visible.
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µ̃ ω̃c ω̃max ω̃s minl ̸=0
|ω̃0

l |
l

50 4.535 ± 0.005 8.0 7.1 8.29

333 11.23 ± 0.01 19.6 18.3 19.88

400 12.25± 0.05 21.2 20 21.67

529 14.05 ± 0.05 23.8 23 24.74

Table 3: ω̃c is the angular velocity where the transition from dipole to rarefac-

tion pulse occurs, ω̃max is the maximum angular velocity for which a solution was

found. ω̃s is the angular speed of sound. minl ̸=0
|ω̃0

l |
l

is the condition for energy

transfer.

waves do not exhibit a purely exponential decay, but are rather characterized by a hump

for large l. This suggests that there is indeed some buildup of aliasing errors which are

reduced by a higher convergence tolerance.

Here, we can deduce a physical argument for the existence of supersonic JRSWs. For any

fixed l, the maximum frequency of the solitary waves is reached for |m| = l. For energy

transfer to the Bogoliubov modes not to occur, this frequency must be smaller than the

smallest frequency in the Bogoliubov dispersion relation. In other words,

|ω̃|l < |ω̃0
l | ∀l ̸= 0 =⇒ |ω̃| < min

l ̸=0

|ω̃0
l |
l
. (6.41)

Energy transfer is contingent on the speed and the frequency of the excitations to coincide

with those of the Bogoliubov modes. In flat space, both of these conditions translate to the

same mathematical relation, namely that v < mink ω(k)/k, where ω(k) is the Bogoliubov

dispersion. But not so on the sphere. With the condition (6.41) in mind, we can complete

Table 2 to find Table 3.

It follows that ω̃max is always smaller than minl ̸=0 |ω̃0
l |/l. Hence, one can conclude that,

even though the speed of sound was breached by the solitary waves, energy transfer to

the Bogoliubov modes is not possible until the higher value of minl ̸=0 |ω̃0
l |/l is reached.

Additionally, in the large radius limit, (6.41) takes the form (with units included)

76



6 Jones-Roberts solitary waves

lim
R→∞

min
l ̸=0

|ω0
l |
l

= lim
R→∞

min
l ̸=0

√
ℏ

2MR2

l + 1

l

(
ℏ

2MR2
l(l + 1) +

2µ

ℏ

)
=

√
µ

MR2
= ωs .

(6.42)

This is a necessary consistency check, because the large radius limit marks the transition

to flat space and we must therefore recover this relation. One would therefore expect

that for larger radius (or conversely large µ̃) ω̃max is eventually bound from above by ω̃s.

Indeed, the ratio ω̃s/ω̃max increases for increasing µ̃. Unfortunately, the grid resolution

does not permit finding solutions for arbitrarily high values of µ̃ and thus this hypothesis

can presently not be tested rigorously.
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Chapter 7

Conclusion and Outlook

In this thesis, we have examined traveling wave solutions of a Bose-Einstein condensate

on the surface of a sphere. We began by expressing the typical equation of motion, the

Gross-Pitaevskii equation, in spherical coordinates to numerically treat the system. While

the procedure is very similar to the flat case, it introduces a new length scale: the radius

of the sphere R. This leads to a specific non-dimensionalization suited to the geometry.

To get a better understanding of the effects of the geometry in comparison to flat space,

we discussed a broad spectrum of theoretical results, including the condensate fraction

and the critical temperature, pertaining to the homogeneous Bose gas on the spherical

surface without localized excitations. The Bogoliubov dispersion is of particular interest

because it provides a tool to scrutinize the numerical methods and gives access to the

speed of sound.

Next, a sophisticated numerical apparatus to treat the spherical system was introduced

and implemented as a codebase. This might prove to be quite useful not only in furthering

the research of Bose-Einstein condensation but also to spherical fluid dynamics in general.

The primary point of comparison are the planetary sciences (as planets are spheres) where

the implementation of numerical methods based on spherical harmonics has been common

practice for decades.

As a first test of the numerical methods, it was shown that the Bogoliubov dispersion is

accurately reproduced which instilled confidence to expand the system to include localized

excitations. Hence, the next step was to place a vortex-antivortex pair, the minimally

allowed configuration, on the surface. This can be achieved by projecting the phase profile

of a vortex dipole in flat 2D onto the sphere. The dynamics of these dipoles suggested

that they might form stationary solutions with the right tuning of the dimensionless,

external rotation frequency ω̃. Additionally, we showed that the ground state of the

system responds to a change in ω̃ with the formation of vortex lattices. The relation

between the number of dipoles in the ground state Nd and ω̃ seems to be roughly linear,

suggesting a continuation of the Feynman rule on the sphere.
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7 Conclusion and Outlook

The paramount result of this work has been the numerical proof of existence for a family

of Jones-Roberts solitary waves in the spherical Gross-Pitaevskii equation. These are

localized traveling wave solutions that form a vortex dipole at low angular velocities and

transition to a rarefaction pulse at high angular velocities. For various values of the

dimensionless chemical potential µ̃, this transition was recorded and illustrated as a curve

in the energy-angular momentum plane. Interestingly, supersonic solitary waves have

been found to exist. These seem to be a consequence of the fact that energy transfer

to the Bogoliubov modes necessitates an angular velocity that exceeds the angular speed

of sound. There is tentative evidence that the “solitonicity” of the solutions increases

with their angular velocity which is in line with the hypothesis that the solitary waves

become solutions of the Kadomtsev–Petviashvili equation in the high-velocity limit and

form so-called lump solitons. Furthermore, we have investigated in part the stability of

the solitary waves but could not come to a definitive conclusion. The speed of the solitary

waves is given by the derivative of their energy with respect to their angular momentum,

a result that has been verified both numerically and analytically. Lastly, we ascertained

that the dispersion relation of the solitary waves correctly shows up in the numerics.

While these are promising results, some problems have been left unanswered. First and

foremost, it was not possible to complete the branches of solutions to the poles, the reason

for which is similarly elusive. The development of a proper, functioning preconditioning

method to solve the linear system of equations (6.8) would have a massive impact on

the speed of convergence and would be an important and essential step forward on the

numerical side of things. Simulations with well-resolved, large spheres would be able to

find out whether the angular velocity of the JRSWs eventually becomes bound from above

by the angular speed of sound. Furthermore, the implementation of a method to reliably

find the eigenvalues of (6.30) with largest real value for arbitrary grid sizes within an

acceptable time frame is equally crucial to conclude the question of stability.

Of course, the spherical geometry holds many more mysteries. While outside the scope

of the present thesis, from its inception several interesting questions came up which could

lead to compelling findings beyond the discussion of Jones-Roberts solitary waves.
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Planetary waves

Planetary waves such as Rossby, Kelvin or Yanai waves are large-scale perturbations

occurring in the atmosphere and oceans of planets which develop as a consequence of

the planetary rotation. As a prominent example, atmospheric Rossby waves are caused

by the Coriolis force and conservation of potential vorticity. They from along the polar

front of cold polar air and warmer subtropical air creating meandering wave patterns that

rotate westward. The similarity of the fluid dynamics between a planetary system and a

spherical BEC is immediately clear and has hence sparked interest in their study. Rossby

waves have also been theorized to exist in a rapidly rotating BEC in flat 3D [77]. Ref.

[78] shows that the perturbation potential

Vp = α(t) sinm(θ) cos(mϕ)

is able to excite a Rossby mode in the spherical BEC, where m is an integer and α(t)

is a function of time that linearly goes to zero. The further study of Rossby or other

planetary waves may thus prove to be an insightful course of future research.

Dipolar Bose Gas

Condensates with dipole-dipole interactions have been the object of intense experimental

and theoretical research over the past years. Dipolar BECs and the formation of super-

solids have already been observed theoretically in the quasi-2D regime of a thin spherical

shell [79, 80]. Still pending is the study of topological defects and the extension of the

model to a truly 2D sphere which needs careful consideration due to the peculiar form of

the dipole-dipole potential in spherical coordinates.

Gravity

Gravity constitutes a major roadblock for the experimental realization of spherical Bose

gases. We have only briefly touched on this in the beginning, but conveniently never

turned on gravity in our theoretical considerations. If gravity is aligned along the z-axis,

one can introduce the one-body potential

VG =MGR cos θ ,
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7 Conclusion and Outlook

where G is the local gravitational acceleration. Then, testing the robustness of the system

against gravitational sag is an interesting point of inquiry from an experimental standpoint

alone.

Bose-Einstein condensation on the surface of a sphere has attracted attention only for

a few years. These ideas reveal that there is a wealth of directions that future research

could touch upon. This thesis has tried to provide another small piece of the puzzle, but

inevitably there is still much more to learn.
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Appendices
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Figure A.1: Time evolution of a JRSW solution for ω̃ = −2.2 and µ̃ = 50. The

two top panels show the polar angle of the vortex (in olive) and antivortex (in

purple) as a function of time. The three panels in the bottom show the total

energy, the particle number and the angular momentum of the wave function.
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B

Figure B.1: JRSW solutions for µ̃ = 333 and decreasing ω̃. The top panels

show the density and the bottom panels the phase of the respective wave function

in a region around the disturbance.

Figure B.2: JRSW solutions for µ̃ = 400 and decreasing ω̃. The top panels

show the density and the bottom panels the phase of the respective wave function

in a region around the disturbance.
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Figure B.3: JRSW solutions for µ̃ = 529 and decreasing ω̃. The top panels

show the density and the bottom panels the phase of the respective wave function

in a region around the disturbance.

C

Figure C.1: Line spectrum and 2D Spectrum of a JRSW solution for µ̃ = 400

and ω̃ = −15.1.
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