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Observation of nonlinear response and
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The quantum regression theorem states that the correlations of a system at
two different times are governed by the same equations of motion as the
single-time averages. This provides a powerful framework for the investigation
of the intrinsic microscopic behaviour of physical systems by studying their
macroscopic response to a controlled external perturbation. Here we experi-
mentally demonstrate that the two-time particle number correlations in a
photon Bose-Einstein condensate inside a dye-filled microcavity exhibit the
same dynamics as the response of the condensate to a sudden perturbation of
the dye molecule bath. This confirms the regression theorem for a quantum
gas, and, moreover, demonstrates it in an unconventional form where the
perturbation acts on the bath and only the condensate response is monitored.
For strong perturbations, we observe nonlinear relaxation dynamicswhich our
microscopic theory relates to the equilibrium fluctuations, thereby extending
the regression theorem beyond the regime of linear response.

The application of linear response theory to systems that are subject to
perturbations lies at the heart of many fundamental phenomena in
physics1, including electromagnetic wave propagation in optical
media, structure factors in condensed matter systems, or superfluid
phases in quantum gases2–4. For strong perturbations, the extension of
this concept to nonlinear response has facilitated our understanding
of ubiquitous effects such as higher-harmonic generation in optics5 or
the emergence of turbulent flow in cold-atom and exciton-polariton
systems driven far from equilibrium6,7. When considering equilibrium
systems, the linear response behaviour is commonly governed by the
fluctuation-dissipation theorem8, which states that the intrinsic fluc-
tuations of a system are connected to the absorptive part of a response
function by thermal energy. The Onsager-Lax theorem, covering
situations where the magnitude of the fluctuations is small, remains
valid also for systems out of equilibrium and describes a universal
relationship between the correlations and the response dynamics, as
has been theoretically shown for irreversible processes in classical and

quantum systems9–17. The usual regression theorem, which states that
the two-time averages 〈A(t)B(0)〉 of two observables A and B obey the
same equations as the one-time averages 〈A(t)〉 for Markovian
systems12, links the system’s fluctuations to the linear response, but
more recent works have theoretically addressed nonlinear response as
well18. Experimentally, it has been indirectly verified by measurements
of Onsager’s reciprocity relations in the classical domain, e.g., in
thermoelectric systems or thin films19,20. A direct experimental test of
this central theorem of statistical physics, however, by independent
measurements of the temporal response to a perturbation and of the
system’s fluctuation dynamics has so far not been carried out for
quantum gas systems21–23.

To examine the regression theorem for a quantum gas, we
investigate the reservoir-induced dynamics of a Bose-Einstein con-
densate (BEC) of photons inadye-filledopticalmicrocavity. In theused
experimental platform, a two-dimensional photon gas is coupled
radiatively to a reservoir of dye molecules24–26. Previous work has, by
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observing the statistical number fluctuations that result from an
effective particle exchange with the molecular reservoir, reported a
non-Hermitian phase transition27,28, verified a fluctuation-dissipation
relation connected to a reactive response function29, and realised
protocols to temporally perturb the reservoir30,31. Moreover, theory
work on this systemhas employed the regression theorem to calculate
two-point correlations from the relaxation dynamics32–34.

Figure 1 illustrates how a photon BEC couples to a reservoir of dye
molecules, providing a benchmarking platform for the regression
theorem in complex many-body quantum systems of both matter and
light. Uniquely, the system allows one to connect the linear response
dynamics after a weak perturbation (Fig. 1a, left panel) with the
intrinsic fluctuations driven by coloured noise (Fig. 1a, middle) and
with the nonlinear response after a strong perturbation (Fig. 1a, right).
Unlike the more usually encountered situation for the quantum
regression theorem where a system (here the BEC) itself is perturbed,
the perturbation here acts on the reservoir part (molecules), the
excitation is transferred to the system by light-matter interactions
(illustrated by a spring), and only then the photon number dynamics is
witnessed by an observer before it is damped out by dissipation of
photons to the environment. Despite its microscopic complexity, at
the mean-field level, the photon-molecule system can effectively be
described as a damped harmonic oscillator, which exhibits a pro-
nounced nonlinearity for large perturbations.

In this study, we measure the nonequilibrium response dynamics
of a photon Bose-Einstein condensate after a sudden perturbation of
its equilibrium dye reservoir. By comparing the response to the inde-
pendently measured number fluctuations of the condensate, we first
experimentally confirm the validity of the regression theorem for the
optical quantum gas in the limit of weak perturbations. Further, for

stronger perturbations, we observe the emergence of nonlinear
dynamics that are attributed to the saturation of the particle reservoir.
Notably, the seemingly violated regression theorem is restored by a
theoretical model that captures the nonlinear response dynamics,
whose relevant parameters are the same as in the linear response. Such
a nonlinearity in the condensate-bath system, which has been theo-
retically predicted also for exciton-polariton systems35, forms the basis
for future studies into the properties of elementary and topological
excitations within lattices of photon condensates36–38.

Results
Experimental scheme
Our photon Bose-Einstein condensates are prepared inside an optical
microcavity filled with a dye solution of refractive index ~n≈1:44 and
concentration 1mmol L−1, see Fig. 1b; for details see ref. 32 andMethods.
The microcavity is formed by two spherical mirrors with a reflectiv-
ity> 99.998% and a 1m radius of curvature. At the used microcavity
lengthD0≈ 1.5μm, the free spectral range of the cavity becomes as large
as the emission and absorption spectral profiles of the dye medium,
which restricts the photon dynamics to the two transverse degrees of
freedom at a fixed longitudinal mode number q= 7. Inside the micro-
cavity, the photons behave as a two-dimensional gas of bosons with
effectivemassmph =π_q~n=ðD0cÞ≈10�35 kg andquadratic dispersion; the
minimum photon energymphðc=~nÞ2 = _ωc≈2:1 eV is given by the energy
of the transverse ground mode. In addition, the mirror curvature indu-
ces a harmonic trapping potential of frequency Ω/(2π)≈40GHz for the
photons. The emission and absorption rates Bem(ω) and Babs(ω) of the
dye medium at T= 300K fulfil the Kennard-Stepanov relation
Bem=Babs / expð�_Δ=kBTÞ, which depends on the detuning Δ=ω−ωzpl

of the photon frequency from the zero-phonon line ωzpl
27. By

0 400 800
0

1

2

Time

PerturbedSteady
state

0

Pump 

Loss

N
or

m
al

iz
ed

 p
op

ul
at

io
n

averagesingle shot

Response dynamics

BEC

reservoir

b

c d

a

Time (ns)

230 240
0

1

2

430 440
0

1

2

430 440
0

2

4
230 240

0

2

4

Time (ns)

Fluctuations

Mode
filter

PMT

LossDye

Pump beam
Perturbation

Microcavity

Time

600ns

30ps

Power

Fig. 1 | Experimental scheme to probe the regression theorem. a Mechanical
analogue of a photon Bose-Einstein condensate (top, blue) coupled to a molecule
reservoir (bottom, red), forming a quantum dissipative oscillator. A weak sudden
perturbation of the reservoir (left) leads to a linear response of the average single-
time photon number 〈n(t)〉. Immersion into a “coloured-noise” bath (middle) leads
to number fluctuations δn, or two-time correlations 〈δn(t)δn(0)〉, for which the
regression theorem predicts the same dynamics. For a strong perturbation (right),
the response becomes nonlinear. b Dye-filled optical microcavity with photon
Bose-Einstein condensate, which is perturbed by a laser pulse irradiated on the dye
reservoir (inset). The fluctuation and response dynamics are recorded on a

photomultiplier (PMT). c In a steady state, when cavity losses are compensated by
pumping the dye, photons (blue) and molecules in the ground and excited state
(red) are in equilibrium due to absorption and emission events. After a sudden
perturbation of the excitedmolecules, also the condensate population is perturbed
and both systems relax back to their stationary values. d Left: Temporal evolution
of the condensate averaged over several time traces. Right: Zoom in on the time
window used to analyse the photon number response dynamics (top row), and the
timewindowused for thefluctuation analysis (bottom). The left panels show single-
shot data and the right panels the averaged data.
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absorption-emission cycles with dye molecules (10−12 s timescale), the
photons thermalise to the rovibronic temperature of the dye before
leaving the cavity (10−9 s). Above the critical photon number
Nc =π

2=3ðkBT=_ΩÞ2≈80000, the photon gas exhibits Bose-Einstein
condensation24–26. Despite the thermalisation mechanism, the photon
Bose-Einstein condensate realises a weakly dissipative macroscopic
quantum system due to losses, e.g., from photons leaking through the
cavitymirrors. To establish a steady state of photons andmolecules, the
dye medium is externally pumped.

Theoretical description
Under steady-state conditions, the weakly dissipative character of the
open condensate system is evident from an exceptional point in the
second-order temporal correlations28,34. The underlying stochastic
number fluctuations are caused by an effective particle exchange
between the condensate and a large reservoir of excitedmolecules27. In
the present work, we access the open-system dynamics of the con-
densate by investigating the photon number response after a con-
trolled sudden perturbation of this reservoir. This allows us to test the
validity of the regression theorem for the optical quantum gas, as well
as to explore it beyond the regimeof linear response. Tobeginwith,we
derive an analytical expression for the response dynamics39 from two
coupled rate equations for the number of photons n and excitations
X = n +M↑, respectively, given by dn/dt =BemM↑(1 + n) −BabsM↓n − κn
and dX/dt = PM↓ − κn − ΓspM↑ (see Methods). Here M↓,↑ denotes the
number ofmolecules in their ground (↓) and electronically excited (↑)
states, P the pump rate, κ the cavity loss rate, and Γsp the spontaneous
decay rate to unconfined modes. A steady state is established if the
losses are compensated for by a constant pumping of rate P = κ〈n〉/
〈M↓〉 + Γsp〈M↑〉/〈M↓〉, where 〈. . . 〉 denotes temporal averaging,
see Fig. 1c.

A time-dependent perturbation P(t) of the molecule reser-
voir drives the photon condensate away from the steady state.
The resulting photon number evolution nðtÞ= hni expfBem½1 +
expð_Δ=kBTÞ�

R t
0 mðt0Þdt0g depends on the strength of the perturbation

and therefore on the deviation m(t) of the excited molecule number
from the steady state number that would correspond to the instanta-
neous photon number n(t) (see Methods). The implicit interplay
between m(t) and n(t) also implies that a subsequent variation of the
photon number leads to a change in the number of excitedmolecules.
As detailed in the Methods, approximating the time integral over the
perturbed molecules yields a nonlinear expression for the photon
number response R(t) = n(t) − 〈n〉:

RðtÞ= hni exp Bem 1 + e
_Δ
kBT

� �
m0

es + t � es�t

s + � s�

� �
� hni ð1Þ

Here m0 =m(0) gives the number of molecules excited by the pulse

perturbation at t =0. The quantities s ± = � δ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 � ω2

0

q
depend on

the system parameters Δ,Bem, T, Γsp, κ, molecule number M, and the
steady-state photon number 〈n〉, where the damping rate δ and the
oscillation frequencyω0 determine whether a biexponentially damped
(δ >ω0) or an oscillatory (δ <ω0) response is expected. Note that s± are
the eigenvalues of the non-Hermitian matrix which describes the
linearised equations of motion for the variation of the photon number
n(t) − 〈n〉 and excitation number X(t) − 〈X〉; for a discussion see the
Methods and ref. 28. Expanding eq. (1) yields a linear expression for
the response RðtÞ ’ hniBem½1 + expð_Δ=kBTÞ�m0ðes + t � es�tÞ=ðs + � s�Þ.
Both expressions are used to analyse the response dynamics, but eq. (1)
describes the measured response more accurately in the regime of
strong perturbations, while the linearisation is valid in the limit of small
m0. The expected second-order coherence at time delay τ on the other
hand can, by utilising the regression theorem, be written as gð2ÞðτÞ /
ðs + es + τ � s�e

s�τÞ=ðs + � s�Þ / dRðτÞ=dτ (see Methods). Physically, the

derivative follows from the fact that it takes some time for the
molecules excited by the laser pulse to be converted into photons. This
gives a delay for the response function concerning the correlation
function, in contrast to a direct perturbation of the photon number.
Unlike the response, the fluctuation dynamics g(2)(τ) is intrinsically
linear due to the grand canonical condition for large fluctuations being
realised only for large reservoirs which basically cannot be saturated.

Experimental protocol
To probe the response and fluctuation dynamics, we first prepare a
steady-state photon BEC by quasi-cw optical pumping of the dye
molecule reservoir over 600 ns at 532 nm wavelength, see Fig. 1b, c.
After roughly 200 ns, a short laser pulse of 28 ps duration (also at
532 nm) irradiates the microcavity to perturb the reservoir. Part of
the emission leaking from the microcavity is filtered in momentum
space and for polarisation, and the photon number evolution in
the transmitted condensate mode is recorded using a photo-
multiplier (seeMethods). Figure 1d shows an example of condensate
evolution after averaging over many time traces, from which
the response dynamics are visible in a time window of 20 ns after
the perturbation. The fluctuation dynamics are determined by
analysing the second-order correlations g(2)(τ) from individual
time traces. Throughout all measurements the system parameters
Bem = 25 kHz, ℏΔ = − 3.87kBT, and Γsp = 200MHz remain fixed, while
the total molecule numberM = 5.4(15) ⋅ 109, and mirror transmission
κ = 6.4(10) GHz are obtained from fits to the data.

Second-order correlation and response dynamics
Figure 2 shows measured second-order correlation functions g(2)(τ)
and photon number responses R(t) along with fits for two steady-state
photonnumbers 〈n〉, realised byvarying the quasi-cwpumppower.We
are first interested in the linear response of the photon condensate, so
we use only relatively small perturbation pulse powers that weakly
change the condensate population by δnðtmaxÞ=hni=0:31ð7Þ on aver-
age, where tmax denotes the time when the photon population has
reached its maximum. Accordingly, the response data is fitted using
the linearised form of R(t) discussed above. While generically g(2)(τ) = 1
and R(t) = 0 are found for large τ and t, both data sets display distinct
dynamics. For small 〈n〉 = 1740, both g(2)(τ) and R(t) decay biexponen-
tially, while for large 〈n〉 = 14250 a damped oscillation of the fluctua-
tions and the response is observed. The quantitative agreement of the
dynamics for each photon number is seen in the respective values of
the parameters δ,ω0, see Fig. 2c, which determine the eigenvalues s±.
This gives evidence that the intrinsic number fluctuations and the
response dynamics of the photon condensate to an external pertur-
bation of the reservoir are governed by the samemicroscopic physics.
Qualitatively, the agreement is visible when forming the derivative of
the fitted response dR(t)/dt, see the inset of Fig. 2b, which well
resembles the corresponding fit for g(2)(τ) from Fig. 2a. Note that the
biexponential and oscillatory dynamics are distinctly characterised by
real and complex-valued s±, respectively, which allows to identify a
transition point between both dynamical regimes at the degeneracy
s+ = s−, known as an exceptional point28.

Regression theorem in linear regime for weak perturbations
To systematically verify the universal relationship between R(t) and
g(2)(τ) in the linear response regime, wenext study the eigenvalues s± of
the condensate dynamics as a function of the steady-state population
〈n〉. Figure 3a shows themeasured damping rate Reðs ± Þ and oscillation
frequency Imðs ± Þ=ð2πÞ for the response and fluctuation dynamics
(symbols), respectively, along with the eigenvalue prediction from
eq. (1) (lines). Note that for the responseR(t) we only show data for the
smallest experimentally realised perturbation powers (as in Fig. 2),
where the linear model is expected to be well applicable. At photon
numbers below the one at the exceptional point 〈n〉EP ≈ 2000, two
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branches of damping constants with vanishing oscillation frequency
indicate the biexponential regime, while for larger photon numbers
the observedmerging of Reðs ± Þ and bifurcation in Imðs ± Þ highlight the
regime of oscillatory dynamics.

Figure 3 can be understood as a nonequilibrium phase diagram of
the photon dynamics, where 〈n〉 presents a control parameter to tune
between both phases. The associated opening of a gap in the complex
plane along the imaginary axis at the phase transition is visible in the
complex eigenvalue spectraof g(2)(τ) andR(t) in Fig. 3b; symbol colours
indicate the photon number, which parametrises the spectral trajec-
tory of s±(〈n〉). As the photon number is increased, the real-valued s±
(biexponential dynamics) move from fReðs + Þ,Imðs + Þg= f�1,0gns�1

and fReðs�Þ,Imðs�Þg= f0,0gns�1 along the real axis and coalesce at the
exceptional point fReðs ± Þ,Imðs ± Þg≈f�0:8,0gns�1. As 〈n〉 is increased
further, the eigenvalues s± separate again andmove into the imaginary
plane (oscillatory dynamics).

The agreement between the measured linear response, the fluc-
tuation dynamics, and the theory prediction provides an experimental
benchmark for the regression theorem in optical quantum gases.
Direct evidence for this conclusion is given in Fig. 3c, which compares
the eigenvalues s± of the response measurement to the values of s±
obtained from the fluctuation measurement for pairwise correspond-
ing photon numbers. In order to represent the two sets (s+ and s−) of

complex-valued data, we show the four contributions Reðs + Þ, Reðs�Þ,
Imðs + Þ and Imðs�Þ. We find excellent agreement between both sets of
eigenvalues, as evident from the data aligning with a linear curve of
slope one (black line). Interestingly, for large condensate populations
currently not accessible in the experiment and shown in Fig. 3d, our
theoretical model for the photon dynamics predicts a second excep-
tional point where again s+ = s−, or equivalently δ =ω0 (seeMethods for
the corresponding functions). Physically, the re-emerging biexponen-
tial phase results from the different asymptotic scalings of δ∼ 〈n〉 and
ω0 ∼

ffiffiffiffiffiffiffihnip
, such that oscillations are damped out not only at average

photonnumbers smaller that 〈n〉EPbut also in the limit of very large 〈n〉.

Nonlinear response for strong perturbations
We next generalise our study of the regression theorem to the non-
linear regime by successively increasing the reservoir perturbation
strength m0 induced by the pulse laser. Figure 4a shows complex
eigenvalue spectra s±(〈n〉) obtained from fitting either the linear (top
row) or nonlinear (bottom) expression of R(t) to the recorded con-
densate time traces. While for the weak perturbation, the linear and
nonlinear analysis yield similar results, a deviation from linear
response theory is observed for the larger perturbations, as high-
lighted by the orange shading. In contrast, fitting the nonlinear
expression in eq. (1) restores the eigenvalue spectrum of the response
dynamics to agree well with the theoretical prediction for the fluc-
tuation dynamics. This improvement demonstrates that the strongly
perturbed photon condensate exhibits a pronounced nonlinearity,
which occurs in our system when the molecule reservoir is saturated:
almost all the excitations that are introducedby the perturbation pulse
are then converted into photons leading to a large relative variation of
the photon number, that activates the nonlinearity in the stimulated
emission and absorption dynamics. Figure 4b shows the residuals

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iðRexp ,i � Rfit,iÞ2=N
q

Þ=hni of the linear and nonlinear fit as the initial

pulse perturbation is increased. Here, N denotes the number of
recorded samples. Both the linear and the nonlinear fit yield similar
and small residuals for weak perturbations below m0 ≈ 5 ⋅ 104 (extrac-
ted from the fit), confirming that the condensate-reservoir coupling
can here be well described by linear dynamics. Beyond this value,
however, the residuals exhibit a splitting. While the linear fit performs
significantly worse (i.e., the residuals grow), the nonlinear fit residuals
remain close to their initial values, demonstrating that the nonlinear
expression is more accurate in describing the response dynamics of
the photon condensate in the case of relatively strong perturbations of
the molecule reservoir. Despite the improved accuracy of the non-
linear model, we note that for even stronger perturbations, as theo-
retically expected, also our nonlinear description gradually loses its
accuracy due to a linearisation in m (see Methods).

Finally, the nonlinearity of the photon condensate coupled to the
molecule reservoir is directly visible when we compare the measured
oscillatory responseR(t) in Fig. 4c for aweak and a strong perturbation
strength with m0 ≈ 2.7 ⋅ 104 and m0 ≈ 9.3 ⋅ 104, respectively. The solid
lines show fits based on the linearised and full nonlinear expressions.
For the weak perturbation, we find both models to describe the
experimental data equally well. For the larger perturbation strength,
the measurement is more accurately fitted by the nonlinear expres-
sion, as highlighted in the zoom-in view on the 5 to 12 ns time range in
the inset of Fig. 4c.

Discussion
To conclude, we have measured the response dynamics of a photon
Bose-Einstein condensate after a sudden perturbation of the reservoir,
which before the perturbation forms an equilibrium steady-state with
the condensate. Comparing the response dynamics with the number
fluctuations has enabled the experimental verification of the regres-
sion theorem for optical quantum gases. Specifically, we have

Fig. 2 | Fluctuation and response dynamics. a Second-order correlation functions
g(2)(τ) for steady-state photonnumbers 〈n〉 = 1740 (left) and 14250 (right). Solid lines
show the fits based on which the biexponential or oscillatory dynamics are iden-
tified; for details on fitting see Methods. b Temporal evolution of the photon
number response in the condensate after a weak pulsed perturbation of the
reservoir at the same 〈n〉 as in (a). The arrival time of the perturbation pulse is
indicated by dashed vertical lines. Similarly, the dynamics are biexponential or
oscillatory as determined by fitting the linear expression for R(t) shown as solid
lines. Insets show the scaled derivative of the fitted response dR/dt and fitted
g(2)(τ) − 1, vertically shifted for clarity. c Fit parameters in δ-ω0 plane from
(a) δfluct = {0.91(13), 0.33(3)} ns−1 and ω0,fluct = {0.83(6), 1.45(2)} ns

−1 (red diamonds),
and from (b) δresp = {0.81(32), 0.39(2)} ns−1 and ω0,resp = {0.75(14), 1.52(2)} ns−1 (blue
circles). The dashed line separates the parameter regions with biexponential
(δ >ω0) or oscillatory (δ <ω0) relaxation dynamics, respectively. Error bars show
standard statistical errors in (a) and (b), and standard fitting errors in (c).
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identified a nonlinear response of the BEC at strong driving. Here an
extended regression theorem of the form gð2ÞðτÞ � 1 /
d=dt ln½1 +RðtÞ=hni� holds, which in the limit of small perturbations
agrees with the conventional linear form. For the future, the demon-
strated scheme to perturb photon condensates constitutes a novel
tool for exploring Kibble-Zurek dynamics40,41, or vortex turbulence7,36

in optical quantum gases in tailored potentials42,43. An extension of the
reported single BEC-bath oscillator system to arrays of coherently
coupled condensates linked with local reservoirs will enable the
exploration of reservoir-induced transport dynamics and open-system
topological states37,38. Our findings also pave the way for studies of the
time-dependent fluctuation-dissipation relation in photon con-
densates, which so far have only been confirmed for static reactive
response functions29.

Methods
Experimental methods and calibrations
For the steady-state excitation of the photon Bose-Einstein condensate
inside the dye-filled microcavity, we use a cw laser at 532 nm wave-
length (Coherent Verdi 15G). To minimise bleaching of the dye med-
ium (Rhodamine 6G solved in ethylene glycol, concentration 1 mmol
L−1 and zero-phonon line ωzpl = 2π × 550THz) as well as pumping to
nonradiative triplet states, the pump beam emission is temporally
chopped into pulses of 600 ns at a repetition rate of 50 Hz by acousto-
optic modulators. During the steady state, a mode-locked laser pulse
of 28 ps duration at 532 nm wavelength (EKSPLA PL 2201) is irradiated
onto the dye-filled cavity at the same repetition rate, i.e., there is one
perturbation pulse during the 600ns-long steady-state. The laser
pulse instantaneously perturbs the number of excited dye molecules,
and consequently also drives the photon condensate out of its steady
state. The residual condensate emission transmitted through both
cavitymirrors is used for the analysis of the experiment. On one side of
the cavity, a microscope objective (Mitutoyo MY10X-803) collects the
emission to measure the spectral distribution and the spatial intensity
distribution of the photon gas. The cavity length is actively stabilised
by monitoring the cutoff wavelength behind an Echelle grating on an

Fig. 3 | Regression theorem for weak perturbations. a Damping rate Reðs ± Þ and
oscillation frequency Imðs ± Þ=ð2πÞ of second-order correlations (top) and pertur-
bation response (bottom) versus 〈n〉. Red and blue colours indicate s+ and s−,
respectively. Solid lines give theory prediction. b Complex eigenvalue spectrum
near the exceptional point for g(2)(τ) (left panel) and R(t) (right), along with theory
(solid). The eigenvalues evolve as a function of 〈n〉, as indicated by arrows and
symbol colour, frombeing real to complex-valued.cConfirmationof the regression
theorem. The fitted eigenvalues s± of the response R(t) are plotted against the fitted

eigenvalues of the fluctuations g(2)(τ) for pairwise corresponding photon numbers
〈n〉. Symbols and colours indicate four combinations of s±, see the legend. Within
experimental uncertainties, all points lie on a line of slope one (black line), which
shows the agreement of the eigenvalues of response and fluctuations, respectively,
and confirms the regression theorem in the optical quantum gas. d Imaginary gap
opening at exceptional point (EP1) and theoretically predicted gap closing for lar-
ger 〈n〉 ≈ 106 (EP2). Error bars show standard fitting errors.

Fig. 4 | Nonlinear BEC response. a Complex eigenvalue spectra for increased
reservoir perturbations with δnðtmaxÞ=hni= f0:59ð10Þ,1:15ð23Þ,1:25ð25Þg and
m0 = {5(2), 9(1), 11(3)} ⋅ 104. Top row: Eigenvalues s± (data points) obtained from a
linear fit gradually deviate from theory (solid lines) due to saturation-induced
nonlinearity (shaded area). Bottom: s± extracted from the nonlinear fit restores the
agreement with theory, demonstrating a beyond-linear regression relation. Dia-
mond symbols correspond to the s+ branch (red line), and circles to the s− branch
(blue line).bResiduals of linear andnonlinearfits versus increasingm0 averaged for
〈n〉 ≥ 4000 indicate the improved accuracy of the nonlinear fit. The dashed line
gives the noise floor. c Photon response after a weak (left) and strong perturbation
(right) for 〈n〉 ≈ 8250, alongwith linear (blue line) andnonlinear (red)fits. Error bars
show standard fitting errors in (a), and standard statistical errors in (b).
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EMCCD camera (Andor iXon 897). On the opposite cavity side, the
cavity emission is filtered by truncating the high-momentum states of
the photon gas using an iris in the far field. The filtered condensate
mode is detected using a photomultiplier (PHOTEK PMT 210) with a
temporal resolution of 150 ps FWHM that is sampled by an oscillo-
scope (Tektronix DPO7354C) operated at 20 GSa/s sampling rate with
a 2GHz bandwidth. To calibrate the condensate population 〈n〉 against
the recorded PMT voltage, the photon gas spectrum is fitted with a
Bose-Einstein distribution24.

To exclude systematic sources of errors in our PMT-based mea-
surements of the temporal second-order correlations g(2)(τ), we per-
form a benchmark with a HeNe laser at 632.8 nm wavelength, see
Supplementary Fig. 1. For the coherent source, one expects g(2)(τ) = 1
for all time delays. However, the obtained signal shows g(2)(τ) > 1 up to
τ ≈ 3 ns, an observation which we attribute to electronic noise in the
detection system.To avoid amisinterpretation of the data arising from
this artefact, we exclude data points at τ ≤ 3 ns from the analysis of the
correlation dynamics. Moreover, radiofrequency noise collected by
our detection system (e.g., during pulse picking in the pulse laser
system) is visible in the averaged time traces of the photon condensate
response at the time of the pulse emission. Tomitigate this, an optical
delay line has been implemented to shift the pulse arrival time at the
microcavity concerning the noise signal. The delay line is realised by a
cavity of 24m length (corresponding to a timedelay of 80 ns), which is
traversedby the pulse6 times. To that end, all responsemeasurements
canbeperformed in a temporal region free of residual radiofrequency-
induced noise.

Theoretical model
Using the Kennard-Stepanov relation for the absorption and emission
rates of the dyemedium, the rate equation for the number of photons
n can be rewritten as

dn
dt

=Bemn M" 1 +
1
n
+ e_Δ=kBT

� �
�Me_Δ=kBT

� �
� κn: ð2Þ

We represent the number of excited molecules as

M" =M",n +m, ð3Þ

where

M",n =
M + κ e�_Δ=kBT=Bem

1 + e�_Δ=kBT ð1 + 1=hniÞ ð4Þ

is the number of excited molecules, which corresponds to the steady
state with the average photon number equal to n. Then for the
experimentally relevant case n≫ 1, eq. (2) takes the form

dn
dt

=Bemð1 + e_Δ=kBT Þmn, ð5Þ

which leads to the following nonlinear relation between m(t) and the
corresponding evolution of the photon number, starting from its value
〈n〉 at t =0:

nðtÞ= hni exp Bemð1 + e_Δ=kBT Þ
Z t

0
mðt0Þdt0

� �
ð6Þ

To describe the dynamics of m(t) initiated by a sudden pertur-
bation of the excited molecule number at t =0, we utilise the rate

equation for X ≡M↑,n +m + n with P = κ〈n〉/〈M↓〉 + Γsp〈M↑〉/〈M↓〉,

dM",n
dt

+
dm
dt

+
dn
dt

= � Γsp M",n +m� hM"i
� �

� κðn� hniÞ, ð7Þ

where 〈M↑〉 ≡M↑,〈n〉 and

dM",n
dt

=
dM",n
dn

dn
dt

=
Meff

n2

dn
dt

ð8Þ

with

Meff =
M + κ e�_Δ=kBT=Bem

2½coshð_Δ=kBTÞ+ 1�
: ð9Þ

Inserting eqns. (4), (6) and (8) into eq. (7), one obtains a rather cum-
bersome nonlinear differential equation for

R t
0 mdt0, which, in general,

cannot be solved analytically. To proceed further, we assume thatm is
relatively small and hence it can be estimated from the linearised
version of the aforementioned equation

dm
dt

+2mδ +ω2
0

Z t

0
mdt0 =0 ð10Þ

with

δ =
Γ+ Γsp

2
, ð11Þ

ω2
0 = hniBem 1 + e_Δ=kBT

� �
κ +

MeffΓsp
hni2

� �
, ð12Þ

where

Γ=Bem 1 + e_Δ=kBT
� � Meff

hni + hni
� �

ð13Þ

is the photon number relaxation rate32.
Equation (10) has the solution

Z t

0
mdt0 =m0

es + t � es�t

s + � s�
ð14Þ

with

s ± = � δ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 � ω2

0

q
: ð15Þ

Here, m0 =m(0) is the number of molecules excited by the initial
perturbation. Inserting eq. (14) into (6), we can express the time
dependence of the photon number in an explicit form:

nðtÞ= hni exp Bemð1 + e_Δ=kBT Þm0
es + t � es�t

s + � s�

� �
ð16Þ

Relation between R(t) and g(2)(t)
The regression theorem implies that the response dynamics R(t) =
n(t)− 〈n〉 of the photon condensate after a perturbation of themolecule
reservoir is related to the condensate’s second-order coherence
g(2)(t) = 〈n(t)n(0)〉/〈n〉2 by g(2)(t)− 1∝dR(t)/dt. In linear response, for small
deviations around the mean photon number n= 〈n〉+Δn and excitation
number X= 〈X〉+ΔX, we have the following equations of motion for the
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time evolution after the system has been perturbed28

d
dt

Δn

ΔX

� �
=

�Γ hδn2i
Meff

Γ

�κ + Γsp �Γsp

 !
Δn

ΔX

� �
ð17Þ

with the steady state photon variance 〈δn2〉 =Meff〈n〉
2/(Meff + 〈n〉2). The

eigenvalues of this matrix correspond to s± from eq. (15). Note that we
here extend the description of ref. 28 by including losses from the
spontaneous decay of the molecules into unconfined modes, which
improves the theory description of the experimental observation. The
first equation of thematrix form in eq. (17) expresses (i) that deviations
in the photon density at constant X relax at the rate Γ and (ii) that
changes in X lead to a change in the photon number. The second
equation of thematrix formexpresses that excitations are lost through
cavity losses and spontaneous emission.

When an additional laser pulse is applied to perturb the mole-
cules, the system gets initial conditions ΔX = δX0, Δn =0 at time t =0.
The response to this perturbation is calculated from eq. (17)

RðtÞ= δX0
hδn2i
Meff

Γ
es + t � es�t

s + � s�
ð18Þ

and it corresponds to the linearisation of eq. (16) with respect to m0.
To compute the density-density correlator G(2)(t) = 〈n(t)

n(0)〉 − 〈n〉2 = 〈δn(t)δn(0)〉 with δn(t) = n(t) − 〈n〉 in the presence of los-
ses, we can use the regression formula:

hδnðtÞδnð0Þi= hδnðtjδn0Þδn0i ð19Þ

Here δn(t∣δn0) is the average photon deviation starting from a devia-
tion δn0 at time t =0. From eqns. (17) and forΔn = δn0,ΔX = 0one finds

δnðtjδn0Þ= δn0
s + e

s + t � s�e
s�t

s + � s�
: ð20Þ

From eqns. (19) and (20), we then obtain

Gð2ÞðtÞ= hδn2i s + e
s + t � s�e

s�t

s + � s�
, ð21Þ

where we have set δn2
0 to the time-averaged photon variance 〈δn2〉.

This expression contains the same rates (and frequencies) as the
response function in eq. (18) but does not show identical time
dependence. From the derivation of the correlation function, one can
see that a perturbation in the number of photons at constant X would
give a density response with the same time dependence asG(2)(t). Such
a perturbation is hard to implement experimentally. By comparing
eqns. (18) and (21) one finds

Gð2ÞðtÞ= Meff

Γ δX0

d
dt

RðtÞ: ð22Þ

Using G(2)(t) = [g(2)(t) − 1]〈n〉2, this corresponds to the relation stated at
the beginning of this section. In the case of an oscillating density
response, the derivative implies that the correlation and response
functions have a phase shift of π/2. Physically, this can be understood
from the fact that an external laser pulse excites the molecules, which
take some time to be converted into photons. This gives a delay for the
response function concerning the correlation function. In Fig. 2 one
sees that the correlations show a minimum as a function of time while
the response does not. The correlation function G(2)(t) must become
negative as can be seen from the differential relation in eq. (22) and
Δn(t→∞) = 0 in thepresence of losses. Physically, it is a consequenceof
a positive photon number fluctuation at somemoment to imply larger
losses, which reduces the expected photon number later on.

Linearity of fluctuation dynamics
The particle number fluctuations and the corresponding second-order
correlations of a photon Bose-Einstein condensate are governed by
linear dynamics even under grand canonical statistical conditions.
Here a simple analytical reasoning for this statement is presented. The
rate equations for the coupled photon-dye system can be employed to
identify two competing rates, which determine whether nonlinear
effects in the photon dynamics can or must not be neglected32. In the
lossless case (κ = Γsp = 0), the rate equation for a photon number
fluctuation away from its steady-state value reads

dΔn
dt

= � Bemð1 + e_Δ=kBT ÞΔn2 � ΓðhniÞΔn, ð23Þ

where Γ(〈n〉) is defined in (13) (we indicate here explicitly its
photon number dependence). The effective reservoir sizeM0

eff is given
by eq. (9) with κ = 0. Nonlinear effects become relevant for
Bem 1 + expð_Δ=kBTÞ

	 

Δn∼ ΓðhniÞ. Inserting δn (see Section ‘Relation of

R(t) and g(2)(t)’), one has

Bem 1 + e_Δ=kBT
� �

hni
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M0
eff

M0
eff + hni2

s
∼ ΓðhniÞ: ð24Þ

Supplementary Fig. 2 shows both rates as a function of 〈n〉 for different
dye-cavity detunings, which changes the effective reservoir size. For all
curves the second-order correlation rate (r.h.s) exceeds the nonlinear
term (l.h.s.), meaning that a photon BEC driven by reservoir-induced
fluctuations to good approximation always exhibits linear dynamics.
Our experimental data in Figs. 2, 3 confirm this prediction, showing
that the second-order correlation dynamics are well described by the
derivative of the linear expansion of eq. (1).

Fitting of experimental data
To analyse the dynamics of the two-time correlations, we fit the
second-order correlation data with

gð2ÞðτÞ=a s + e
s + ðτ +ΔτÞ + s�e

s�ðτ +ΔτÞ

s + � s�
+ b, ð25Þ

where the eigenvalues of the dynamics are given by

s ± = � δ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 � ω2

0

q
. Accordingly, for the response function in the

nonlinear form we use the fit function

RnlðtÞ=a exp b
es + ðt +ΔτÞ + es�ðt +ΔτÞ

s + � s�

� �
� a ð26Þ

and for the linear form we fit

RlinðtÞ=a0 e
s + ðt +ΔτÞ + es�ðt +ΔτÞ

s + � s�
: ð27Þ

The fit parameters δ and ω0 resemble the damping constant and nat-
ural frequency of a harmonic oscillator; the time delayΔτ togetherwith
a,a0,b are treated as free parameters for each fit. From the analysis of
the condensate response dynamics, we find that both the linear and
nonlinear fit can be used to describe the experimental data depending
on the strength of the perturbation pulse, as shown in Fig. 4b, c of the
main text and in Supplementary Fig. 3.

For a quantitative comparison of the measured eigenvalues s±
with theory, several system parameters are required: On the one hand,
the spontaneous molecule decay rate to unconfined optical modes
Γsp ≈ 200MHz and the Einstein coefficient for emission Bem = 25 kHz at
the dye-cavity detuning ℏΔ/kBT = − 3.87 (corresponding to a cutoff
wavelength λc = 570 nm) are known28,32. The molecule number M and
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the cavity loss rate κ, on the other hand, need to be determined. For
this, we compare our experimental results to a full numerical solution
of the coupled photon-molecule rate equations and minimise the dif-
ference by varying the two parameters. To achieve this in a consistent
way, all recorded time traces (i.e., for all perturbation powers and all
average photon numbers) are fitted simultaneously. This numerical
approach is motivated by the fact that even the nonlinear expression
for the response dynamics in eq. (1) is not exact, because in its deri-
vation m was assumed to be small. We obtain a molecule number
M = 5.4(15) ⋅ 109 and a cavity loss rate κ = 6.4(10) GHz. The results are
consistent with the corresponding values from analysing the second-
order correlation function g(2)(τ), M = 6.6(7) ⋅ 109 and κ = 6.6(10) GHz,
which are obtained from fits of the linear expression in eq. (25). As
discussed above, this is justified because the fluctuation dynamics are
expected to obey linear equations.

Finally, the numerical data allows us to cross-validate the fit
results of the linear and nonlinear expressions to the experimental
data. Supplementary Fig. 3b shows a map of linear and nonlinear
residuals obtained from fitting numerically calculated data as a func-
tion of the photon number 〈n〉 and perturbation strength m0. Fitting
the nonlinear expression always yields smaller residuals compared to
the linear fit at the respective coordinates; Supplementary Fig. 3c
shows the residuals versus m0 when averaged for average photon
numbers 〈n〉 ≥ 4000, which qualitatively agrees with the experimental
observation of Fig. 4b that the nonlinear model can describe the data
more accurately at large m0.

Data availability
The supporting data of this study are available in the Zenodo reposi-
tory (https://doi.org/10.5281/zenodo.10926250)44.

Code availability
Numerical data sets generated during the current study are available
from the corresponding author on request.
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