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Driven systems are of fundamental scientific interest, as they can exhibit properties that are
radically different from the same system at equilibrium. In certain cases, long-lived states of driven
matter can emerge, which exhibit new material properties. In this work, we probe the excitation
spectrum of an emergent patterned state in a driven superfluid, finding that its response is identical
to that of a one-dimensional supersolid. In order to extract physical quantities that parametrize
the observed sound modes, we apply an effective hydrodynamic theory of superfluid smectics, which
is agnostic to microscopic processes. We therefore use the conceptual framework of supersolids to
characterize an otherwise dynamic and far-from-equilibrium state.

An active field of modern research is the periodic driv-
ing of system parameters to engineer novel material prop-
erties, such as inducing superconductivity [1] or engi-
neering heat transport [2]. Though driving generically
leads to heating, in certain cases it can produce ordered
stationary states, enabling the successful application of
mathematical descriptions developed for equilibrium sce-
narios [3–7]. Bosonic quantum gases, for instance, have
been shown to spontaneously develop self-stabilized, pe-
riodic density modulations when the two-particle inter-
action strength is driven in time [8–12]. These patterned
states share key physical properties to a seemingly dif-
ferent equilibrium physical system, namely supersolids
[13–19].

Supersolids are states in which two symmetries, U(1)
gauge symmetry and translational symmetry, are sepa-
rately broken. These systems are phase coherent (con-
nected to U(1) gauge symmetry breaking) but also show
spontaneously emerging periodic density modulations
(translational symmetry breaking), and thus demon-
strate an interesting interplay of delocalized particles in
localized density structures. A minimal ansatz for a cor-
responding order parameter is

ψ = ψ0e
iθs
[
1 + ϕ cos (kcx+ θl)

]
, (1)

where ψ0 is a real constant, θs is the phase of the super-
fluid, ϕ sets the contrast of a periodic density modulation
with wavenumber kc, and θl is the spatial phase of the
modulation. Spontaneous breaking of symmetries im-
plies that the groundstates of Hamiltonians that describe
supersolids are characterized by finite values of ψ0, ϕ, and
kc, but allow for phases θs/l ∈ (−π, π]. Global trans-
formations of the phases come at no energy cost. Spa-
tial variations, θs/l → θs/l(x), are associated with energy

costs ρs(∇θs(x))2 and B(∇θl(x))2, where the superfluid
density ρs and the effective layer compression modulus
B are the generalized rigidities associated with the two
broken symmetries. These energy costs lead to dynam-
ics that can be understood as coherent excitations of the
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corresponding Goldstone modes. Therefore, superfluid
phonons (deformations of θs) and lattice phonons (defor-
mations of θl) can have distinct propagation speeds.

A number of platforms have experimentally demon-
strated states that are superfluid and show spontaneously
emerging crystalline order. Originally observed in Bose-
Einstein condensates (BEC) inside optical cavities [15]
and spin-orbit coupled BECs [16], supersolids have been
most extensively probed in gases of atoms with large
magnetic dipole moments [20–23], where a wealth of fea-
tures related to the superfluidity of the system have been
demonstrated [24–29].

A distinct feature of supersolid systems is that two
sound modes arise, which are determined by a finite com-
pressibility of the lattice as well as a modified super-
fluid fraction [30–32]. In dipolar supersolids, experiments
have been performed that demonstrate dual frequency re-
sponse [33, 34], as well as a reduced superfluid fraction
[28]. Recently, two distinct excitation modes have been
observed in spin-orbit coupled supersolids [35]. Theoret-
ical studies have developed a hydrodynamic framework
constructed using fundamental assumptions about the
conserved quantities and (broken) symmetries to describe
the excitation branches of supersolids [30, 36]. However,
the experimental observation of sound propagation and
the extraction of the dispersion relation have proven chal-
lenging, due to limited system sizes as well as the use of
harmonic trapping configurations.

Recently, we have experimentally demonstrated that
driven superfluids can support two-dimensional, self-
stabilized periodic density modulations [37]. In this sys-
tem, density modulations emerge due to the growth of
occupations at a specific momentum scale set by the drive
frequency (fig. 1a) [8, 11, 12], and can lead to Faraday
patterns in the regime of large occupations and strong
nonlinearities [9, 37, 38]. Theoretically, the order param-
eter of the state can be described as a stable fixed point
solution of the driven Gross-Pitaevskii equation (GPE),
indicating that patterns at a finite contrast are long-lived
despite the continued drive [39, 40]. This meta-stable na-
ture motivates a characterization of the emergent state
via its excitation spectrum.

In this work, we demonstrate that such a meta-
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FIG. 1. Initialization of the lattice. a) Spontaneous for-
mation. The initial state is flat with fluctuations (top), and
after a number of drive periods a stable lattice appears, as
can be seen in single shots (second row). Averaging the sin-
gle shots results in a flat density (third row), indicating that
the process is spontaneous and reminiscent of dynamics in a
Higgs potential. b) Imprinted Formation. A lattice with a
specific orientation and phase is prepared by flashing on a
light field, resulting in a lattice density distribution a short
time later (first row). At later periods, structures remain
remarkably robust (second row), and averaging over many re-
alizations shows the lattice is reproducibly stabilized (third
row). This is schematically depicted by preparing the state
at a specific point in the Higgs potential. c) No stabilization.
The lattice preparation procedure can be performed without
drive, which shows a quick decay of the contrast of the lattice,
and the return to the unmodulated state.

stable patterned state of a driven superfluid supports
the sound modes of a one-dimensional supersolid. By
probing the linear response of the system in the hy-
drodynamic limit, we find universal features of super-
fluid smectics, i.e. states with spontaneously broken
gauge and translational symmetry along a single direc-
tion [30, 32, 36]. We also experimentally probe fun-
damentally two-dimensional transverse excitations, and
find that there is no propagating sound but rather dif-
fusive behavior, indicating that the square lattice struc-
tures observed can be described as two independent su-
perfluid smectics in the current parameter regime.

Experimental Platform In the experiment, we load
a BEC of ∼ 35,000 potassium atoms into a trap with

a two-dimensional geometry, where the z-axis is tightly
confined with a repulsive optical lattice (532 nm) with
trap frequency ωz = 2π×1.5 kHz. In the radial direction,
the light-shift potential is shaped with a digital micromir-
ror device (DMD), which we use to create a potential that
is flat in the central region and is linearly sloped at the
edges (see Methods). We drive the scattering length (in-
teraction strength) using the broad Feshbach resonance
at 561G [41], with the form as(t) = ā (1− r sin(ωdt)),
with ā = 200 aB where aB is the Bohr radius, r = 0.3,
and ωd = 2π × 440Hz. The chemical potential without
drive and density modulations is µ0 = 2π × 300Hz. We
take in-situ images of the density distribution at high
fields [42].

For spontaneously emerging patterns, we abruptly
switch on the drive (i.e. modulation of the scatter-
ing length), and, after 20-30 drive periods, each real-
ization yields a pattern with reproducible contrast and
wavenumber, but with a random orientation and lattice
phase; the spontaneity of the process is confirmed by the
smooth density distribution after averaging many real-
izations (fig. 1a).

In order to experimentally probe the excitations of the
patterned state, we imprint a specific lattice phase and
orientation, which initializes patterns at the beginning of
the drive, as shown in fig. 1b (see Methods for details on
state preparation). Even after 12 periods (28.1ms), the
lattice remains at a finite contrast and the system shows
minimal heating, enabling us to recover the lattice mod-
ulation in the mean density distribution. Preparation
of the initial state is optimized experimentally to min-
imize changes in contrast and wavenumber throughout
dynamics (see Methods). Lattices are imprinted with a
wavenumber kc = 2π/8 µm−1. In the driven system, the
amplitude ϕ in the ansatz eq. (1) is complex, and rotates
in the complex plane with half the drive frequency (Meth-
ods). This rotation means that stable, maximal density
modulations occur after a quarter of each drive period,
and half a period later the contrast is minimal. We there-
fore image the cloud stroboscopically at nP + 0.25 drive
periods, where nP is an integer, for all quantitative mea-
surements shown in this work. See fig. S1 for a finer time
resolution of a single drive period.

When preparing the lattice, we take advantage of the
rotation of ϕ by imprinting the pattern in the superfluid
phase, rather than the density. To do so, we quickly flash
on a periodically modulated light-shift potential, which
locally changes the time evolution of the superfluid phase.
This scheme leads to enhanced lifetimes relative to im-
printing the lattice directly in the density of the conden-
sate. If we imprint a lattice without the stabilizing drive,
we see a quick decay of the lattice and the reemergence of
the homogeneous density distribution, as shown in fig. 1c.

Wavepackets Identifying distinct, propagating sound
modes provides insight into the linear excitation spec-
trum. With the capabilities of our experimental plat-
form, we can probe the rigidity of the superfluid and
lattice phases to perturbations by writing localized de-
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FIG. 2. Wavepacket Propagation. a) Deformation of superfluid phase. Superfluid flow is induced by locally shifting the
phase of the superfluid, by briefly applying a local potential. Density distributions (left column) and density differences relative
to unperturbed lattices (right) are shown, indicating the propagation of the wavepacket. In lab time, ∆t = 0 corresponds to
5.1ms. b) Longitudinal lattice deformation. By preparing lattices with imperfections, we can probe their propagation. If the
central column is shifted horizontally, it initiates two counter-propagating lattice compression wavepackets. Density (left) and
density difference plots (right) show the propagation outwards, and the clear restoration of the lattice after the wavepacket has
passed. Remaining structure in the density difference is a result of reduced contrast in the perturbed case. In lab time, ∆t = 0
corresponds to 0.6ms. c) Transverse deformation. The wavepacket is prepared similarly, but here with a y-dependent shift of
the standing wave in x. The density and density difference plots show a slow diffusion of the initial excitation. In lab time,
∆t = 0 corresponds to 0.6ms.

formations into the phases θs/l(x, y) = θ̄s/l + δθs/l(x, y),
with deformation fields δθs/l(x, y).

To probe the rigidity of the superfluid phase θs, we
prepare the crystalline state as described previously, and
then pulse on an additional light-shift potential in the
central region of the condensate after a half period of
driving, resulting in a superfluid phase deformation of
approximately the form δθs(|x|< 4 µm)∼ 0.1π. Though
we cannot directly access the superfluid phase, the rapid
evolution between the region of elevated phase and the
remainder of the cloud induces superfluid flow, leading
to density perturbations, which can be directly observed.

Density distributions after the phase imprint can be
seen in the left column of fig. 2a, where over and un-
derdensities can be seen perturbing the lattice. The
wavepackets are more clearly seen in density difference
plots (right), where the density distributions of perturbed
lattices are subtracted from ones prepared in the same
way but without a perturbation. In order to extract a
speed of sound, we integrate the density difference signal
in a central 9.5 µm wide region of the condensate. We
track the distance between the two counter-propagating
underdensities to determine speeds, which reduces sys-
tematic effects like slow sloshing of the background. The
times are selected such that different wavepackets are
at comparable positions in the cloud. The extracted
speed of sound is cs = 1.59(4) µm/ms, which is reduced

from the initial state without modulation and drive of
c0 = 1.74(2) µm/ms (Methods).

To probe the rigidity of the lattice phase, we imprint
lattices with defects, shown in fig. 2b. Longitudinal com-
pression sound waves are induced by shifting one column
horizontally, with the approximate form δθl(|x|<4 µm)∼
0.4π; for a finite layer compressibility, this lattice phase
kink should come at an energy cost, and will induce the
propagation of lattice wavepackets through the system.
In the lower half of fig. 2b, we show both density and
density difference plots that clearly show this propagat-
ing through the lattice, indicating the presence of longi-
tudinal sound. After the lattice wavepackets have moved
through the system, the phase of the lattice is restored to
that set by the bulk θ̄l, and remaining structure observed
in the density difference is due to slightly reduced con-
trast of the lattice relative to the reference. By tracking
the propagation of the maximum and minimum of the
wavepacket, we extract a speed of sound for longitudinal
lattice phonons cl = 1.83(3) µm/ms, notably faster than
the superfluid phonons, indicative of a separate branch
of the dispersion relation.

Finally, a transverse lattice wavepacket is prepared
similarly. Here, the central row is shifted horizontally as a
function of the vertical coordinate, δθl(|y|<4µm)∼0.5π
(fig. 2c). In the dynamics, we see that the initial sharp
jumps in the deformation field are smoothed, and the ini-
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FIG. 3. Hydrodynamic excitations. a) Superfluid phase modulation. Long-wavelength excitations of the superfluid phase
are prepared, indicated by the schematic on the left. A sample mean density distribution two periods after the phase imprint
is shown, with the extracted background density deviation δn(x) plotted below (gray line). b) The correlator ηs(t) of the
background density with the reference state, with reference (grey) and inverted (purple) density deviations plotted in the inset.
The solid blue line is a fit to the data. c) Lattice compression modes. A sample density distribution is shown, as well as the
extracted lattice deformation δθl(x). d) Evolution of the correlator for the lattice mode. e) Transverse lattice perturbations.
The phase of the stripe in the x-direction is perturbed as a function of y. f) The correlator shows an exponential decay. The
highly structured initial state evolves into a roughly flat distribution with large disorder (purple inset). g) Extracted dispersion
relations. The circles show extracted wavelengths and frequencies of the stable compression modes, whereas the squares show
the decay rate of the transverse modes. The shaded regions are the extracted wavepacket speeds from fig. 2, and the solid lines
are linear and quadratic fits to the data. Standard errors and 1σ fit errors are either shown or are smaller than the markers.

tially localized deformation broadens. A Gaussian fit to
the wavepacket shows that its squared width initially in-
creases linearly in time, characteristic of a diffusive mode
(Methods).

Hydrodynamic Perturbations Having identified
two propagating and one diffusive mode, we now turn to a
more quantitative description of the excitation branches,
namely long-wavelength, hydrodynamic perturbations of
the system. These long-wavelength modes can be ex-
perimentally challenging to probe in finite sized systems,
and here the effectively open boundary conditions imple-
mented through the slanted wall potential enable such ex-
periments (Methods). Low-energy modes can be excited
in the superfluid through long-wavelength phase imprints
of the form, δθs(x) ∝ sin(knx), where kn < kc. This
induces flow of the background density, as is shown in
fig. 3a, where long-wavelength over- and underdensities
are apparent. Variations of the background density are

extracted by subtracting the perturbed lattice from a ref-
erence lattice and binning the resulting density difference
(bin width of 5 µm, Methods). Binning reduces noise in
the profiles, but does not result in significant quantita-
tive differences. To quantify the time evolution, we calcu-
late the time-time correlations of the reference state with
other times, defined as ηs(t) =

∑
i δni(t)δni(t0), where

i is the index of the bin and runs over the whole cloud,
and δn(t0) is the reference state. Because the pertur-
bations are written into the phase of the superfluid, the
initial time shows no density perturbation; the reference
is therefore selected as the first time where the density
contrast is maximal. Figure 3b shows the evolution of ηs,
fitted with a damped sine, which we use to extract the
frequency. The spatial wavenumber is extracted with a
fit to the reference state.
Analogously, compression modes of the lattice are

described by slow perturbations of the lattice phase,
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δθl(x) ∝ sin(knx). To track the dynamics, we integrate
out the vertical direction and extract the positions of
the maxima and minima of the lattice, and plot these
relative to an unperturbed lattice, effectively measuring
the deformation field δθl(x) (fig. 3c). The perturbations
are small, with displacements on the order of 0.5µm com-
pared to the lattice spacing of 8µm, to stay in the regime
of linear response. The time-time correlator is given by
ηl(t) =

∑
i δθl(xi, t)δθl(xi, t0), where δθl is evaluated at

the ith lattice site, shown in fig. 3d. After the imprint, the
collective lattice oscillations commence, as can be seen in
the inversion of the initially seeded lattice positions (pur-
ple curve, inset).

Plotting the wavenumbers and frequencies of these col-
lective modes, we can map out two branches of the dis-
persion relation, where one is dominated by compressions
of the superfluid, and the other by compressions of the
lattice, as plotted in red and blue in fig. 3g. We per-
form linear fits of the form ωn = cikn, extracting slopes
c+ = 1.94(2) µm/ms and c− = 1.50(1) µm/ms.

Though a priori wavepackets are not expected to move
with the phase velocity of long-wavelength excitations,
the slope of the measured dispersion agrees remarkably
well to the independently measured speeds of lattice and
superfluid wavepackets (cl and cs, shaded regions). The
reduced splitting of the speeds could be explained in that

the natural modes underlying the dispersion generically
have contributions of contrast variations combined with
superfluid and lattice phase modulations [30, 32, 36, 43].
Finally, we can also probe transverse sound modes,

by shifting the lattice horizontally as a function of
the vertical coordinate (fig. 3e), quantified as ηtr(t) =∑

i δθl(yi, t)δθl(yi, t0), where δθl is evaluated at the ith

lattice site. In contrast to the longitudinal sound of the
lattice and superfluid, this excitation does not show clear
inversion or oscillation and simply decays into a roughly
square lattice with long wavelength distortions, as in-
dicated by the large error bars in the final state (in-
set fig. 3f). No oscillation is apparent, and the data is
well described by an exponential decay, with a length-
scale dependent decay rate. The behavior of the collec-
tive modes matches with that of the wavepacket, which
can now be identified to have a diffusive shape, with a
branch of the dispersion of the form ωtr = −iζk2n, where
ζ = 800(130) µm2

s = 0.5(1) ℏ
m is the kinematic viscosity,

with ℏ the reduced Planck’s constant and m the mass
of potassium-39. Fitting a parabola to the decay rates
to extract ζ gives good agreement to the initial rate of
widening of the transverse wavepacket (shaded area).
Hydrodynamic Description The splitting of the

dispersion relation into a fast density branch and a slow
phase branch is a universal feature of supersolids [30–
32, 36, 44]. Long wavelength behavior in thermodynamic
phases can be described without a microscopic descrip-
tion of how these modulations arise [44]. Though sta-
ble states of driven systems are not in general thermo-
dynamic phases, we experimentally observe that energy
and atom number are conserved, and the conservation
of momentum is upheld because no modulated external
potential is imposed. This motivates the application of
a hydrodynamic description of the observed dynamics
[30, 36].
Along the density modulation of a supersolid, the two

gapless, linear branches of the dispersion have slopes c±
given by

c2± =
K

2ρ
+

B

2ρn
± 1

2

[(
K

ρ
+
B

ρn

)2

− 4fs
KB

ρρn

] 1
2

, (2)

where ρ = ρs + ρn, with ρn the normal component den-
sity and ρs the superfluid density, fs is the superfluid
fraction, K is the bulk compression modulus, and B is
the layer compression modulus [30]. If the bulk com-
pression modulus of the gas is determined, one can then
use the slopes of the measured dispersions to extract the
remaining parameters B

ρn
and fs.

One advantage of our system is that we can stabilize
stripes for sufficiently long durations, allowing us to ex-
perimentally determine the superfluid response perpen-
dicularly and parallel to the density modulation. This
gives direct access to the compressibility of the bulk (Kρ )

as well as the modified superfluid response (c−) [30]. In
order to prepare stripe patterns, we repeat the procedure
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described previously, but now imprint the structure us-
ing a light-shift potential that is modulated only along
the x-direction. Though these stripe patterns will de-
velop into square lattices for long times [40], short time
dynamics do not show significant structure formation in
the vertical direction. As with the lattices described
above, we extract the response of the density and phase
branches in the x-direction, and compare their response
to the compressibility in the y-axis. The results, sum-
marized in fig. 4a-c are consistent with the expected dy-
namics [30]. The excitation branches in the modulated
direction split around the bulk compressibility (cκ =√
K/ρ = 1.66(2) µm/ms), resulting in a fast and slow

branch (c+ = 1.94(5) µm/ms and c− = 1.50(2) µm/ms).
Using these three slopes, we extract values for the su-
perfluid fraction fs = 94(1)% and layer compressibility
modulus B

ρn
= 3.3(2) (µm/ms)2.

For a systematic investigation of the dynamics, we
study the excitation velocities for different modulation
depths, to probe the emergence of supersolid sound from
an unmodulated superfluid. By varying the driving am-
plitudes (r = 0.22, 0.3, 0.4), different contrasts are stabi-
lized, and dispersions are extracted in each case. Con-
trast is quantified using the integrated one-dimensional
density in the central region of the cloud, with contrast

values of max(n)−min(n)
max(n)+min(n) = 0.23, 0.25, 0.31. The extracted

superfluid fraction (fig. 4d) remains constant within er-
ror bars, and is compared to the Leggett prediction for
a sinusoidal modulation with a given contrast [32, 45].
The small deviation from the Leggett prediction is re-
markable, considering that effects from oscillating phase
and density modulations or an enhanced normal compo-
nent due to directional redistribution of momenta are not
considered. The layer compressibility modulus, however,
(fig. 4e) decreases significantly. For comparison, we show
v2g , where vg is the group velocity at kc, which is the
natural response of a superfluid for perturbations in the
vicinity of kc.

We note that in contrast to the recent experiments
demonstrating anisotropic superfluid fraction in systems
with externally imposed lattices [46, 47], the layer com-
pressibility significantly contributes to the lower branch
of the dispersion, i.e. c− ̸=

√
fscκ, and therefore shares

key features with typical supersolid systems.
Outlook In this work we have presented the propa-

gation of supersolid sound in a driven superfluid, made
possible due to the unique control over the experimental
apparatus. This platform enables the study of a wealth
of questions relevant for patterned superfluids, due to
the ability to generate systems with many lattice sites,
the straightforward preparation of topological defects as
well as an extension to three dimensions. Additionally,
a budding field of research is the study of phase transi-
tions out of equilibrium [48], and our platform provides
an ideal testbed for the investigation of such dynamics.
For example, observing the formation of density patterns
near the critical temperature [49], or the analysis of crys-
tal domains could prove interesting for studying crys-

tallization in driven systems. Finally, large occupations
of excitations that modify properties of the background
superfluid open new perspectives of metric engineering,
going beyond standard cosmological models [50].
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[15] J. Léonard, A. Morales, P. Zupancic, T. Esslinger, and
T. Donner, Supersolid formation in a quantum gas break-
ing a continuous translational symmetry, Nature 543, 87
(2017).

[16] J.-R. Li, J. Lee, W. Huang, S. Burchesky, B. Shteynas,
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M. Fattori, A. Fioretti, C. Gabbanini, M. Inguscio,
L. Tanzi, and G. Modugno, Measurement of the super-
fluid fraction of a supersolid by josephson effect, Nature
629, 773 (2024).

[29] E. Casotti, E. Poli, L. Klaus, A. Litvinov, C. Ulm,
C. Politi, M. J. Mark, T. Bland, and F. Ferlaino,
Observation of vortices in a dipolar supersolid (2024),
arXiv:2403.18510 [cond-mat.quant-gas].

[30] J. Hofmann and W. Zwerger, Hydrodynamics of a super-
fluid smectic, Journal of Statistical Mechanics: Theory
and Experiment 2021, 033104 (2021).

[31] P. B. Blakie, L. Chomaz, D. Baillie, and F. Fer-
laino, Compressibility and speeds of sound across the
superfluid-to-supersolid phase transition of an elongated
dipolar gas, Phys. Rev. Res. 5, 033161 (2023).
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(3)
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bination of slowing of the wavefront due to the gradual
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of the potential contribute to the scrambling of reflected
wavefronts.
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the wavelength of the excitation to the box size results
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FIG. S1. a) The experimental sequence. The oscillating line represents the scattering length. We start with a homogeneous
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FIG. S2. a) Atom number varies less than 5% throughout dy-
namics. b) Energy in system as a function of time, extracted
using the measured momentum space distribution n(k), and
integrating

∫
dk n(k)k2. The square at t = 0 is the value with-

out an imprint and driving, and circles are after the imprint,
measured stroboscopically at the point when the kinetic en-
ergy is maximal. c) Contrast of the stripe in x in the central
region of the cloud, C = n(x)max−n(x)min/n(x)max+n(x)min,
extracted using a sine-fit to mean density distributions of the
unperturbed system. d) Wavenumber of the lattice in x, ex-
tracted using a Fourier transform of mean density distribu-
tions. One-sigma fit errors and standard errors are either
shown or are smaller than the markers.

print 12.5%Vmax over 100µs, corresponding to a phase of
0.1π.

Extraction of Wavepacket Dynamics To extract
wavepacket propagation speeds, we analyze the density
contrast in a central region of the cloud,

δn(x) = ⟨δnpert(r)− δnref(r)⟩y, (4)

where |y| < 4.5µm, shown in fig. S3. In the case of
the lattice phonon, we extract the peak position of the

wavefronts in ±x by fitting a parabola to the maxi-
mum (+x) and minimum (−x) of this vector. For the
superfluid phonon, we fit parabolas to the two under-
densities. Due to slight variations of the background
density, wavepacket speeds must be compared when the
wavepackets are physically in the same region of the
cloud. Because of the differences in preparation, we
therefore extract wavepacket positions at different global
times, namely between times ti ∈ [2.8ms, 9.7ms] for
the lattice phonon and slightly later for the superfluid
phonon, ti ∈ [7.4ms, 14.2ms]. The speed of sound is de-
termined with a linear fit to the distance between the two
wavepackets as a function of time.
For the diffusive mode, we perform a similar procedure,

but here calculate

|δn(y)| = ⟨|δnpert(r)− δnref(r)|⟩x, (5)

where |x| < 4 µm, which covers one wavelength of the
lattice, using the absolute value to capture positive and
negative deviations of the lattice. We perform a Gaussian
fit to the quantity |δn(y)| of the form

Fg = Ae−(y−C)2/B2

+D. (6)

Assuming a Gaussian wavepacket in momentum space
and a dispersion of ω = −iζk2, the squared width of the
wavepacket in real space is related to ζ by

B2 = 4
(
σ2
0 + ζt

)
, (7)

where σ0 is the initial width. We fit the times during
which this linear growth is apparent, corresponding to
the first five periods.

Extraction of Collective Mode Oscillations To
extract the deformation field of the lattice phase, we first
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compute the density contrast of a state with a lattice to
a homogeneous density distribution

δn(r) =
n(r)

n0(r)
− 1, (8)

where n(r) is the patterned state and n0(r) is the ho-
mogeneous state. We then find the mean density in the
vertical direction as a function of x in a region |r|<Rmask,

δn(x) = ⟨δn(r)⟩y. (9)

We fit Gaussians to each maximum and minimum of both
the reference and the perturbed lattice, with Rmask =
36 µm such that extracted maxima and minima are in a
region of 30 µm from the center. Lattice displacements
δθl are simply the difference between the position of the
perturbed lattice positions to the reference lattice. Error
bars of δθl are determined using 1-σ fit uncertainties of
the extracted positions. For all correlators ηj(t), error
bars are calculated via Gaussian error propagation. Fits
to the correlator ηl(t) are done with the form

Fl(t) = Ae−t/B cos(2π C t) +D, (10)

and error bars are given by the 1σ fit errors to the fre-
quency C. For all fits to determine mode frequencies and
decays, the inverse errors of the correlator values are used
as weights in the fit.

For superfluid phase deformations, the difference vec-
tor δn is given by

δn(x) = ⟨δnpert(r)− δnref(r)⟩y, (11)

with r < 30µm, and is binned in intervals of 5µm. Error
bars of δn(x) are determined using a jackknife algorithm
to capture shot-to-shot fluctuations. Fits to the correla-
tor ηs(t) are performed using the fit function

Fs(t) = Ae−t/B sin(2π C t) +D. (12)

and error bars are given by the 1σ fit errors to the fre-
quency C.

For transverse modes, we extract the positions of all
maxima and minima in two dimensions, as shown in
fig. S4. For each row, the displacement relative to the
reference is averaged, yielding the deformation field

δθl(yj) = ⟨θlpert(xi, yj)− θlref(xi, yj)⟩x. (13)

Error bars of δθl(yj) are calculated using the standard
error of the mean horizontal lattice displacement in each
row. A fit of the form

Ftr(t) = Ae−t/B + C, (14)

is performed on ηtr, and decay rates are given by the 1σ
fit errors on parameter B.

Stabilization mechanism The stabilization of a spe-
cific contrast in the driven system is described in [37, 40].
This reduced description captures dynamics of the emer-
gence of the general structure of the pattern but accounts
for neither variations in the lattice phase nor modified
superfluid response due to the presence of the stripe.

In short, we begin with the driven GPE iℏ∂Ψ(x,t)
∂t =

[−ℏ2∇2

2m +V (x)+g0 (1− r sinωdt) |Ψ(x, t)|2]Ψ(x, t), where
m is the atomic mass, ℏ is the reduced Planck’s constant,

and the interaction strength given by g0 =
√
8πℏ2

m
ās

lz
,

where lz =
√

ℏ
mωz

. A minimal model for square lattice

patterns is a superposition of two stripes

Ψ(x, t) = Ψuni(t)
[
1+ ϕk(t) cos (k · x) + ϕp(t) cos (p · x)

]
,

(15)
with Ψuni(t) a uniform, infinitely extended back-
ground field with time evolution Ψuni(t) =√
n0 exp[−iµt− i(µ/ωd)r cosωt], and n0 the 2D

density. The vectors k and p with |p| = |k| = kc have
an angle θ ∈ [0o, 180o] between them. The prefactors
ϕk/p are parameterized by Bogoliubov coefficients, and
therefore have the form

ϕk/p(t) =

(
1− ϵ+ 2µ

E

)
Rk/p(t)e

i
ωd
2 t

+

(
1 +

ϵ+ 2µ

E

)
R∗

k/p(t)e
−i

ωd
2 t,

(16)

where E =
√
ϵ(ϵ+ 2µ) and ϵ =

ℏk2
c

2m is the corresponding
Bogoliubov energy in units of frequency. Rk/p are ampli-
tudes that vary slowly in time and can be shown to be
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FIG. S4. Two-dimensional lattice deformation fields. a) Longitudinal lattice mode. The positions of lattice max-
ima and minima are extracted from a reference (grey) and a perturbed lattice (red). The arrows indicate direction and
magnitude of the displacement and are scaled by a factor of 10. For each time, the one-dimensional correlation with the
initial state is computed, and depicted in fig. 3. b) Collective oscillation extracted in the same way for a transverse lattice mode.

described in terms of the amplitude equations

i
d

dt
Rk(t) =− iαR∗

k(t)− iΓRk(t)

+ λ |Rk(t)|2Rk(t)

+ λ
[
c1(θ) |Rp(t)|2Rk(t) + c2(θ)Rp(t)

2R∗
k(t)

]
.

(17)
Here, α = r µϵ

2E and Γ is a phenomenological damping

constant. Other constants λ = µ 5ϵ+3µ
E , c1(θ) and c2(θ)

are set by kc and the angle between k and p. Stable so-
lutions of the driven system are given by the fixed-points
of these amplitude equations. At such stable points, the
stripe amplitude ϕ rotates in the complex plane. Here,
the temporary stabilization of stripes is apparent: if one
sets Rp ∼ 0, a single stripe is self-stabilized, and nonlin-
ear coupling between stripes is negligible.

The oscillation of the lattice contrast (seen in fig. S1) is

captured by the density distribution resulting from this
ansatz, which in one dimension is given by

n(x, t) =n̄

(
1 + 4|R| cos

[ωd

2
t+ φ

]
cos kx+

4|R|2
(
1 + 2

µ

ϵ
sin2

[ωd

2
t+ φ

])
cos2 kx

)
,

(18)

where φ is the phase of the amplitude R, i.e. R =
|R| exp{iφ}.
Data Availability The datasets generated and ana-

lyzed for the above study are available from the corre-
sponding author upon reasonable request.

Code Availability The conclusions of this study do
not depend on code or algorithms beyond standard nu-
merical evaluations.
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