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The scaling of local quantum entropies is of utmost interest for characterizing quantum fields,
many-body systems, and gravity. Despite their importance, theoretically and experimentally accessing
quantum entropies is challenging as they are nonlinear functionals of the underlying quantum state.
Here, we show that suitably chosen classical entropies capture many features of their quantum
analogs for an experimentally relevant setting. We describe the post-quench dynamics of a multi-well
spin-1 Bose-Einstein condensate from an initial product state via measurement distributions of spin
observables and estimate the corresponding entropies using the asymptotically unbiased k-nearest
neighbor method. We observe the dynamical build-up of quantum correlations signaled by an
area law, as well as local thermalization revealed by a transition to a volume law, both in regimes
characterized by non-Gaussian distributions. We emphasize that all relevant features can be observed
at small sample numbers without reconstructing the underlying state or measurement distributions,
rendering our method directly applicable to a large variety of models and experimental platforms.

Introduction — The quantum entropy of a spatial subre-
gion has proven to serve as a ubiquitous tool for studying
the spatio-temporal structure of entanglement [1] and
its role in various quantum phenomena, including local
thermalization [2–5], quantum phase transitions [6], infor-
mation scrambling [7–9] and black hole physics [10–13].
Arguably the most sought-after phenomenon in this con-
text is the area law, which is signaled by a logarithmic
growth of the local entropy for one-dimensional systems
[14–22]. It appears at short times after quenching the
couplings of a locally interacting system, that was ini-
tially prepared in a product state [22–27] – a scenario that
can be readily realized experimentally. At later times,
the system typically thermalizes, and the local entropy
instead obeys a volume law, allowing for a macroscopic
description using only a few thermodynamic quantities
like temperature.

The main drawback of quantum entropic descriptions
for many-body phenomena is their reliance on the knowl-
edge of the full density matrix, which grows exponentially
with the number of microscopic constituents. This has
so far restricted the experimental access of quantum en-
tropies to systems consisting of a few particles [28–30], as
full tomography of the quantum state is, with no further
assumptions, infeasible for larger systems approaching
mesoscopic scales. For continuous systems, area laws
have only been experimentally reported in a Gaussian
scenario [31], while generally applicable methods have
remained elusive.

Recently, the necessity of considering exclusively quan-

tum entropies to probe quantum phenomena has been
questioned. Suitably chosen classical entropies of (quasi-)
probability distributions also encode area and volume
laws [32]. This insight naturally overcomes the need to
reconstruct the full quantum state, both for theoretical

and experimental investigations. Thus, the observation
of entropic scaling behavior becomes accessible for exper-
imental platforms, which can directly sample from such
distributions, see for example [33–41].

Here, we show that area and volume laws are observ-
able in state-of-the-art experiments with multi-well spin-1
Bose-Einstein condensates (BECs) [42, 43] by considering
entropies of measurement distributions over spin observ-
ables. Starting from an initial product state, we find
area laws being dynamically generated for intermediate
evolution times following a quench, thereby confirming
the growth of entanglement until the system thermal-
izes locally, where the same entropies exhibit volume law
behavior. Importantly, we do so without making assump-
tions about the functional form of the state and only rely
on observables that are directly obtainable in standard
experimental readouts [31, 36, 39–41] while reducing the
sample complexity to a feasible level. We comprehensively
discuss our modeling of the spinor BEC and the estima-
tion of classical entropies, including systematic checks for
validity and generality, in [44].

Notation — We use natural units ℏ = kB = 1, write
bold (normal) letters for quantum operators O (classical
variables O) as well as their traces and equip vacuum
expressions with an overbar, e.g. ρ̄.

Multi-Well Spin-1 BEC — We consider a one-
dimensional lattice of spin-1 BECs that extends over 20

wells, described by bosonic mode operators [aj
mF

,aj′†
m′

F

] =

δjj
′

δmFm′

F
with j ∈ {1, ..., N} and mF ∈ {0,±1}. Start-

ing from an initial product state with all zero modes
(mF = 0) being occupied coherently with a mean number
of n = 103 atoms, we consider the evolution under the
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Figure 1. a) Illustration of relevant processes. The ±1 modes of each well are coupled to the 0 mode by spin-changing collisions
with strength c1 < 0 (red) and detuned by the quadratic Zeeman-shift q > 0 (green). The atoms in the ±1 modes of well j may
hop to neighboring wells j ± 1 with strength J > 0 (blue). b) The full setup consists of 20 wells, from which we exclusively
analyze the open system AB given by the five wells 8− 12 (magnified inset). We partition this system into subsystems A (blue)
of size M and B (red) of size 5−M and study the scalings of information and correlation measures with A’s size M . c) Samples
of the Wigner W -distribution of the left-most well in subsystem A at time t = 4. The entropy is estimated from samples using
the kNN-estimator by analyzing the distribution of distances to the k-th. neighbor for each sample, see magnified inset for k = 1
(red) and k = 2 (green). Non-Gaussian features arise for higher-dimensional multi-well distributions, as measured by the relative
entropy, see [45].

Hamiltonian

H =

20
∑

j=1

q
(

N
j
1 +N

j
−1

)

+ c0 N
j
(

N j − 1
)

+ c1

[ (

N
j
0 − (1/2)1

)(

N
j
1 +N

j
−1

)

+ a
j†
0 a

j†
0 a

j
1a

j
−1 + a

j†
1 a

j†
−1a

j
0a

j
0

]

− J

19
∑

j=1

∑

mF=±1

(

aj†
mF

aj+1
mF

+ a(j+1)†
mF

aj
mF

)

.

(1)

The single-well dynamics (first sum) includes density-
density interactions c0 > 0, the parameter q > 0, which
includes the quadratic Zeeman shift and is tunable via off-
resonant microwave dressing, and spin-changing collisions
c1 < 0. Correlations among the wells build-up via nearest-
neighbor interactions J > 0 (second sum). We sketch all
relevant contributions in Fig. 1a), see [39–43, 46–51] for
similar setups and [44] for details.

For early times, the zero mode is occupied macroscop-
ically, and the evolution is dominated by second-order
fluctuations, such that (1) is well-approximated by an
analytically solvable Gaussian model, which follows from
treating the zero mode classically and dropping density-
density interactions (see [44] for details)

Hup,Gauss =

20
∑

j=1

[

q̃N j +
c̃1
2

(

ajaj + aj†aj†
)

]

− J

19
∑

j=1

(

aj†aj+1 + a(j+1)†aj
)

.

(2)

Here, we introduced the relative mode operators aj =

(aj
1 + a

j
−1)/

√
2 as well as the rescaled couplings c̃1 = c1n

and q̃ = c1
(

n− 1
2

)

+ q.

Beyond this regime, the high occupation justifies em-
ploying semi-classical approaches such as the truncated
Wigner approximation (TWA), in which the mode oper-
ators are demoted to c-numbers that obey an evolution
dictated by classical mean field equations [52, 53]. The
resulting model correctly captures the quantum fluctu-
ations of the initial state while neglecting higher-order
corrections in ℏ for its evolution.

Measurement distributions — In what follows, we inves-
tigate the open-system dynamics of the five middle wells
8− 12, which we refer to as AB, see Fig. 1b). Given the
locality of the interactions in both (1) and (2) and the
product-form of the initial state, a dynamic build-up of
an area law is expected [22].

We analyze the information content of the five-well
system AB in terms of measurement distributions using
phase-space methods, see Fig. 1c). We focus on the two
normalized spin-1 observables [42, 43]

φj ≡ Sj
x√
2n

=
1√
2

[

a
j†
0

(

a
j
1 + a

j
−1

)

+ h.c.
]

/
√
2n,

πj ≡ −
Qj

yz√
2n

=
−i√
2

[

a
j†
0

(

a
j
1 + a

j
−1

)

− h.c.
]

/
√
2n,

(3)

which form a set of pairwise canonically conjugate opera-
tors [φj ,πj′ ] = iδjj

′

1 with corresponding bosonic mode
operators aj ,aj† in the early-time regime [44].

Information about these observables is encoded in var-
ious measurement distributions Oj ≡ Oj(φj , πj). One
possibility is to consider the Wigner W -distribution de-
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fined via [54]

Wj(φj , πj) =

∫

dφ̃j dπ̃j

2π
e−i(φj ,πj)Ω(φ̃j ,π̃j)T

× Tr

{

ρj ei(φ
j ,πj)Ω(φ̃j ,π̃j)T

}

,

(4)

with the symplectic form Ω = iσ2 and σ2 being the second
Pauli matrix. As Wj is only accessible through costly
Wigner tomography [55, 56], it is mainly of theoretical
interest. Thus, we also introduce experimentally more
convenient distributions, namely the Wigner marginals
f j(φj) =

∫

dπjWj and gj(πj) =
∫

dφjWj , accessible
through homodyne measurements [33], as well as the
Husimi Q-distribution, which is obtained by projecting
onto the coherent states |αjð = exp (αjaj† − αj∗aj) |0jð
[36, 39–41, 57–59], with αj = (φj + iπj)/

√
2, leading to

Qj(φj , πj) = Tr
{

ρj |αjð ïαj |
}

. (5)

Information and correlations from classical distribu-

tions — To analyze the information content of subsystem
A, we consider any of the outcome distributions OA de-
fined with respect to the local state ρA [see Fig. 1b)]. We
define their differential entropies as

S(OA) = −
∫

dνA OA lnOA, (6)

where the integral measure dνA runs over all correspond-
ing degrees of freedom in A and hence depends on the
distribution under scrutiny [60].

We note that (6) is always well-defined for the non-
negative marginal and Husimi Q-distributions but is re-
stricted to Wigner-positive states when applied to WA,
which is an assumption implicitly made when working
within TWA or Gaussian models.

Being measures of disorder, classical entropies over in-
compatible observables are bounded from below by their
vacuum values via entropic uncertainty relations [61–66]
(see [67, 68] for reviews). When considered for quantum
many-body systems, the entropies of the local vacuum
distributions ŌA scale with the number of modes, i.e.,
S(ŌA) ∼ M , showing that classical entropies are exten-
sive to leading order as a result of vacuum contributions
[69, 70]. However, as shown in [32], scalings induced
by quantum phenomena, such as the area law, manifest
themselves in the next-to-leading order terms. Thus, we
define the so-called subtracted classical entropies as [32]

∆S(OA) ≡ S(OA)− S(ŌA), (7)

with the extensive vacuum contribution S(ŌA) ∼ M
being subtracted [71].

Let us further consider the classical version of the
archetypical measure for correlations between the left
and right parts of the subsystem, that is, the classical
mutual information

I(OA : OB) = S(OA) + S(OB)− S(O). (8)

Being already defined via a relative entropic measure,
no vacuum contributions have to be subtracted to reveal
quantum features.

Connections to quantum information theory — In the
context of the Gaussian model (2), the connection be-
tween subtracted classical and quantum entropies be-
comes a simple equality: in this case, we can establish
∆S(WA) = S2(ρ

A), where S2(ρ
A) denotes the Rényi-

2 entropy of the density matrix associated to WA [72].
Beyond Gaussianity, such simple relations can only be
established for the subtracted Rényi-2 entropy of WA [73].
However, in the following, we provide strong evidence that
the scaling of the subtracted classical entropies (7) also
extends to the non-Gaussian interacting case.

Furthermore, a connection to the quantum mutual in-
formation in the case of Gaussian states is straightforward
and reads I(WA : WB) = I2(ρ

A : ρB) [72]. More gener-
ally, classical mutual informations constitute lower bounds
to their quantum analogs by the uncertainty principle,
i.e., [65, 74]

I(OA : OB) f I(ρA : ρB), (9)

which are expected to be tighter than second-moment
bounds beyond Gaussian states [75]. An immediate con-
sequence of (9) is that the standard argument for the
appearance of the area law for local interactions and ther-
mal states presented in [76] also applies to any classical
mutual information [32]. Hence, classical mutual informa-
tion, albeit typically not capturing all quantum correla-
tions, exhibits an area law whenever its quantum analog
does. While the reverse statement does not follow from
(9), if one finds the classical mutual information to follow
a volume law, the quantum one does as well. Note that for
globally pure states, the same arguments apply to the en-
tanglement entropy, in which case I(ρA : ρA) = 2S(ρA).

Methods — We generate 104 synthetic samples for the
three distributions of our interest using TWA to simulate
an experiment showcasing the feasibility of the proposed
approach. In contrast to the estimation of low-order
moments, extracting entropic quantities from a set of
samples is more involved since they are functionals of the
underlying distributions. However, estimating an entropy
from samples is still less demanding than reconstructing
the underlying distribution. Given a set of samples, we
employ the established k-nearest neighbor (kNN) method
devised in [77–79] using information about the statistics
of the nearest neighbors of each sample [see Fig. 1c)], to
arrive at an estimate of its local density. These results
are validated against the analytically solvable model (2)
in the early-time regime. We give a more comprehensive
validation of the kNN-estimator for our setup in [44].

We define an energy scale by setting nc1 = −1,
which renders all quantities of interest dimensionless.
We consider Lithium-7 with c0 = −2c1, in which case
|nc1| ≈ 100Hz for n = 1000 atoms per well [49]. Further,
we set the quench parameters to q = 2J = 4, such that
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Figure 2. Analysis regarding the presence of area and volume laws at early times t = 0, 1, 2, 3, 4 (upper row) and late times
t = 4, 5, 6, 7, 8 (lower row), respectively. Open (closed) plot markers denote TWA (analytic) results, and the corresponding solid
(dashed) curves are fits. In the early-time regime, we observe the subtracted classical entropies to fulfill a logarithmic growth
with subsystem size in the sense of (10) (see [45] for the standard Wigner entropy). Their sublinear scaling is highlighted for
t = 4 by straight lines (gray dotted), which are fitted to the first two data points. In accordance, we also find the finite-size
area law (11) for the Wehrl mutual information. These findings hold for both the TWA and the analytical approach, which
agree in the Gaussian regime, i.e., up to t = 3 [45], thereby also validating the kNN estimator. For later times, the area law of
the subtracted classical entropies tends to a stationary volume law (12), thereby demonstrating local thermalization. After
the stationary point t = 7, the local temperature can be extracted via their inclines, which consistently yields T ≈ 5. The
appearance of local thermalization is further supported by the decreasing correlations between A and B towards zero, as revealed
by the evolution of the Wehrl mutual information.

non-Gaussian features arise around t = 3, see [45] (see
also [44] for other parameter choices). Here, t = 1 cor-
responds to one spin oscillation time, for which t ≈ 6ms
was reported in [49].

While the total system of 20 wells undergoes a unitary
evolution dictated by the Hamiltonian in Eq. (1), the
considered system AB does not, as its entanglement with
the rest of the system implies a mixed reduced density
matrix [80]. In the following, we demonstrate the area law
and local thermalization for the theoretically interesting
but experimentally difficult to access subtracted Wigner
entropy, as well as for the experimentally amenable sub-
tracted marginal entropy sum ∆S(fA) + ∆S(gA), and
the so-called Wehrl mutual information I(QA : QB) (ad-
ditional quantities are discussed in [45]).

Area law — We first study the early-time regime, that
is, t f 4, in the upper row of Fig. 2. At t = 0, the
subsystem is in a pure product state, and all entropic
measures evaluate to zero [81]. Around t = 1, correlations
among the wells start to build up, causing subsystem A to
become entangled with its complement B. In this regime,
subtracted classical entropies obey the area law, i.e., a
logarithmic growth with system size M ,

∆S(OA) = κ1 ln (M + κ2) + κ3, (10)

just as one would expect for the entanglement entropy [14–
22]. The fit parameters κi are constrained by κ2 = e−κ3/κ1

to ensure ∆S(OA) = 0 when M = 0. For 1.5 ≲ t ≲ 3, a
Bayesian hypothesis test with Gaussian noise mimicking
experimental imperfections shows that the likelihood of a
logarithmic scaling exceeds linear models, see [45], thereby
backing the area law’s practical accessibility. Around
t = 3, the distributions begin to exhibit non-Gaussian
features, which we quantify by the relative entropy with
respect to the closest Gaussian distribution, see [45].

Similarly, the Wehrl mutual information signals the
generation of correlations between A and B in terms of
the finite-size area law [14]

I(OA : OB) = κ1 ln

[

5

π
sin

(

πM

5

)

+ κ2

]

+ κ3, (11)

which incorporates the reflection symmetry around M =
2.5. Again, the behavior coincides with what is expected
for the quantum mutual information [76], with maximal
correlations occurring at t = 4.

Local thermalization — For later times, i.e., in the
regime t g 4 (lower row of Fig. 2), the subtracted classical
entropies transition from an intermediate stage around
t = 5 to an extensive growth with system size at t = 7.
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The latter remains stationary beyond t = 7, signaling
that the system has thermalized locally in the considered
degrees of freedom, with the remaining system serving
as a heat bath. In this case, all entropies of our interest
obey the volume law [3]

∆S(OA) = βM, (12)

where β = 1/T denotes the inverse local temperature.
Indeed, both final entropic curves show an incline of
T ≈ 5, illustrating how the local temperature can be
extracted from classical entropies by simple means. We
have checked that this temperature depends only weakly
on the quench parameters, as the dominating energy scale
is set by the fourth-order term proportional to c0 in (1).

While the classical entropies become extensive, the
Wehrl mutual information still obeys the finite-size area
law (11) for later times, which also highlights its robust-
ness against thermal fluctuations. In contrast to the early-
time dynamics, the correlations between A and B now
decline monotonically towards local thermal equilibrium.

Discussion — We have demonstrated that quantum
many-body phenomena could be probed with classical
entropies by considering a concrete model system that can
be readily realized experimentally. Specifically, we have
shown that it is possible to observe the area law, that is,
the characteristic logarithmic growth of the entanglement
entropy, and the volume law, which indicates local ther-
malization, via subtracted classical entropies and mutual
informations of experimentally accessible measurement
distributions. Crucially, we have not assumed the state
to obey a specific functional form. We bypassed the simi-
larly costly reconstruction of a measurement distribution
by estimating its classical entropy directly from the sam-
pled data. In this way, we relied on 104 samples only
– even in the strongly non-Gaussian regime and up to
ten-dimensional distributions – which we deem experi-
mentally feasible. Larger system sizes (M > 5) can be
tackled with comparable sample numbers provided that
the sampled data still captures essential features of the
underlying distribution. Future work will address what
other parallels between classical entropies and quantum
entropies exist, especially for other degrees of freedom,
and whether they also lend themselves as easily to exper-
imental implementations as in the discussed work.
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Supplementary material

I. CLASSICAL WIGNER ENTROPY

We illustrate the extensive growth of standard classical
entropies by plotting the full classical Wigner entropy, i.e.,
without subtracting the vacuum contribution, in Fig. 1.
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Figure 1. Time evolution of the full Wigner entropy S(WA)
for which the leading-order volume law is apparent for all
times. The area law is barely visible on top of the extensive
growth in the early-time regime, i.e., for 0 < t f 4. Note that
at t = 0 we have S(WA) = S(W̄A) = M(1 + lnπ) ≈ 2.144M .

II. NON-GAUSSIANITY

We consider a Gaussian model distribution

WA,Gauss =
1

ZA
e−

1

2
(χA)T (γA)−1χA

, (1)

where χA = (φA, πA)T is a vector in phase space,

(γA)jj
′

= Tr{ρA{χj−χj ,χj′−χj′}}/2 denotes the covari-

ance matrix and ZA = (2π)M
√

det γA is a normalization
constant. To assess the non-Gaussianity of a given dis-
tribution WA, we introduce the Wigner relative entropy
with respect to the nearest Gaussian, i.e., the distribution
with the same first- and second-order moments [1, 2]

S(WA∥WA,Gauss) =

∫

dνA WA ln
WA

WA,Gauss
. (2)

Then, WA is (non-)Gaussian if and only if
S(WA∥WA,Gauss)(>) = 0. The non-negativity of
the Wigner relative entropy translates into a Gaussian
upper bound on the subtracted Wigner entropy, i.e.,
∆S(WA) f ∆S(WA,Gauss), showing that resolving
non-Gaussian features decreases the missing informa-
tion about the underlying distribution. In this sense,
S(WA∥WA,Gauss) measures the additional information
encoded in WA with respect to WA,Gauss.

To calculate the Wigner relative entropy (2) without
reconstructing any distribution, we use (1) and perform
a few straightforward simplifications, leading to

S(WA∥WA,Gauss) = ∆S(WA,Gauss)−∆S(WA). (3)

While ∆S(WA) is estimated using the kNN method, the
subtracted Wigner entropy of the nearest Gaussian distri-
bution is computed via

∆S(WA,Gauss) =
1

2
ln det

(

2γA
)

, (4)

such that only the covariance matrix has to be extracted
from the TWA samples. We show the resulting relative
entropy curves in Fig. 2 for all times discussed in the main
text.
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Figure 2. Time evolution of the non-Gaussianity measure
S(WA∥WA,Gauss). Single-well distributions look rather Gaus-
sian, while non-Gaussian features become apparent for larger
subsystems. The non-Gaussianity is negligible for early times
and peaks around t ≈ 5, for which the relative information
difference is ∼ 8%. We checked that negative values at M = 5
for early times are caused by an insufficient number of samples;
see [3] for details.

III. MODE OCCUPATIONS FOR LATE TIMES

A priori, it is unclear whether TWA gives meaningful
results in the late-time limit where local thermalization
occurs. As a semi-classical approximation, TWA is ex-
pected to hold whenever the momentum modes are occu-
pied mesoscopically, that is, filled up to at least roughly
one order of magnitude above the quantum one-half [4–7].
In Fig. 3, we confirm that this condition is fulfilled for
late times by plotting the momentum-mode occupations
nmF

(k) = ïak†mF
a
k
mF

ð for the zero mode (left panel), the
side modes (middle panel) and their sum (right panel).



2

0 1 2 3 4 5 6 7 8 9

10
0

10
1

10
2

10
3

10
4

k

n0

0 1 2 3 4 5 6 7 8 9

10
0

10
1

10
2

10
3

10
4

k

n±1

0 1 2 3 4 5 6 7 8 9

10
0

10
1

10
2

10
3

10
4

k

n

time

8

6

4

2

0

Figure 3. Dynamics of the momentum-mode occupations for the zero mode (left), the side modes (middle), and their sum (right).
The atom number n = 2× 104 and the quantum one-half (three-half) are depicted by dotted and dashed lines, respectively.
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Figure 4. Same analysis as in Fig. 2 in the main text for the subtracted Wehrl entropy (left column), the Wigner mutual
information (middle column), and the marginal mutual information sum (right column). All observed quantum features carry
over to these three quantities as well. The local temperature T ≈ 5 is also observed for the subtracted Wehrl entropy. Note here
that the latter is based on the differently normalized Husimi Q-distribution, which we accounted for by subtracting M ln 2.

IV. OTHER CLASSICAL

INFORMATION-THEORETIC MEASURES

In analogy to Figure 2 in the main text, we show
the dynamics of the subtracted Wehrl entropy ∆S(QA),
the Wigner mutual information I(WA : WB) and the
marginal mutual information sum I(fA : fB)+I(gA : gB)
in Fig. 4. All quantities behave as expected.

V. BAYESIAN HYPOTHESIS TEST FOR AREA

VS. VOLUME LAW

In any real experiment, the measured data is subjected
to various kinds of noise. Given that the area law signal in
the subtracted classical entropies is contained in the next-

to-leading-order contributions, an analysis of its statistical
likelihood over a standard linear fit is warranted. To this
end, we perform the Bayesian maximum likelihood test
by considering a Gaussian noise model for the subtracted
entropy centered around the two models of our interest
M1(κ;M) = κ1 ln(M + e−κ2/κ1) + κ2 and M2(κ;M) =
κ1M . This defines the corresponding likelihood functions

Lj(OA;κ) =

5
∏

M=0

1√
2πσ2

e−
1

2σ2 [∆S(OA;M)−Mj(κ;M)]
2

,

(5)
where σ denotes the standard deviation of the noise model.
Motivated by the fluctuations already present in the sub-
tracted entropies extracted from the TWA data at t = 0
(where all entropies should be strictly zero), we estimate
σ ≈ 0.1, which roughly corresponds to twice the observed
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Figure 5. Ratios of the likelihoods associated with logarithmic (area-law-like) and linear (volume-law-like) scaling for the three
subtracted classical entropies as a function of time (integer-valued times considered in the main text are highlighted by their
corresponding plot markers). In a Bayesian sense, evidence for the null hypothesis (area law fits better than volume law) is
strong (decisive) when this ratio exceeds 10 (100) (blue regions).

variations. To compare the two models, we compute the
ratio of the likelihoods (5) maximized over their model
parameters

Λ(OA) =
maxκ1,κ2

L1(OA;κ)

maxκ1
L2(OA;κ)

. (6)

We show the resulting ratios for the three types of
measurement distributions of our interest as a function
of time in Fig. 5. According to Jeffreys’ scale, which
constitutes a standard Bayesian decision criterion, the
evidence for the first model (an area-law-fit) being more

likely than the second (a volume-law-fit) is substantial
(decisive) when Λ > 10 (100), see blue regions, and vice
versa if Λ < 1/10 (1/100), see red regions. After some
initial period where both models are equally likely, all
subtracted entropies exhibit clear indications of logarith-
mic behavior. The evidence is most substantial for the
subtracted Wigner entropy, for which the maximum like-
lihood ratio is well above 100 for t ≲ 3. For later times,
the likelihood of linear behavior increases rapidly, thereby
ruling out the area law in this regime.
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