
Internship Report

Multicompartment Neuron Description
and Placement Algorithm on

BrainScaleS-2

David Baumeister
May 2024

Supervised by
Philipp Spilger, Jakob Kaiser

Abstract

Multicompartment neuron models have, unlike point neuron models, a spacial extent.
Therefore they consist out of multiple compartments, each containing multiple neuron
circuits. BrainScaleS-2 is a mixed-signal neuromorphic hardware which is capable of

emulating these multicompartment-neurons. For the placement of the neuron models two
rows of neuron circuits are available on BBS-2. Therefore placing compartments on the BSS-2
hardware manually becomes challenging, unintuitive and time consuming for larger neurons.
Therefore an abstraction model of the multicompartment neuron was created and a placement

algorithm which places the neuron onto the hardware was developed. The user task is
therefore reduced to creating the abstract model of the neuron, rather than assigning each

neuron circuit to a compartment and setting hardware-switches by hand.

Contents

1 Introduction 2

2 Methods 2
2.1 Hardware . 2
2.2 Software . 3

3 Results 3
3.1 Neuron Abstraction . 3
3.2 Hardware Resources . 4
3.3 Placement . 4

3.3.1 Coordinate-System . 4
3.3.2 Placement-Frame . 4
3.3.3 Placement-Algorithm . 5
3.3.4 Brute Force . 5
3.3.5 Evolutionary Algorithm . 5
3.3.6 Ruleset Algorithm . 6

3.4 Demo . 8
3.5 Testing . 10

3.5.1 Single Compartment with single circuit . 10
3.5.2 Single Compartment with multiple Circuits 10
3.5.3 Two Compartments . 11
3.5.4 Compartment Chain . 11
3.5.5 Compartment with Synaptic Input . 11
3.5.6 Compartment with more than two neighbours 11
3.5.7 Four Connections . 12
3.5.8 Combination Test . 12
3.5.9 Implacable Neuron Structures . 12

4 Discussion 13

5 Outlook 13

1

1 Introduction

The spacial extent of the dendrites in neurons allows for pre-processing synaptic input. It for
example allows improved coincidence detection of neurons, direction selection at single neuron
level and applying different learning rules to different locations in a single neuron. Researchers
try to model the spacial extent of biological neurons with multicompartment neuron models [2].

BBS-2 offers a set of switches for each neuron circuit which allows to connect multiple neuron
circuits to a compartment and multiple compartments to a neuron.

To solve the problem of placing a multicompartment neuron onto the BSS-2 chip several inter-
mediate steps are taken. First an abstraction of the underlying hardware is done. Therefore a
abstract neuron structure is created that allows intuitive construction and manipulation of the
neuron by the user. In the next step the hardware resource requirements are determined to
calculate how many neuron circuits of the BSS-2 chip are required for each compartment. Then
the placement itself takes place, where an algorithm is run stepwise until the neuron is placed
correctly.

2 Methods

2.1 Hardware

The BSS-2 chip has 512 neuron circuits placed in two rows of 256 to allow the synaptic arrays
coming from the top and the bottom to connect to one of the rows. The chip is partitioned
in two halves, see Figure 1. When placing multicompartment neurons onto the chip we can
therefore focus on a 2×128 grid [4].

The BSS-2 chip has five switches for each neuron circuit which allows it to be connected to
another neuron circuit in two ways, see Figure 1.

The first type of connection, called inner connection in the following, short circuits two neuron
circuits located next to each other, either left and right or top and bottom. Therefore there is
a switch connecting a neuron circuit to its right neighbour and a switch connecting neuron
circuits placed in the same column in different rows.

The second type of connection, called external connection in the following, uses the built-in
shared line. There are two shared lines on the chip, one for the top row and one for the bottom
row of neuron circuits. A neuron circuit can either connect itself directly to the shared line or
via a resistor. The shared line can be interrupted by switches. To create an external connection
between two neuron circuits, each compartment can connect to the shared line either directly
or via the resistor, depending on the use of the connection.

The inner connection allows us to create compartments out of multiple neuron circuits and
the external connection allows to connect multiple compartments via a resistor which creates a
spatially extended neuron structure.

2

Figure 1: Left Figure shows the structure of a BSS-2 chip. Right Figure shows the switches of
a neuron circuit on BSS-2 that can be used for multicompartment placement, taken
from [2].

2.2 Software

Without the placement algorithm the placement needs to be done by hand. Therefore each
neuron circuit on the BSS-2 chip has an assigned compartment and the five switches of the
neuron circuit need to be set manually. For neurons with a more complex structure this is
insufficient.

The implementation of the neuron abstraction and the placement algorithm shown in the
following is done in the software layer grenade. The relevant structures for the user for
creating and placing a neuron were wrapped with genpybind [3] and can therefore be accessed
in python. A code example for the use in Python is provided in the following [Listing 1].

Connecting to the lower hardware layers, a conversion of the placement information used in
the algorithm towards the logical description in halco has been done.

3 Results

3.1 Neuron Abstraction

As a first step an API with an abstract representation of the multicompartment neuron is created.
The neuron is built as a graph and contains its compartments as vertices and the connection
between compartments as edges. Each compartment contains its mechanisms. A mechanism
abstracts hardware parameters such as the membrane capacitance or the synaptic input on
a compartment. Implemented mechanisms are the membrane-capacitance and the synaptic
input, both current or conductance based. There is a sufficient API to create more mechanisms
analogous to the existing ones.

3

This abstraction allows the user to create a neuron model by constructing compartments and
mechanisms, adding the mechanisms to the compartment and adding the compartments as
well as the connection between the compartments to the neuron. There is no need for the user
to know where to place the single compartments on hardware as before.

3.2 Hardware Resources

Based on the mechanisms placed on each compartment the resource manager determines how
many neuron circuits are required for each compartment.

The Resource-Manager calls each mechanism on each compartment of the neuron to get their
hardware-requirements and converts the model-parameters (e.g. capacitance of membrane) to
hardware-parameters (e.g number of capacitors needed for required capacitance).

The information stored in the Resource-Manager is later accessed during the placement to get
the minimal number of neuron circuits required for a compartment.

3.3 Placement

Placing a multicompartment neuron onto the neuron circuits of a BSS-2 chip requires informa-
tion about the topology of the neuron as well as the individual resource requirements of the
compartments.

The topological information is contained in the abstract neuron model and the resource require-
ments in the Resource-Manager described above.

3.3.1 Coordinate-System

For placing the neuron we have an intermediate step of placing it into an coordinate system of
size 2×256. Using double the size of the space available on the chip allows us to start placement
in the middle of the coordinate system and not having to shift the placed structure left or right,
since reaching one end of the coordinate system would implicate the neuron does not fit onto
the chip.

Each cell of the Coordinate-System contains the ID of the Compartment placed onto this cell as
well as the configuration of the five switches of the corresponding neuron circuit.

3.3.2 Placement-Frame

The placement algorithm is run in single steps in which one compartment is placed. The larger
structure handling multiple runs of the placement algorithm is the Placement-Frame. It records
the result of each run, performs validation checks and converts the coordinate system into the
logical structure required for the final placement on the chip.

The Placement-Frame saves the result of each run as a coordinate system with the compartments
placed until the current step.

4

The Placement-Frame has the option to check, after each finished run of an algorithm or at the
end of the placement, depending on the type of algorithm used, whether the placed neuron in
the coordinate system matches the abstract neuron given by the user. Therefore a neuron as
described above is created from the coordinate system with the placed compartments.

The validation checks for multiple errors:

1. Required hardware resources: If the number of allocated neuron circuits of a compartment
is smaller than the number of neuron circuits calculated by the resource-manager the
validation fails

2. Inner connections of compartments: If the neuron circuits belonging to one compartment
are not fully connected by their inner switches the validation fails.

3. Number of compartments/compartment-connection: Checks if neurons are equal by num-
ber of compartments and connections between compartments.

4. Isomorphism: If the neuron constructed from the coordinate system is not isomorphic to
the neuron of the user input the validation fails.

Since for some types of algorithms this validation needs to be done after each step of placement,
a fast validation is required. Therefore the order of checks is important. The isomorphism check
is performed last because the comparison of the two neurons has a time complexity of O(|C|!)
where |C| is the number of compartments in the neuron [1].

3.3.3 Placement-Algorithm

Three different Types of algorithms are discussed in the following. One of them is chosen and
implemented.

3.3.4 Brute Force

The first considered algorithm for the placement was a brute force algorithm which tries out ev-
ery single possible hardware-switch configuration. Since every neuron circuit has five switches
that can either be set or not set and there are 256 circuits on one half of the chip we have(
25
)256
= 2 ·10385 options to try.

Because of the high number of possible combinations the time needed for placing would be too
long.

3.3.5 Evolutionary Algorithm

Another approach taken in consideration is an probabilistic learning algorithm which checks
the fitness of placements after each run and therefore changes the location of neuron circuits
and the shapes of compartments. However determining the fitness of the placed neuron is not
trivial since a locally optimal solution for one compartment can block the placement of other
compartments and is therefore suboptimal on a global scope.

5

3.3.6 Ruleset Algorithm

The third approach is an algorithm which follows a ruleset for placement. This algorithm was
developed by starting with simple placement tasks, such as placing a simple compartment, and
than creating new rules for more complex tasks.

For placing a neuron the algorithm follows specific steps as shown in [Figure 2]

1. The first compartment is the compartment with the highest number of connections

2. Place the first compartment in the middle of the coordinate system

3. Find neighbours to this compartment

4. Place the neighbours next to the previous compartment [Figure 3]

5. Connect the placed compartment internally [Figure 4]

6. Connect the placed compartment to its neighbours [Figure 5]

7. Repeat from step 3 until all compartments are placed or no more space for placement is
left

Figure 2: Steps in the ruleset-algorithm.

6

Figure 3: Placing a neighbour compartment.

Figure 4: Connect compartment intern.

Figure 5: Connect compartment to neighbour compartment.

7

The algorithm has the advantage of a fast solution and is of linear time complexity O(n), where
n is the number of compartments. A disadvantage is that several rules need to be implemented
explicitly, so the algorithm can solve complexer neurons. Therefore the amount of neurons
placable by this algorithm is limited due to missing rules. If the placement fails the algorithm
requires backtracking to solve the placement, which increases the placement time.

The following neurons were placed during development

• single compartment neuron with one required neuron circuit in arbitrary position

• single compartment neuron with multiple required neuron circuits in arbitrary position

• single compartment neuron with multiple required neuron circuits with specification
about top and bottom row (to allow synaptic input from both sides if required)

• multicompartment neuron with chain structure (each compartment has ≤ 2 connections)

• multicompartment neuron with multiple branches (≤ 4)

The algorithm can solve these tasks in short time periods. The last tested neuron consisting of
nine compartments and two nodes with more than two branches took the algorithm, called in
Python, circa 10ms total execution time.

This algorithm was implemented to a point where it can perform placement for simple neurons.
Supported neurons must meet the following requirement:

• No compartment must have more than four neighbours

• The compartments must be big enough by resource-requirement if nested structures occur
during the placement.

3.4 Demo

A short demonstration is given at this point on how to use the structures described above to
create and place a neuron.

The demo-neuron consists of four compartments with a membrane defined on each compart-
ment and one of them with a synaptic input specified [Figure 6]. The result of the placement
algorithm is shown below [Figure 7].

Figure 6: Demo Neuron

8

Figure 7: Demo Neuron Placed

neuron = grenade.Neuron()

compartment_a = grenade.Compartment()

compartment_b = grenade.Compartment()

compartment_c = grenade.Compartment()

compartment_d = grenade.Compartment()

’...’ #Parameterization of the mechanisms

mechanism_capacitance = grenade.Mechanism_Capacitance(parameter_space_c)

mechanism_synaptic_input = grenade.Mechanism_Synaptic_Current(parameter_space_s)

mechanism_c_on_compartment_a = compartment_a.add(mechanism_capacitance)

mechanism_c_on_compartment_b = compartment_b.add(mechanism_capacitance)

mechanism_c_on_compartment_c = compartment_c.add(mechanism_capacitance)

mechanism_c_on_compartment_d = compartment_d.add(mechanism_capacitance)

mechanism_s_on_compartment_c = compartment_c.add(mechanism_synaptic_input)

compartment_a_on_neuron = neuron.add_compartment(compartment_a)

compartment_b_on_neuron = neuron.add_compartment(compartment_b)

compartment_c_on_neuron = neuron.add_compartment(compartment_c)

compartment_d_on_neuron = neuron.add_compartment(compartment_d)

compartment_connection = grenade.CompartmentConnection_Conductance()

neuron.add_compartment_connection(compartment_a_on_neuron , compartment_b_on_neuron ,

compartment_connection)

neuron.add_compartment_connection(compartment_b_on_neuron , compartment_c_on_neuron ,

compartment_connection)

neuron.add_compartment_connection(compartment_b_on_neuron , compartment_d_on_neuron ,

compartment_connection)

environment = grenade.Environment()

synaptic_input = grenade.SynapticInput_Current(exitatory = True,number_inputs.total

= 1200, number_inputs.top = 0,number_inputs.bottom = 257)

environment.add(compartment_c_on_neuron , synaptic_input)

resource_manager = grenade.ResourceManager()

resource_manager.add_config(neuron, environment)

placement_frame = grenade.PlacementFrame(grenade.CoordinateSystem(), neuron,

resource_manager)

placement_algorithm = grenade.PlacementAlgorithm_Ruleset()

9

placement_frame.run_algorithm_finish(placement_algorithm)

Listing 1: Usecase example

The structure environment is introduced to define the environment in which the neuron is used.
This environment contains the information about the synaptic input of each compartment.
Currently this structure is created and filled with the required information for testing purpose
manually. In the future the structure will receive its information from the neuron population.

3.5 Testing

For testing and developing the placement algorithm a plot of the coordinate system with the
placed compartments and the switch configurations was created. The plotting is done in python
and is with an execution time of circa 2s to 5s per plot rather slow. However for placements
with countable steps it can be used to plot each step of the placement.

The algorithm following a ruleset was tested on different inputs during development to discover
its limits and increase the amount of supported neuron-types. In the following there are plots
of some of the neurons used for testing and descriptions of neurons, which can not be placed
at the current state because of the limits described above, but are in theory placeable.

3.5.1 Single Compartment with single circuit

The first placement was done with a single compartment with a single circuit. This was done to
ensure placement in general is possible with the implemented data structures. Placing a single
compartment on the hardware is no challenge in terms of the algorithmic step, but rather in
having all structures working together properly.

3.5.2 Single Compartment with multiple Circuits

A single compartment with a resource requirement of at least two neuron circuits was placed.
The resource requirements have been calculated from the model parameter of the user input.
In this step the inner switches are set to connect multiple neuron circuits on hardware to a
single compartment. The inner connection is represented by the line between the single neuron
circuits of the compartment.

10

3.5.3 Two Compartments

Two compartments which are connected to each other were placed. Therefore the connection
between two compartments, by setting the shared line switches correctly, was implemented.
The external connection over the shared line is shown by the horizontal line in the plot. The
compartments connect to the shared line directly, indicated by a line, or via a resistor, indicated
by a cross.

3.5.4 Compartment Chain

Multiple compartments were connected in a chain. Therefore each compartment has a maxi-
mum of two neighbours and it is therefore sufficient to only use the top row.

3.5.5 Compartment with Synaptic Input

A single compartment with a synaptic input mechanism is placed. The synaptic input mech-
anism allows to request a specific amount of synaptic inputs from the top or the bottom and
therefore requesting the number of neuron circuits in the top and bottom row. The required
resources for this neuron are 5 synaptic inputs in total with 2 in the bottom. Excess neuron
circuits are then placed in the top row.

3.5.6 Compartment with more than two neighbours

If a compartment has more than two neighbours it needs to have at least one neuron circuit in
the top row as well as in the bottom row to be able to connect to up to four other compartments.
If no neuron circuit is explicitly required by synaptic input to be in the top or bottom row
the compartment changes its shape to have at least one top row and one bottom row neuron.
Therefore it can also increase its size. This change of shape respects the minimal neuron circuits
required by the hardware resource requirements.

11

3.5.7 Four Connections

The maximum number of connections one compartment can possibly hold, at the moment, is
four. It then has two connections in the top row and two connections in the bottom row. To
increase the number the size and shape of the compartment needs to be modified.

3.5.8 Combination Test

The last successfully tested neuron is the one displayed below. It combines structures mentioned
above to one larger neuron. The synaptic input which requires resources in top and bottom
row is present in compartment B. The change of shape which allows to connect to more than
two compartments is present in compartment F. A chain of compartments is present in the
compartments C, D, E.

3.5.9 Implacable Neuron Structures

As mentioned before there are still limitations to the complexity of the neuron. Implacable
structures are for example

• Compartment with more than four neighbours

• Compartment with multiple leaf compartments connected to a single shared line

• Neuron with a central compartment with more than two connections which each branch
into multiple chains

• Neuron with a resource requirement of over 256 neuron circuits

The first two limitations mentioned can be solved easily and will be implemented in the future,
whereas the last two points mentioned pose logical problems and will therefore not be possible
to be placed at all.

The number of neuron circuits can not be greater 256 since one BSS-2 chip has 512 neuron
circuits but only half of the circuits can be used since the chip is partitioned in two halves.

The branches branching into multiple chains are a problem resulting from the fact, that the
neurons are placed in two rows on the BSS-2 chip. since a branching compartment needs
to be placed on the top and the bottom row to allow more than two connections only one
compartment on each side, starting from a central compartment with the most branches, can

12

be placed. If these compartments branched again the branching of one chain would block the
branching of the other. Therefore this combination is logically impossible.

4 Discussion

The placement of complex neurons, consisting of multiple compartments, onto the neuromor-
phic hardware BrainScaleS-2 was implemented in two main steps. First an abstraction model
of the neuron, which is intuitive and fast to use, was implemented. Since the abstraction model
is generic it can be used in different cases, for example on different hardware systems or in
simulations. In the second step the placement on the coordinate system, representing the BSS-2
neuron circuits, was implemented.

The development of the algorithm happened in multiple steps. The algorithm was sequentially
improved. After the implementation of a new feature the possibilities and limitations of the
algorithms state were determined and therefore the changes for the next step declared. The
verification of each step taken in the development can be seen in subsection 3.5. This allowed the
placement of neurons with increasing complexity over time. Placable neurons need to meet the
following requirements: no compartment has more than four neighbours and the compartments
need to be large enough by resource requirements to allow placement. Therefore chains can be
placed as well as neurons with compartments with up to four neighbours.

The use of the implemented features is demonstrated in a example, which shows the abstract
neuron, the code needed for the placement as well as the placement result, see Figure 6.

5 Outlook

This work will be continued in a Bachelors thesis with the goal to implement another algorithm
which will have an evolutionary approach as well as improving the presented algorithm to
work for a larger variety of neurons.

Also added will be the connection between the current Python-Interface and the PyNN-library
as well as the connection to a deeper software-layer for translation of the model parameter into
hardware parameter, calibration and placement on the BSS-2 chip.

13

References

[1] Boost documentation: Graph isomorphism. https://www.boost.org/doc/libs/1_85_0/
libs/graph/doc/isomorphism.html.

[2] Jakob Kaiser, Sebastian Billaudelle, Eric Müller, Christian Tetzlaff, Johannes Schemmel, and
Sebastian Schmitt. Emulating dendritic computing paradigms on analog neuromorphic
hardware. Neuroscience, 489:290–300, 2022.

[3] Johann Klähn. genpybind software v0.2.0. https://github.com/kljohann/genpybind,
2020 doi:10.5281/zenodo.372674.

[4] Christian Pehle, Sebastian Billaudelle, Benjamin Cramer, Jakob Kaiser, Korbinian Schreiber,
Yannik Stradmann, Johannes Weis, Aron Leibfried, Eric Müller, and Johannes Schemmel.
The BrainScaleS-2 accelerated neuromorphic system with hybrid plasticity. Front. Neurosci.,
16, 2022.

14

https://www.boost.org/doc/libs/1_85_0/libs/graph/doc/isomorphism.html
https://www.boost.org/doc/libs/1_85_0/libs/graph/doc/isomorphism.html
https://github.com/kljohann/genpybind

	Introduction
	Methods
	Hardware
	Software

	Results
	Neuron Abstraction
	Hardware Resources
	Placement
	Coordinate-System
	Placement-Frame
	Placement-Algorithm
	Brute Force
	Evolutionary Algorithm
	Ruleset Algorithm

	Demo
	Testing
	Single Compartment with single circuit
	Single Compartment with multiple Circuits
	Two Compartments
	Compartment Chain
	Compartment with Synaptic Input
	Compartment with more than two neighbours
	Four Connections
	Combination Test
	Implacable Neuron Structures

	Discussion
	Outlook

