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Abstract

Spiking neural networks can either be simulated in traditional comput-
ing devices or be emulated on dedicated neuromorphic hardware. There is
a variety of neuromorphic software frameworks that all have different im-
plementations of spiking neural networks. Currently, translating between
those representations of neural networks is rather a manual thing to do.
Recently, the approach was proposed to create an intermediate represen-
tation which should enable an easier way of building a network on one
platform and translate it to another one. In this internship the transla-
tion from NIR to jaxsnn is partly developed. To validate the translation,
a model is translated from Norse to NIR to jaxsnn and its performance
in compared and validated.
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1 Introduction

Especially in the last few years, neural networks are getting increasingly more
public attention. Spiking neural networks follow an approach of transmitting
information via discrete signals, so called spikes. These networks are can be
trained and simulated by various neuromorphic frameworks, e.g. jaxsnn [1],
Norse [2] or hxtorch [3]. There are also some neuromorphic hardware platforms
like BrainScaleS-2 [4] or SpiNNaker [5], which are able to emulate those net-
works. To compare these frameworks and their performance, or even to compare
them with the performance of a hardware platform, it is necessary to translate
these networks between the different representations, since the only alternative
is to rewrite the whole network. The Neuromorphic Intermediate Representa-
tion [6] aims to provide a representation to and from which other frameworks
can translate their models. This intended to simplify the translation process.

In this report we explore the first parts of the conversion of spiking neu-
ral networks from the neuromorphic intermediate representation to the event-
driven framework jaxsnn. We implement the translation of linear feed-forward
networks and are only supporting nir.CubaLIF and nir.Linear nodes. To val-
idate this process we implement an example network in Norse which is trained
on the YinYang dataset [7]. Then the network is translaten to NIR and finally
to jaxsnn. The test accuracy is 80% in Norse and in jaxsnn it is 79%. We can
conclude that the conversion works since both the accuracies match.

A conversion from NIR to jaxsnn will make This is especially interesting for
BrainScaleS-2 since this makes it possible that spiking neural networks defined in
different software frameworks can easily be trained and emulated on hardware.
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2 Methods

2.1 Spiking Neural Networks

Spiking neural networks (SNNs) describe a subgroup of neural networks (NNs).
Their main feature is that the information is encoded in temporal pulses - also
known as spikes. Another crucial feature is that they evolve a state in time and
have temporal dynamics.

This is something inherited from biology. Also the brain uses these spikes
between neurons to communicate. There are different ways to implement such a
spiking neural network. A commonly used neuron model is the leaky-integrate-
and-fire (LIF) model, where we assume all spike to have the same shape.

2.2 Leaky-Integrate-And-Fire Model

The leaky-integrate-and-fire model describes the temporal dynamics of the mem-
brane potential Vmem of the neuron. Am electric current or incoming spikes
cause the membrane potential to rise. If it reaches the threshold Vth, a spike is
sent out and the membrane potential is reset to Vreset for the refractory time tref.
The membrane potential also continuously decays with the time constant τmem

to the resting potential Vrest. The following differential equation represents the
dynamics:

τmem
dVmem

dt
+ Vmem(t) = Vrest +

I

gl
. (1)

Here gl describes the leak conductance. Commonly the current I(t) follows
an exponential function. This is then described as current-based LIF (CubaLIF).

2.3 Grid-based and Event-based Simulation

On some neuromorphic frameworks, spiking neural networks operate on tensor-
like data. In the discrete way, spike data is represented in a matrix where
”0” indicates that there is no spike and ”1” indicates there is a spike in the
corresponding time step with size dt. This matrix is very sparse which can
make the data-handling very inefficient. An alternative way is to represent the
spikes by a list of spike times. This is a dense data representation and thus a
more memory efficient data handling can be possible.

2.4 jaxsnn: A Framework for Efficient SNN Simulation

The platform jaxsnn aims to be an efficient SNN simulator and training tool
with support for BrainScaleS-2 - a mixed-signal neuromorphic system.

SNNs in jaxsnn are represented by two functions: the init() and the
apply() function. The init() function which initiates the weight matrices
in the right shape and also the neuron parameters if needed, while the apply()
function represents the forward pass through the model and also implicitly the
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backward pass. jaxsnn is based on JAX [8], a library based on NumPy which
includes just-in-time compilation and is focused on array calculations. JAX
also includes efficient and convenient function transformation. This is partic-
ularly useful when a function is to be applied to each sample in a batch. The
efficiency of just-in-time compilation combined with the flexibility of function
transformation is why JAX is used.

2.4.1 Current TTFS Solver in jaxsnn

When a SNN is used for a classification problem, there are several ways to
determine the label from the spike times of the output layers. A label can be
determined by the neuron that is spiking most frequently in a set time or by the
neuron that spikes first. For the forward pass through the network we use a time-
to-first-spike classifier. For finding the next spiking event starting from a neuron
state at any time the current jaxsnn library supports an analytical solver, which
was derived and implemented in PyTorch by Göltz et al. [9], referred to here
as the ”original implementation”, and then implemented in jaxsnn by Althaus
[10], the ”jaxsnn implementation”. This applies to the case that τmem = 2τsyn.
The neuron state includes the current I and the membrane voltage V . The time
to the next spike time T is then calculated by

T = τmem · log

(
2a1

a2 +
√
a22 − 4a1Vth

)
(2)

where a1 = I, a2 = I + V and Vth describes the voltage threshold and a
conductance gl = 1 is assumed.

2.5 Neuromorphic Intermediate Representation

Currently there are many different software frameworks and hardware platforms
for simulating and emulating SNNs. On the one hand there are simulating and
learning frameworks like Norse, hxtorch and jaxsnn, whereby all of them imple-
ment time-stepped simulation and jaxsnn also provides event-stepped simula-
tion. Both hxtorch and jaxsnn are also used to emulate SNNs on neuromorphic
hardware like BrainScaleS.

If a model is designed in Norse and now should be used on neuromorphic
hardware, it has to be translated. That is where the Neuromorphic Intermediate
Representation (NIR) comes in: The idea is that every framework establishes
a translation for models from a so-called NIR graph data structure to a net-
work representation runable on the given framework and vice versa. Without
this intermediate representation, much more translation would need to be im-
plemented. An SNN implemented for one hardware system or described in one
software framework would have to be reimplemented from scratch for another
hardware systems or framework. This also facilitates the evaluation of SNNs in
a single software framework on different neuromorphic systems.
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1 import numpy as np

2 import nir

3

4 weight1 = np.arange(1, 3).reshape(2, 1)

5 weight2 = np.arange(0, 4).reshape(2, 2)

6

7 one_layer_graph = nir.NIRGraph(

8 nodes = {

9 "input" : nir.Input(input_type=np.array ([1])),

10 "linear1" : nir.Linear(weight=weight1),

11 "lif" : nir.LIF(tau=np.array (2*[1]) ,

12 r=np.array (2*[1]) ,

13 v_leak=np.array (2*[0]) ,

14 v_threshold=np.array (2*[1])),

15 "linear2" : nir.Linear(weight=weight2),

16 "output": nir.Output(output_type=np.array (2*[1]))

17 },

18 edges = [

19 ("input", "linear1"),

20 ("linear1", "lif"),

21 ("lif", "linear2"),

22 ("linear2", "output")

23 ]

24 )

25

Listing 1: Example of a NIRGraph. This graph represents a network with two
LIF layers, consisting of two neurons each. The layers are fully connected by
two synapse layers.

In NIR, neural networks are graphs, represented as a dictionary (nodes) and
an array of tuples (edges). An example of such a graph is given in listing 1.
The edges defines the connections between the layers while the nodes contains
all used layers, e.g. a Leaky-Integrator and a CubaLIF. They are represented as
NIRNode. There always has to be an Input and an Output node. NIR currently
defines a set of 16 NIRNode’s: nodes of which neural networks should be built
of. The documentation [11] also states that the size of parameter arrays equals
the size of the layer. But in Norse, the size of neuron layers is given by the
output size of the previous synapse layer. SpiNNaker on the other side uses the
input type attribute of the NIRNode, as it is intended by NIR.

3 Results

3.1 From NIR to jaxsnn: The from nir() Function

First the translation from NIR to jaxsnn is established. For the beginning not
all different types of layers have to be implemented. Therefore we chose to im-
plement the CubaLIF layer, since it’s representing LIF neurons in BrainScaleS-2
in most experiments conducted so far. Also we need synapse layers to connect
the neuron layers and set the weights. The mock example we choose is set in
NIR first (lst. 1). Therefore the nodes and the edges have to be defined.
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Algorithm 1 Processing of each node in the from nir() function

for node in node list do
if node is instance of nir.CubaLIF then
extract neuron parameters from node
create init() and apply()
append init() and apply() to init apply list

else if node is instance of nir.Linear then
extract weights from node
append weights to weights list

else if node is instance of nir.Input or nir.Output then
pass

else
raise NotImplementedError

end if
end for

The first thing is to build a graph out of the edges. With that graph now
every node can be processed iteratively (alg. 1, starting with the Input node.
Since the NIR package does not come with much internal functionality to ensure
that objects are declared as expected, these things have to be handled by the
from nir() function. Two examples of such cases are

1. edges only contains tuples of length two. This means that one edge con-
nects exactly two nodes.

2. These tuples only refer to nodes which are previously defined in the nodes
dictionary. This avoids getting undefined nodes.

When getting to a synapse layer, like a Linear or an Affine node, the
weights are saved in a list. If the current layer is a neuron layer, like a CubaLIF

node, the parameters are read out and put into the jaxsnn pendant LIF. There
are some parameters like the maximum simulation time tmax, which have to be
saved in a separate configuration object since they are not represented in NIR.
The LIF function gives us the apply() function, which gets spiking input data
and returns spiking output data. If there are several neuron layers, all the apply
functions are saved in a list.

If the loop reaches the end of the node list, the final init fn() function is
defined such that it returns the list of weights and the apply() functions get
composed to one single apply fn(). These two functions now represent the
model in jaxsnn.
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1 from jaxsnn.event.from_nir import from_nir , ConversionConfig

2

3 cfg = ConversionConfig ()

4 init_fn , apply_fn = from_nir(one_layer_graph , cfg)

5

Listing 2: example for the translation of a NIRGraph into a jaxsnn
representation, consisting of an init fn() and an apply fn(). The
ConversionConfig objects carries simulation parameters like tmax

3.2 Validating the Translation from NIR to jaxsnn

To validate that the translation of models from NIR to jaxsnn works we train a
SNN in Norse, convert it to NIR by the already implemented norse.to nir()

function and finally convert it to jaxsnn where its accuracy can be determined.
If both the test accuracies match, we can assume that the conversion works
just fine. This experiment is performed on the YinYang dataset. This one is a
classification task which is nice for prototyping since it can be solved with small
networks.

3.2.1 Training a Norse SNN on the YinYang Dataset

The Norse model is build such that the used modules are convertible to NIR,
since not all modules provided by Norse can be translated to NIR. That means
we use module norse.LIFCell which corresponds to nir.CubaLIF and we also
use torch.nn.Linear as synapse layers (lst. 3). This model is then trained
on the YinYang dataset. Since the test accuracy is very unstable, we cannot
demand τmem = 2τsyn. Instead a configuration with τmem = τsyn is chosen.
Through multiple iterations and experimentation, the optimal parameters for
the Norse model were determined (1). After a training with 2048 samples over
40 epochs we reach a accuracy of 80%. The training was done with surrogate
gradients.

1 model = norse.SequentialState(

2 torch.nn.Linear(input_size , hidden_size , bias=False),

3 norse.LIFCell(params , dt=dt),

4 torch.nn.Linear(hidden_size , output_size , bias=False),

5 norse.LIFCell(params , dt=dt)

6 )

7

Listing 3: Norse model of SNN which performs the YinYang task
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Table 1: CubaLIF parameters (params) of the hidden layer and output layer.
The time constants are given in seconds and the voltages in volt

parameter value
τmem 2 · 10−5

τsyn 2 · 10−5

Vth 1.0
Vleak 0.0
Vreset 0.0
ttarget 2.6 · 10−5

tno target 3.6 · 10−5

3.2.2 Analytical TTFS Solver for τmem = τsyn

To get the next spike, meaning the next time when the membrane potential
exceeds the threshold, a solver is needed. The most general approach would be
a numerical solver such like a forward-Newton-solver. For two cases there are
analytical solutions proposed by Göltz et al. [9]. If both time constants are the
same, the first-spike time T is given by

T = τmem

{
b

a1
−W

[
−glVth

a1
exp

(
b

a1

)]}
, (3)

where W[x] describes the Lambert W Function.
In the original implementation the time-to-first-spike is calculated starting

from t0 = 0 where also V0 = I0 = 0 but the jaxsnn implementation can start
from any point in time ti and takes the corresponding amplitudes V (ti) and I(ti)
for calculations. By that, previous spike times do not have to be remembered.
Instead the neurons state, consisting of current and voltage, is evolved and used
for calculation of the TTFS. Because of this difference in the two implemen-
tations using the original expression for the variable b is less convenient and a
new expression must be derived, whereas a1 is already defined in the jaxsnn
implementation.

This can be solved as follows1: The differential equation

0 = τsynV̇ + V − I (4)

was also used by Althaus [10] to derive the closed form for the τmem = 2τsyn
case. Now we set ti = 0 and name V ′

0 = V (ti) and I ′0 = I(ti), since we are only
interested in the time difference to the next spike. We expect V (t) and I(t) to
look like

V (t) = At exp

(
− t

τsyn

)
+B exp

(
− t

τsyn

)
. (5)

I(t) = I ′0 exp

(
− t

τsyn

)
(6)

1First derived and proposed by Florian Fischer
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Inserting V (t) into equation eq. (4) gives us

A =
I(ti)

τsyn
. (7)

By applying the boundary condition V (T ) = Vth, where T is the time to the
next spike, we get

B = V ′
0 . (8)

This concludes to the following formula

0 = Vth exp

(
T

τsyn

)
− I(ti)

T

τsyn
− V (ti). (9)

This expression is found very similar in the derivation of Göltz et al. [9]. Com-
paring both equations finally leads to the parameters a1 = I ′0 and b = −V ′

0 .
With the resulting closed form

T = τmem

{
−V0

I0
−W

[
−glVth

I0
exp

(
−V0

I0

)]}
(10)

the new solver can be implemented. It is important to tackle all edge-cases with
jax.lax.cond() to make sure that the solver does not return nan’s or inf’s.
One condition is that the argument of the Lambert W Function is equal or
larger than −e−1, since the real branch of the function is not defined for smaller
values. The other condition is that the spike time T is positive.

By that, the solver is able to find the next spike time for the case τmem = τsyn.

3.2.3 Validating the NIR-to-jaxsnn Transformation

With the TTFS solver and the NIR-model set it can now be translated. This
translation process takes place in the new from nir() function, which returns
the functions init fn() and apply fn(). Both must now be used to test for
the networks accuracy at performing the task. Testing the network in jaxsnn
can done by using the loss and acc() function. The test set is generated by
yinyang dataset() generator in jaxsnn. The loss is determined by the MSE
between the predicted and the target spike time. This finally yields an accuracy
of 79%, which is very close to the test accuracy in Norse.
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Figure 1: Comparison between the spike times in Norse (left) and in jaxsnn
(right). The gray lines indicate the time for the right class (left) and the time
for the wrong class (right). On the y-axis are the three different output neurons.

We can also look at the spike times in the output layer of a single example
(fig. 1). By looking at the first spike times we see little differences between for
both models. But the decisive spike - the first one over all - has a big difference
in both models, so both models will classify similar in this case.

4 Summary

During this internship, part of the translation of spiking neural networks from
NIR to jaxsnn was implemented. It is now possible to translate linear feed-
forward models from NIR to jaxsnn, as long as they only consist of nir.CubaLIF
and nir.Linear nodes. This translation is achieved by looping over nodes of
the NIRGraph and converting them one by one to a representation in jaxsnn.
In the end, the list of jaxsnn representations of nodes is composed into a init()
and a apply() function for the whole network.

The functionality of the translation process was demonstrated through the
application of an Norse-to-jaxsnn example. Therefore an SNN was defined in
Norse to solve the YinYang task. After training in Norse the model achieved a
test accuracy of 80%. After translating this model via NIR to jaxsnn the test
accuracy yielded 79%. Both values match approximately. The little difference
is assumed to be caused by insufficient precision of the numerical solver used in
Norse since the spike times in jaxsnn are computed exactly via analytical ex-
pressions. Compared to previous experiments [1], the accuracy in Norse remains
below expectations. It is not fully understood if the relatively low accuracy and
also its significant fluctuations during training are connected to issues in our
Norse training procedure.

The corresponding TTFS solver needed for testing in jaxsnn has also been
implemented. This extends the functionality of jaxsnn by supporting the case
τmem = τsyn in jaxsnn, as derived by Göltz et al. [9].

As part of this work, the architecture of NIR was analyzed and we looked
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at its strengths and weaknesses. While being flexible and versatile, e.g. by
not requiring special data types for weight matrices, this can easily become a
weakness if different frameworks adopt varying approaches. For this reason, it
may be considerable to specify the data type of variables or to include internal
checks to ensure that attributes such as matching input and output shapes are
consistent.

5 Outlook

Now as basic principles of the translation are completed, we can progress with
the conversion of more complex and also more diverse models. One of the
next steps will be implementing the translation for more types of nodes, like the
nir.LIF or the nir.Affine. This may be a little less straightforward since there
is no exact counterpart for the nodes on the BrainScaleS-2 hardware. Also we
want to enable the conversion for more different topologies besides the simple
linear networks, such as recursive networks. In addition to the from nir()

function we plan to implement a to nir() function, to also allow exporting
models defined in jaxsnn to be trained or tested on other platforms. It is also
planned to annotate NIR nodes with jaxsnn functions. By this, NIR would
be extended by a numerical backend and thus be able to do the forward or
backward pass itself.
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