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Abstract

This study investigates the parameters of the AdEx neuron model and their cor-

relation with various neuronal firing patterns. We conducted simulations to ex-

plore the effects of parameter variations on different types of firing patterns. Re-

sults indicate that, despite changes in model parameters, firing patterns can still

remain unchanged. This finding underscores the complex relationship between

parameters and neuronal activity. In the second part of the study, simulation-

based inference, specifically the SNPE algorithm, was employed to accurately

predict the parameters underlying neuronal simulations. We successfully in-

ferred both single and dual parameters, demonstrating the algorithm’s efficacy

in parameter estimation for the AdEx model. Consequently, these results might

advocate for employing this algorithm for parameterizing AdEx neurons on neu-

romorphic hardware, such as the BrainScales2 system.
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1 Introduction

Modeling neuronal firing patterns holds profound significance in neuroscience. These

patterns are fundamental to understanding how neurons encode and process informa-

tion in the brain. Accurate models not only illuminate the underlying mechanisms of

neural activity but also pave the way for advancements in technology such as brain-

machine interfaces and neuromorphic hardware.

A preferably simple model is needed to accurately simulate the firing patterns of

neurons, closely approximating biological reality while remaining computationally ef-

ficient. Additionally, it should be versatile enough to describe the diverse behavior and

types of neurons. Various models exist for simulating neuronal firing patterns, such

as the Leaky Integrate-and-Fire model, Hodgkin-Huxley models, and more complex

biophysical conductance-based models (Gerstner and Kistler 2002). Among these, the

Adaptive Exponential (AdEx) Integrate-and-Fire model (Brette and Gerstner 2005)

has shown particular promise due to its simplicity and its ability to closely match

direct measurements in cortical neurons (Jolivet et al. 2008).

In the first part of this investigation, the versatility of the model is explored. Sim-

ulations are conducted for different parameter settings of the AdEx equations, and

classifications are performed, enabling the mapping of certain parameter choices to

specific resulting firing patterns. This helps in understanding how various parameters

influence neuronal behavior. The investigation is based on the work of Naud et al.

2008.

In the second part, we adopt an inverse approach. Starting with the generated data,

we aim to infer the underlying parameters of the AdEx equations that led to the cre-

ation of this data. To achieve this, we leverage simulation-based inference, specifically

the Sequential Neural Posterior Estimation (SNPE) algorithm (Greenberg, Nonnen-

macher, and Macke 2019). We explore how well these parameters can be inferred

solely from the time series data of the voltage trace and the adaptation current.

This dual approach not only enhances our understanding of the parameter space

within the AdEx model and its effects on neuronal firing patterns but also provides a

robust framework for parameter inference, contributing significantly to both theoret-

ical neuroscience and practical applications. For instance, it might advocate for the

use of the SNPE algorithm in parameter optimization on neuromorphic hardware that

utilizes the AdEx equations in order to correctly emulate voltage traces of biological

neurons.
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2 Background

2.1 AdEx

The Adaptive Exponential Integrate-and-Fire (AdEx) model (Brette and Gerstner

2005) is an advancement of the Leaky Integrate-and-Fire (LIF) model, introducing

an exponential term to effectively handle fast input signals (Fourcaud-Trocmé et al.

2003). Furthermore, it includes an additional recovery variable that is crucial for

modeling adaptation and resonance properties (Izhikevich 2003). The model outlines

the behavior of the membrane potential V and the adaptation current w when a

current I is injected. It comprises two coupled differential equations and a reset

condition. The equations are defined as:

C
dV

dt
= −gL(V − EL) + gL∆T exp

(
V − VT
∆T

)
+ I − w, (1)

τw
dw

dt
= a(V − EL)− w (2)

with C being the total capacitance, gL the total leak conductance, EL the effective

rest potential, ∆T the threshold slope factor and VT the effective threshold potential.

These parameters are also referred to as the scaling parameters because they deter-

mine the scaling of the time axis, the stretching, and the offset of the state variables.

We can rewrite C and gL into the time scale τm = C
gL

. The remaining parameters are

also called the bifurcation parameters. Those are the conductance a, the time con-

stant τw, the spike-triggered adaptation b, and the reset potential Vr. Adjusting these

parameters leads to qualitative changes in the system’s behavior, enabling different

firing patterns to emerge.

When the membrane potential surpasses VT , the exponential term induces a positive

feedback mechanism, causing a rapid rise in the action potential. This upward surge

is abruptly stopped at a reset threshold, set at 0 mV. Instead of a natural downswing,

the action potential is immediately reset, as defined by the following condition:

If V > 0mV, then

V → Vr

w → wr = w + b
(3)
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2.2 AdEx Firing Patterns

The following summarizes the approach by Naud et al. 2008. To differentiate between

various firing patterns, we first examine the phase space where the state variables V

and w are plotted against each other (see Figure 1). Here, a nullcline represents the

region in the phase space where a given variable remains constant. The intersection

points of nullclines are referred to as fixed points, which can vary in their stability. In

fact, a bifurcation1 of the system occurs when the stability of a fixed point changes.

This can happen in two ways: either through an Andronov-Hopf bifurcation or a

saddle-node bifurcation (Gerstner and Kistler 2002). The current at which a fixed

point loses stability is referred to as the rheobase. At that current, repetitive spiking

occurs.

Figure 1: Phase space analysis of sharp (a) and broad (b) spike resets. The green
line represents the w-nullcline, the black dashed line the V-nullcline, and the black
solid line the V-nullcline in the presence of a stimulating current. Source: Naud et al.
2008.

It has been shown (Touboul and Brette 2008) that an Andronov-Hopf bifurcation

occurs if a
gL

> τm
τw

at the rheobase:

IAH = (gL + a)[VT − EL −∆T +∆T ln(1 +
τm
τw

)] + ∆T gL

(
a

gL
− τm
τw

)
. (4)

Otherwise, a saddle-node bifurcation happens at the rheobase:

ISN = (gL + a)[VT − EL −∆T +∆T ln

(
1 +

a

gL

)
]. (5)

The first step in distinguishing between different firing patterns can involve differ-

entiating based on two types of spike resets: sharp and broad. Broad resets are

1a qualitative change in the system’s dynamics.
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characterized by their low curvature following the spike (see Figure 1). Those two

types of spike resets have different trajectories in the phase plane. If the reset point

after a spike is above the V-nullcline (dVdt < 0), the voltage will decrease before it

increases again for the next spike. Hence, a broad reset takes place. On the other

hand, if the reset point is below the V-nullcline (dVdt > 0), the voltage will immediately

increase, resulting in a sharp reset.

With equation (1) we can rewrite this into a mathematical condition with the reset

adaption current wr:

wr > −gL(VR − EL) + gL∆T exp

(
Vr − VT
∆T

)
+ I. (6)

If this condition is true, the reset is broad. If not, the reset is sharp.

Aside from the type of resets, we can also distinguish between various firing patterns

based on changes in the inter-spike intervals (ISI). Figure 2 displays various types of

firing patterns.

Figure 2: (a) tonic spiking: consistent ISIs, (b) adapting spiking: increasing ISIs,
(c) initial bursting: initial emitted spikes with high frequency, (d) regular burst-
ing: periodic alternation between sharp and broad resets, (e) delayed accelerating
spiking, (f) delayed regular bursting, (g) transient spiking, (h) irregular spik-
ing: ISIs change without periodicity; Source: Naud et al. 2008.
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3 Simulation of the AdEx parameter space for gen-

erating diverse neuronal firing patterns

3.1 Methods

The following section aims to reconstruct the results obtained from the study by Naud

et al. 2008 and therefore adopts the methodology outlined in that paper.

3.1.1 Simulation

As initial conditions for the model, we set V (0) = EL and w(0) = 0. Furthermore, the

scaling parameters were fixed to constant values since the problem depends solely on

the bifurcation parameters. Changing the scaling parameters would not alter the type

of firing pattern, although it may affect the amount of current required to transition

between different firing types. In alignment with the aforementioned paper, these

values were set to C = 100 pF, gL = 10 nS, EL = −70 mV, VT = −50 mV and

∆T = 2 mV. Hence, τw = C
gL

= 10 ms.

Next, a constant step current was injected, with an amplitude twice that of the

rheobase as described in formulas (4) and (5), inducing repetitive spiking in the

neuron. Transient and delayed spiking patterns only occur near the rheobase current,

and therefore were not investigated in that study. Throughout the entire simulation,

the injected current remained constant. It is worth noting that altering the external

current could also influence the type of firing pattern.

With all parameters configured, the AdEx equations were simulated for either 16

seconds or until 50 spikes occurred, whichever came first. A time resolution of 0.001ms

was utilized, determining the intervals at which the variables were updated.

The simulation was implemented in Python using both NEST2 3.0 and Brian3 2.7.0.

Both are Python packages based on C++ for faster simulation.

3.1.2 Classification

The different firing patterns were then classified based on the voltage and adaption

current traces of the simulated neurons.

Many neurons demonstrate spike-frequency adaptation, where the inter-spike intervals

(ISI) increase over time with sustained stimulation. Classification into adapting and

non-adapting firing patterns is based on the adaptation index, which is defined as

A =
1

N − k − 1

N∑
i=k

ISIi − ISIi−1

ISIi + ISIi−1
(7)

2https://github.com/nest/nest-simulator.
3https://github.com/brian-team/brian2.
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with N being the total number of spikes (Naud et al. 2008). We set k = 4 to ignore

any initial transient. In the case of tonic spiking, where all ISIs are equal throughout

the pattern, A would be zero. A increases in the case of an adapting firing pattern

and decreases in the case of an accelerating pattern. The adaptation index varies

depending on the number of spikes considered. Therefore, we only considered the

first 20 spikes for the calculation.

The following rules were applied to obtain the final results (Naud et al. 2008):

• tonic spiking : sharp resets or strictly broad resets and −0.01 < A < 0.01

• adapting spiking : sharp resets or strictly broad resets and A > 0.01

• accelerating spiking : sharp resets or strictly broad resets and A < −0.01

• initial bursting : ordered sequence going from sharp to broad resets

• regular bursting : alternation between broad and sharp spike resets such that

the number of sharp resets between each broad reset is constant after the third

broad reset

• irregular spiking : alternation between broad and sharp spike resets such that

the number of sharp resets between each broad reset is not constant after the

third broad reset

Whether a reset is a sharp or a broad one was determined with equation (6) with wr

being the value of the adaption current one timestep after the spike.

3.2 Results

Figure 3 presents our reconstruction of plot d from Figure 6 in Naud et al. 2008 (see

Figure 16 in the appendix).

As we can see, spike patterns remain unchanged along certain alterations in the

parameter space, highlighting the complex relationship between the firing patterns

and the AdEx parameters. The shape of the initial bursting domain is related to the

V-nullcline, as discussed in Naud et al. 2008.

In comparison with Figure 16, the overall structure of the plot was successfully recon-

structed. Nevertheless, slight deviations are evident. Firstly, in the initial bursting

(green) domain, a single pattern was classified as irregular (black). Secondly, the

area of the adapting spiking (yellow) in the upper part of the plot is not consistently

defined. Lastly, the structure of the irregular firing pattern differs from the original.

Upon closer investigation of the single irregular pattern (black point within the green

area), we observe that a single reset was classified as sharp instead of broad. Ex-

amining wr for this reset, we noticed it deviates only slightly from the right-hand

side of equation (6), while the wr values for the other resets in this pattern show

significantly larger deviations. This is probably due to our simulation’s resolution of
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0.001ms, which was not sufficiently high. As a comparison, the same simulation as in

Figure 3 is displayed in Figure 17, but with a time resolution of 0.1ms. As we can see,

the results of the classification differ. The resolution determines the time intervals

at which variables are updated. Had we chosen a higher resolution, all simulation

variables, including wr, would have obtained more precise values. wr is defined as

the value of the adaption current w directly after the spike. Hence, we obtained wr

by selecting the value of w one time step after the spike time. With much smaller

time steps, wr would be more accurate and thus most likely satisfy the condition in

equation (6), correctly classifying the spike reset as broad instead of sharp.

Figure 3: Parameter space exploration of b and Vr. We fixed a = 0.001 nS and
τw = 5 ms. The colors indicate different firing patterns: tonic spiking (red), adapting
spiking (yellow), initial bursting (green), regular bursting (cyan), and irregular spiking
(black). This is a replication of Figure 6d in Naud et al. 2008.

To investigate the deviations in the upper part of the plot where patterns were classi-

fied as tonic spiking (red) instead of adapting spiking (yellow), we plotted the adapta-

tion index (see Figure 4). The distinction between these two patterns relies solely on

the adaptation index A. If A > 0.01, the pattern is classified as adapting spiking and

otherwise as tonic spiking (see Chapter 3.1.2). Surprisingly, the patterns classified as
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tonic instead of adapting as in Figure 16 show not just small deviations from the crit-

ical value Ac = 0.01 but rather significant ones, with some even having an adaptation

index close to 0. Increasing the simulation resolution also affects the adaptation index,

as spike times become more accurate, influencing the inter-spike intervals (ISI) used

in equation (7). However, it remains uncertain whether a higher resolution would suf-

ficiently alter A to fulfill the condition A > 0.01 and thus reclassify all these patterns

as adapting.

Figure 4: Adaptation index for tonic (blue) and adapting (red) spiking. The adapta-
tion index is not calculated for the classification of initial bursting, regular bursting,
and irregular spiking and is thus not included in this plot for these patterns. The
arbitrary chosen critical value Ac = 0.01 serves as a threshold in classifying a firing
pattern as adapting or tonic.

Lastly, we can see that the structure of the irregular firing patterns in Figure 3 is

more sparse than in the one in Figure 16. As mentioned before, a higher resolution

might be useful for correctly classifying resets. However, the choice of the simulation

time step is more critical to the right of the plot in Figure 3 since firing occurs much

faster in that part of the parameter space. This is illustrated in Figure 5 where the

mean logarithmic inter-spike intervals (ISI’s) are plotted.

8



Figure 5: The mean inter-spike interval (ISI) indicates that faster spiking occurs
towards the right side of the plot. This happens because the membrane potential V
reaches the threshold VT more quickly when it resets to a higher value Vr.

In summary, better results could be obtained with a higher simulation resolution.

However, a higher resolution inevitably comes with increased computational runtime.

A tradeoff must be found between runtime and classification accuracy. An example is

shown in the appendix in Figure 17 for a smaller resolution of 0.1ms. As we can see,

the results in the classification differ. The respective voltage traces for the different

resolutions are displayed in Figure 18. Nevertheless, there are still differences from

plot d in Figure 16 that might not be fully corrected with a higher resolution. It

is also possible that we used a slightly different classification scheme since not every

detail was provided in Naud et al. 2008. For instance, we do not know the chosen

simulation time step or the exact grid points for b and Vr.
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4 Simulation-based inference of AdEx parameters

4.1 SNPE Algorithm

Mechanistic models are pivotal for understanding and predicting the behavior of com-

plex systems under various circumstances. These models, grounded in the underlying

physics or biology of the systems, allow researchers to simulate how systems evolve

with respect to their parameters. However, one of the key challenges in leveraging

these models is the inverse problem: determining the set of parameters θ that are able

to reproduce the observed data x̂ when plugged into the model. The simulation-based

inference algorithm tries to approximate the posterior distribution p(θ|x̂), which rep-

resents the probability distribution of the parameters θ that generated the observed

data. Generally, Bayesian inference

p(θ|x̂) = p(x̂|θ)p(θ)∫
dzp(x̂|θ′)p(θ′)

(8)

cannot be applied directly since the likelihood p(x̂|θ) is unknown or too expensive

to calculate. In most cases, it would be too expensive to compute the likelihood

p(x̂|θ) =
∫
dzp(x̂, z|θ) with all possible internal latent variables z of the model. Thus,

we would like to approximate the posterior directly without knowing the likelihood

(Cranmer, Brehmer, and Louppe 2020).

Using the Sequential Neural Posterior Estimation (SNPE) by Greenberg, Nonnen-

macher, and Macke 2019, we can approximate the posterior directly. Therefore, we

only need the mechanistic model from which we can generate observations x, a pre-

defined prior p(θ) for the parameters in question, and the observed data x̂. The

algorithm then simulates the model for a set of randomly drawn parameters from the

prior. Subsequently, a neural density estimator (NDE) is trained, capturing the rela-

tionship between the parameters and the data. If we are only interested in a specific

observation, we can perform the training sequentially. Here, we use the estimated

posterior from the previous rounds as the new prior. However, we need to retrain our

model for a new observation x̂′. Figure 6 visualizes the approach of SNPE.
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Figure 6: The SNPE algorithm. A mechanistic model, a prior for the model pa-
rameters, and the (embedded) data are the inputs for the algorithm. SNPE then
(1) performs simulations of randomly drawn samples, and (2) trains a deep density
estimation to learn the correlation of the data and the model’s parameters network.
Afterward, (3) this network can derive the underlying parameters of the presented
data within the range of the prior. (4) In the case of multi-round inference, an initial
estimate of the posterior can be used as the new prior in subsequent simulation and
training rounds. Source: Goncalves et al. 2020.

4.2 Embedding of the raw data

When dealing with high-dimensional observed data, dimensionality reduction tech-

niques are often applied to encode the data into a lower-dimensional feature space

to save computational costs during training of the NDE (Cranmer, Brehmer, and

Louppe 2020). This step is pivotal to strike the right balance between reducing infor-

mation redundancy while retaining relevant features essential for effective parameter

inference. It ensures that the encoded features capture the essential aspects of the

data that are most useful for density estimation in simulation-based inference. In this

study, we utilized the discrete wavelet transform (DWT) for the data encoding.

4.2.1 Discrete Wavelet transformation

The Wavelet Transformation (Weeks and Bayoumi 2002) is a mathematical tool used

to analyze signals with time-varying frequencies. Fields of applications include, among

others, data compression (B’charri et al. 2016; Manikandan and Dandapat 2014),

noise reduction (Alfaouri and Daqrouq 2008), and feature extraction (Zhang et al.

2006; Y. Wang, Yan, and Q. Wang 2016) of a signal. The Wavelet Transform is

similar to the Fourier Transform. The Fourier Transform represents a signal through

a linear combination of sine waves, transforming the signal from the time domain to

the frequency domain. However, it has a limitation: it does not indicate at which

specific times these frequencies occur. In time series data, frequencies often vary

over time. In contrast, the Wavelet Transform uses basis functions called “wavelets”,

which are localized in both frequency and time, to transform the data.
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These wavelets have finite energy, meaning they are concentrated in both time and

frequency and are integrable. Additionally, wavelets have zero mean. Various wavelet

families exist (see Figure 7 for examples). Within each family, subfamilies differ

in the number of coefficients, impacting the wavelet’s approximation accuracy and

smoothness (i.e. the Daubechi wavelet “db2” has a smoother shape than “db1”).

Figure 7: Examples of Wavelet families. Source: Figure 3 of Zope-Chaudhari, Venkat-
achalam, and Buddhiraju 2015.

A “mother wavelet” ψ(x) can be transformed by scaling and translating it. The

general form of a daughter wavelet ψa,b(x) is:

ψa,b(x) =
1√
a
ψ

(
x− b

a

)
(9)

where a is the scaling factor and b
a is the translation parameter. A higher scale factor a

corresponds to a lower frequency, whereas a lower scale factor corresponds to a higher

frequency. With these wavelets, signals can be analyzed across multiple scales, making

Wavelet Transformations valuable for studying signals with time-varying characteris-

tics, encompassing high-frequency transients to slowly varying trends and everything

in between.

Wavelet transformation consists of performing a convolution operation on a given

time series data with a specified wavelet (Chaovalit et al. 2011). The transform of a

signal f(t), resulting in the wavelet coefficients Ta,b, can be written as:

Ta,b(f) =
1√
a

∫
dtf(t)ψ

(
x− b

a

)
(10)

with a and b as discrete values. The Discrete Wavelet Transform (DWT) uses different

wavelets, each with different scales, and multiplies them with the signal at different

locations in time. The transformation is implemented as a filter bank (see Figure 8).
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Low-pass and high-pass filters are employed to divide the data into low- and high-

frequency components. At each level, the low-frequency part is further decomposed,

yielding different coefficients: approximation coefficients reflect the output of the

low-pass filter in DWT, while detail coefficients correspond to the high-pass filter

output. This process separates the signal into multiple components, each representing

a subband of the original signal. With each successive stage, the number of samples

is halved. The Wavelet Transform output yields the same number of coefficients as

there are data points in the signal. Using the inverse Wavelet transform, the original

signal can be perfectly reconstructed solely from these coefficients.

Figure 8: DWT with a filter bank. Source: https://ataspinar.com/2018/12/21/

a-guide-for-using-the-wavelet-transform-in-machine-learning/

So far, the Wavelet transformation is not yet a dimensionality reduction technique

because there are as many coefficients as there are data points in the original data.

However, by separating the transformation into approximation and detail coefficients,

we can selectively retain the most significant coefficients that effectively capture the

overall structure of the data and discard the less important ones. This selective

retention enables a reduction in the number of retained coefficients, thereby achieving

a form of dimensionality reduction while preserving the essential information of the

signal.
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4.3 Methods

Our simulator, from which we generate observations x, consisted of the numerical

integration over the AdEx equations (formulas (1) and (2)). The resulting data con-

sists of a voltage trace and an adaptation current trace. We simulated the neu-

ron for 5.0244 seconds with a time resolution of 0.1ms, resulting in data of di-

mensionality dim(x)=2×50240 data points. For the data embedding, we employed

both one-dimensional (independently transforming each trace) and two-dimensional

DWT using the Daubechies wavelet “db2”. The two-dimensional DWT is simply

one-dimensional DWT in the horizontal and vertical directions of the data (Weeks

and Bayoumi 2002). The aim was that this would capture essential correlations be-

tween the voltage and the adaptation current trace. Different approaches have been

explored to achieve dimensionality reduction using the Wavelet transform (Srivastava

and Purwar 2017, Qu et al. 2003, Popivanov and Mille 2002). The more coefficients

are discarded, the greater the data reduction.

To maintain a consistent resulting data size, we chose to use only the approximation

coefficients at decomposition level 7 as our encoded data. Higher levels did not ad-

equately capture the fundamental structure of the data, while the data size would

be doubled with each lower level. This compression resulted in a reduction to 2×395

data points5.

As we can see in Figure 9, the detailed coefficients contribute in regions with high fre-

quency while the approximation coefficients contribute to low frequency components.

Since spiking occurs rapidly in this example, the detailed coefficients closely resemble

the structure of the original trace. Conversely, reconstruction using only the approxi-

mation coefficients is notably poor. Nonetheless, as demonstrated in Chapter 4.4, the

NDE satisfactorily infers the parameters. Thus, the approximation coefficients still

sufficiently represent the data for our purposes.

Given that our data does not conform to a power-of-two length and considering the

substantial reduction to level 7, it is expected that boundary effects may occur during

the transformation. However, these effects did not significantly affect our inference re-

sults. We utilized the PyWavelets6 package for implementing the DWT. The resulting

data was then flattened and fed into a fully connected neural network (FCNN) with

layer dimensions 600, 400, 300, 100, and 30 to further refine it to its most essential

features. The FCNN was simultaneously trained with the NDE to achieve an optimal

embedding for inference.

The NDE was a Neural Spline Flow. In each round of the inference, 1000 simulations

were performed. Initially, we inferred only a single parameter, specifically b from the

AdEx model. Subsequently, we performed simultaneous inference on two parameters:

b and the reset potential Vr. For these inferences, we defined uniform priors, ranging

from 100 to 400 pA for b and from -70 to −40mV for Vr. We halted the inference

at a certain point when drawing posterior samples became too slow7. To conduct

4After a delay of 0.024 seconds, a constant step current was injected.
5Obtaining a compression ratio of sizenew / sizeold ≈ 0.008.
6https://github.com/PyWavelets/pywt.
7This happened when most of the drawn samples lie outside of the support of the prior and need
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the inference, we utilized the algorithm developed by Greenberg, Nonnenmacher, and

Macke 2019, which is implemented in the Python package sbi8 (Tejero-Canteroe et al.

2020).

Figure 9: DWT on a voltage trace with a decomposition level of seven.

to be discarded.
8https://github.com/mackelab/sbi.
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4.4 Results

First, we inferred only one parameter, namely b. By performing dimensionality re-

duction with the one-dimensional DWT, we were able to approximate the posterior

quite well with three inference rounds (see Figure 10).

Figure 10: Normalized approximated posterior with one-dimensional DWT embed-
ding using the “db2” wavelet. Three rounds of inference with 1000 simulations each
were performed. btrue = 100 pA was arbitrarily chosen.

We chose btrue = 100 pA arbitrary as the true value that generated the observation x̂.

However, when we used two-dimensional DWT for the embedding with four inference

rounds, our posterior resulted in two peaks (see Figure 11).
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Figure 11: Normalized approximated posterior with two-dimensional DWT embed-
ding using the “db2” wavelet. Four rounds of inference with 1000 simulations each
were performed. btrue = 100 pA was arbitrarily chosen.

Since the two-dimensional DWT is simply the application of the one-dimensional

DWT on both the horizontal and vertical axes, it seems evident that this approach

might not work well. This is because we only have two points in one direction: one

for the voltage trace and one for the adaptation current trace. To investigate that

posterior, we randomly drew samples from the left and right peaks of the posterior

and plotted their simulations against the true voltage trace, generated with btrue (see

Figures 12 and 13).
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Figure 12: True voltage trace (with btrue = 100) vs. simulated traces from samples
drawn from the left peak of the approximated posterior in Figure 11.
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Figure 13: True voltage trace (with btrue = 100) vs. simulated traces from samples
drawn from the right peak of the approximated posterior in Figure 11.

As we can see in Figure 12, the closer the sample values of b are to 100 pA, the

better the agreement between the true and simulated traces of the sample becomes.

The differences in b from the true value accumulate over time because b affects the

system at every spike time (see formula (3)), resulting in a greater inconsistency of

the agreement as more time passes.

Evident in Figure 13, the agreement is quite poor, with the simulated traces of the

adaption current systematically shifted too high. This is to be expected for a higher

value of b (see formula (3)). Hence, the two-dimensional DWT has failed to capture
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these crucial features. Consequently, our second posterior, with its two peaks, is sig-

nificantly more inaccurate than the first. This emphasizes the importance of selecting

the correct embedding technique.

Next, we inferred two variables, b and Vr. With seven rounds of inference and using

the one-dimensional DWT as an embedding, we obtained the posterior in Figure 14.

Figure 14: Normalized approximated posterior with two inferred variables. The “db2”
wavelet was chosen for the one-dimensional DWT. Seven rounds of inference with
1000 simulations each were performed. btrue = 100 pA and Vr,true = −50mV were
arbitrarily chosen. Violet resembles (close to) zero and yellow high probability for the
parameters to generate the given observation.

As we can see, the SNPE algorithm accurately predicted both variables, but there is

an additional small peak in the marginal of the b parameter. Here, Vr,true = −50 mV

was the true value for the reset potential. As a comparison, the posterior in Figure

15 was obtained using the same number of inference rounds, but with the data being

embedded using the Haar-wavelet in the one-dimensional DWT. It is evident that the

resulting posterior exhibits slightly better results compared to the previous result.

In summary, the choice of wavelet for the DWT also has an impact on the resulting

posterior.

20



Figure 15: Normalized approximated posterior with two inferred variables. The
“haar” wavelet was chosen for the one-dimensional DWT. Seven rounds of inference
with 1000 simulations each were performed. btrue = 100 pA and Vr,true = −50mV
were arbitrarily chosen. Violet resembles (close to) zero and yellow high probability
for the parameters to generate the given observation.
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5 Summary

This study explored the relationship between parameters and voltage and adaptation

current traces of the AdEx model. Through simulations, we investigated the effects

of parameter variations on the resulting firing patterns of the model. We successfully

replicated the results reported in the paper by Naud et al. 2008. Plots were generated

to identify regions in the parameter space where firing patterns remained consistent.

Additionally, we employed the SNPE algorithm to infer parameters. Data embedding

was conducted using the Discrete Wavelet Transform (DWT). We found that a two-

dimensional wavelet transform failed to capture essential features, resulting in an

inaccurate posterior distribution. Conversely, two one-dimensional DWTs provided

adequate embedding for inferring the parameters of interest.

Overall, this study highlights the complex relationship between the parameters of

the AdEx differential equations and the resulting firing patterns. Furthermore, it

underscores the effectiveness of SNPE in parameter inference. The choice of data

embedding techniques, such as one-dimensional DWTs, significantly influences the

accuracy of parameter estimation.

6 Future work

Our future objective is to apply the SNPE algorithm for parameterization on analog

neuromorphic hardware. The goal is to identify suitable hardware parameters to ac-

curately emulate biological processes. To achieve this, we will explore new methods

of data encoding, including deep convolutional autoencoders and transformer archi-

tectures to effectively reduce the dimensionality of the data. Furthermore, since bio-

logical neuron data often contains noise, it is crucial to thoroughly test the robustness

and noise resistance of our embedding and inference methods.
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7 Appendix

Figure 16: Figure 6 from Naud et al. 2008. Tonic spiking in red, adapting in yellow,
initial bursting in green, regular bursting in cyan, irregular spiking in black, and ac-
celerating in blue. The four-dimensional parameter space was reduced to six relevant
planes: (a) a = −5 nS and τw = 100 ms, (b) a = −5 nS and τw = 5 ms, (c) a = 0.001
nS and τw = 100 ms, (d) a = −5 nS and τw = 5 ms, (e) a = 30 nS and τw = 100 ms,
(f) a = 30 nS and τw = 5 ms.
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Figure 17: Same plot as in Figure 3 but with a time resolution of 0.1 ms instead
of 0.001 ms. The results in the pattern classification are less accurate. We fixed
a = 0.001 nS and τw = 5 ms. The colors indicate different firing patterns: tonic
spiking (red), adapting spiking (yellow), initial bursting (green), regular bursting
(cyan), and irregular spiking (black).

Figure 18: Simulated Voltage traces for a time resolution of 0.001ms and 0.1ms. The
voltage traces differ even though the same AdEx parameters were used.
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