
Internship Report

Author: Peter Lake
Supervisor: Julian Göltz

November 15, 2023

Background

This project demonstrates an alternative interpretation for the output of the spiking
neural network (SNN) classification model introduced by Göltz et al. in [1]. Unlike the
original formulation, in which the network’s class prediction and loss function are based
on the differences between the output spike times of the label neurons, the new approach
is based on absolute spike times and is trained using a mean squared error (MSE) loss
function. This is shown to produce a slightly better classification accuracy than the
original method when trained on the Yin-Yang benchmark classification task [2].

The model and the framework used to train it were both introduced in [1]. The
framework, called Fast and deep, is a technique for training networks of leaky integrate-
and-fire (LIF) neurons. The LIF neuron model roughly captures the dynamics of a
biological neuron by modeling the neuron as a simple resistor-capacitor circuit [3] [4].
The neuron’s membrane is represented as a capacitor with capacitance Cm connected in
series with a resistor with resistance 1/gl, which models the membrane’s leakiness, and a
battery with voltage El, which determines the membrane’s rest potential. An additional
current term, I(t), corresponds to the synaptic current caused by spikes received from
presynaptic neurons. The equation governing the voltage u(t) across the capacitor is

Cmu̇(t) = gl [El − u(t)] + I(t).

Since El can be set arbitrarily,1 it’s convenient to set El = 0 so that

Cmu̇(t) = −glu(t) + I(t). (1)

Fast and deep uses current-based synapses with an exponential synaptic interaction ker-
nel. The synaptic current I(t) is given by

I(t) =
∑
i

wi

∑
ti

θ(t− ti) exp

(
−t− ti

τs

)
where wi are the presynaptic weights, ti are the input spike times, τs is the synaptic time
constant, and θ(t) is the Heaviside step function. The first sum runs over all presynaptic
neurons, and the second sum runs over all spikes for each presynaptic neuron. To simulate
action potentials, while integrating Equation (1), as soon as the membrane potential u(t)

1Changing El is equivalent to adding a constant bias to u(t).

1



exceeds the threshold potential ϑ, an output spike is emitted, and the membrane potential
is instantaneously clamped to a reset potential % for a time period τref. The solution to
Equation (1) is reported in [1] and repeated in Equation (4).

The Fast and deep framework provides methods for training networks of LIF neurons
using exact spike times and conventional backpropagation. This is achieved by deriving a
closed form solution for the output spike time of a LIF neuron as a function of the input
spike times and synaptic weights. All the derivative formulas needed for backpropagation
can then be readily derived.

To introduce our new interpretation for the output of the SNN classification model
from [1], we denote by tn the first output spike time of the nth neuron of the output layer
where n ∈ {1, 2, . . . , C} corresponds to each of the C classes. In the original formulation,
the model’s class prediction is taken to be the index of the first-spiking label neuron.
This behavior is trained by minimizing the following cross-entropy loss function:

LXE = log

[
C∑

n=1

exp

(
−tn − tn

∗

ξτs

)]
(2)

where n∗ is the correct class, ξ > 0 is a scaling parameter, and τs is the synaptic time
constant of the LIF neuron. Minimizing LXE encourages the label neuron associated with
the correct class to spike earlier than the remaining label neurons.

In the new formulation, the model’s class prediction is taken to be the index of the
label neuron that spikes closest in time to tcorrect, which is a fixed hyperparameter. This
behavior is trained by minimizing the following MSE loss function:

LMSE = (tn∗ − tcorrect)2 +
∑
n 6=n∗

(tn − tincorrect)2 (3)

where tcorrect, tincorrect > 0 are hyperparameters. Minimizing LMSE encourages the correct
label neuron to spike close in time to tcorrect and the remaining label neurons to spike close
to tincorrect. Note that while LXE is shift-invariant in the sense that it depends only on
the differences between the label neuron spike times tn, LMSE does not have this property
and depends explicitly on the individual spike times.

Experiments

In this section, we tune the hyperparameters tcorrect and tincorrect of the MSE loss function
(Equation (3)) on the Yin-Yang benchmark classification task [2], then compare the
performance of the model when trained using the MSE loss versus the original cross-
entropy loss (Equation (2)).

MSE loss hyperparameter tuning

As a first experiment, we tune the hyperparameters tcorrect and tincorrect of the MSE loss
function when training the model on the Yin-Yang classification task with a hidden layer
size of 120 neurons, which is the value assumed everywhere in this report unless other-
wise indicated. The model is trained multiple times with random weight initializations
for each cell in a grid of (tcorrect, tincorrect) values. As shown in Figure 1, the classifica-
tion error is lowest around (tcorrect, tincorrect) = (1.7τs, τs), which is the tuned value used

2



for all subsequent experiments. In general, the classification error appears lowest when
tcorrect and tincorrect are both close to 1.7τs, which is the average output spike time of the
untrained, randomly initialized network, as can be seen in the left panel of Figure 3 b.
Figure 1 shows the classification error to be approximately invariant under swapping of
tcorrect and tincorrect with a slight preference for tcorrect > tincorrect. This indicates that
the MSE loss function appears to work slightly better when the correct label neuron is
trained to fire after the incorrect label neurons. This is reversed from the original paper
[1] in which the correct label neuron is trained to fire first.

3



0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

tcorrect [τs]

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

t i
n
c
o
rr
e
c
t

[τ
s
]

65
±10

62
±12

43
±5

32.4
±0.9

18
±1

14
±2

14.4
±0.8

16
±2

13
±1

49
±12

69
±13

28.2
±0.4

13
±3

8.2
±0.7

8.7
±0.9

11.5
±0.5

13
±2

19
±3

31
±2

23.3
±0.7

67
±3

1.7
±0.3

2.8
±0.9

11
±3

16
±2

19
±2

19
±3

28.1
±0.5

10
±1

2.6
±0.3

67
±3

3.1
±0.4

12
±1

24
±7

25
±4

24
±2

14
±2

7
±2

2.8
±0.3

3.6
±0.3

66
±3

15
±12

27
±7

25
±7

34
±2

12
±2

11
±2

15
±1

16
±1

12
±2

69
±4

35
±8

46
±17

54
±7

17
±2

21
±3

31
±5

25
±7

40
±9

74
±4

68
±8

53
±8

60
±9

21
±3

32
±5

30
±3

36
±16

52
±4

72
±6

72
±8

65
±14

59
±8

22
±4

30
±4

36
±11

32
±7

54
±11

75
±9

74
±6

62
±7

67
±12

a)

0.75 0.94 1.12 1.31 1.50 1.69 1.88 2.06 2.25

tcorrect [τs]

0.75

0.94

1.12

1.31

1.50

1.69

1.88

2.06

2.25

t i
n
c
o
rr
e
c
t

[τ
s
]

65
±10

22
±3

10
±2

5.9
±0.6

4.9
±0.3

4.2
±0.6

3.7
±0.4

3.5
±0.5

4.3
±0.6

14.2
±0.9

67
±2

2.8
±0.5

2.5
±0.6

2.3
±0.5

1.8
±0.3

1.7
±0.3

3.1
±0.6

6
±3

7
±1

2.5
±0.4

66
±2

1.7
±0.8

2.1
±0.2

2.3
±0.5

2.7
±0.6

3.1
±0.9

7
±3

5.1
±0.3

2.0
±0.5

2.3
±0.7

65
±1

4.2
±0.8

5
±3

3.7
±0.5

4
±1

8
±4

4.0
±0.8

2.5
±0.3

2.3
±0.4

3.4
±0.4

69
±4

2.7
±0.5

3.0
±0.6

4
±2

7
±6

3.3
±0.3

2.8
±0.4

3.0
±0.6

3.2
±0.7

2.6
±0.6

70
±1

3
±1

2.4
±0.2

7
±2

3.0
±0.2

2.9
±0.5

2.6
±0.7

3.2
±0.7

3
±1

2.5
±0.4

68
±2

3
±1

5
±2

3.9
±0.5

4.1
±0.4

4
±1

3.3
±0.3

3.0
±0.5

2.7
±0.3

2.6
±0.6

63
±8

4.3
±0.8

5
±1

6
±1

8
±3

6.5
±0.9

7
±3

6
±1

4
±2

3.8
±0.9

68
±6

b)

1.7%

2.5%

3.9%

5.9%

9.0%

13.8%

21.0%

32.1%

49.0%

74.9%

T
es

t
er

ro
r

(%
)

1.7%

2.5%

3.8%

5.8%

8.8%

13.3%

20.1%

30.5%

46.1%

69.9%

T
es

t
er

ro
r

(%
)

Figure 1: Mean and standard deviation of the final test error on the Ying-Yang dataset
when using the MSE loss with various values of the hyperparameters tcorrect, tincorrect. The
red dot (•) marks the coordinate (tcorrect, tincorrect) = (1.7τs, τs), which is used in the
rest of this report. For each cell, the results from 5 training runs with random weight
initializations are shown. (a) Test errors for (tcorrect, tincorrect) ∈ [0, 4τs]

2. (b) Test errors
for the smaller region of hyperparameter space highlighted in (a).

4



Comparing cross-entropy loss versus MSE loss

Next, we compare the accuracy of the tuned MSE loss function against the original cross-
entropy loss function when training on the Yin-Yang task. The comparison is performed
for several hidden layer sizes ranging from 4 to 128 neurons. As shown in Figure 2, the
MSE loss outperforms the cross-entropy loss both in software simulations and hardware
emulations for hidden layer sizes of 32, 64, and 128 neurons.

(a) Full comparison

4 8 16 32 64 128

Hidden layer size

0

20

40

60

80

T
es

t
er

ro
r

[%
]

Software

Cross-entropy loss

Mean squared error loss

4 8 16 32 64 128

Hidden layer size

0

20

40

60

80

T
es

t
er

ro
r

[%
]

Hardware

(b) Zoomed in

16 32 64 128

Hidden layer size

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

T
es

t
er

ro
r

[%
]

Software

16 32 64 128

Hidden layer size

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

T
es

t
er

ro
r

[%
]

Hardware

Figure 2: Mean and standard deviation of the final test error on the Yin-Yang task versus
the hidden layer size of the network. The two loss functions, cross-entropy and MSE,
are compared when training using software simulation versus hardware emulation. For
each loss function and hidden layer size, the results from 40 (software) or 10 (hardware)
training runs with random weight initializations are shown. The top and bottom rows
show the same data with different x and y-axis scales.

5



Histograms of label neuron spike times

Both the cross-entropy and MSE loss functions encourage a time separation between the
spike times of the correct and incorrect label neurons. To better understand the differing
behaviors that these two loss functions produce, we inspect the distributions of the label
neuron spike times of the network when trained under each loss function, again using the
Yin-Yang task.

In Figure 3, histograms of the spike times of the correct and incorrect label neurons
over the training dataset are shown separately, highlighting the model’s ability to separate
the correct class from the incorrect classes under each loss function. Both loss functions
appear to encourage a strong separation, but the MSE loss achieves a noticeably clearer
separation. Note that for the cross-entropy loss, the correct label neuron is trained to
fire first as per Equation (2), but for the MSE loss, the correct label neuron is trained to
fire last, which was found to be optimal during the hyperparameter tuning above.

Another quantity whose distribution over the training dataset is of interest is the dif-
ference in spike time between the correct label neuron and the closest-to-correct incorrect
label neuron, which is defined as2

∆tXE := tn∗ − min
n6=n∗
{tn}

for the cross-entropy loss and

∆tMSE := tn∗ −max
n6=n∗
{tn}

for the MSE loss. This distribution gives a more explicit idea of how well the model
separates the correct from incorrect classes across the examples. Again, as shown in
Figure 4, both loss functions produce a good separation, but the MSE loss produces a
clearer separation.

2The difference in definitions is due to the fact that for the cross-entropy loss, the correct label neuron
is trained to fire first, while for the MSE loss, the correct label neuron is trained to fire last.

6



(a) Training using cross-entropy loss

0 2 4

t [τs]

0

1000

2000

3000

4000

O
cc

u
rr

en
ce

s

Before training

0 2 4

t [τs]

0

500

1000

1500

2000

O
cc

u
rr

en
ce

s

After training

Correct label neuron

Incorrect label neurons

(b) Training using MSE loss

0 2 4

t [τs]

0

1000

2000

3000

4000

O
cc

u
rr

en
ce

s

Before training

0 2 4

t [τs]

0

2000

4000

6000

O
cc

u
rr

en
ce

s

After training

Correct label neuron

Incorrect label neurons

tcorrect

tincorrect

Figure 3: Histograms of the spike times produced by the label neurons over the entire
Yin-Yang training set. The spike times from the correct (orange) and incorrect (grey)
label neurons are shown separately. The experiment is repeated for the cross-entropy
(top row) and MSE (bottom row) loss functions both before (left column) and after
(right column) training. The model weights for both networks are initialized using the
same seed.

7



(a) Training using cross-entropy loss

−2 0 2

t [τs]

100

101

102

103

O
cc

u
rr

en
ce

s

Before training

−2 0 2

t [τs]

100

101

102

103

O
cc

u
rr

en
ce

s

After training

(b) Training using MSE loss

−2 0 2

t [τs]

100

101

102

103

O
cc

u
rr

en
ce

s

Before training

−2 0 2

t [τs]

100

101

102

103
O

cc
u

rr
en

ce
s

After training

Figure 4: Histograms of the difference in output spike time between the correct label
neuron and the closest-to-correct incorrect label neuron over the entire Yin-Yang training
set. The experiment is repeated for the cross-entropy (top row) and MSE (bottom row)
loss functions both before (left column) and after (right column) training. The model
weights for both networks are initialized using the same seed.

Conclusion

In this report, an alternative output interpretation and corresponding loss function for
the Fast and deep classification model [1] based on the mean squared error was tuned and
compared against the approach used in the original paper. The new approach was shown
to produce a small but clear improvement in accuracy on the Yin-Yang classification task
both in software simulations and hardware emulations for several hidden layer sizes.

8



Appendix

Deriving spike time derivatives using implicit differentiation

Here we derive formulas for the derivatives of the output spike time T of a LIF neuron
with respect to the input spike times ti and synaptic weights wi.

The solution to the LIF equation (Equation (1)) with initial data u(0) = 0 is

u(t) =
1

Cm

τmτs
τm − τs

∑
i

wi

∑
ti

κ(t− ti) (4)

where

κ(t) = θ(t)

[
exp

(
− t

τm

)
− exp

(
− t

τs

)]
is the PSP kernel. Assuming each presynaptic synapse receives exactly one spike, this
can be written more succinctly as

u(t) =
1

Cm

τmτs
τm − τs

∑
spikes tj

wjκ(t− tj). (5)

Let T be the first output spike time and ϑ be the threshold potential. Then u(T ) = ϑ,
so by Equation (5), we have

ϑ = u(T ) =
1

Cm

τmτs
τm − τs

∑
spikes tj

wjκ(T − tj). (6)

Differentiating both sides of Equation (6) with respect to ti gives

0 =
1

Cm

τmτs
τm − τs

∑
spikes tj

∂

∂ti
[wjκ(T − tj)]

⇒ 0 =
∑

spikes tj

∂

∂ti
[wjκ(T − tj)]

⇒ 0 =
∑

spikes tj

[
wjκ

′(T − tj)
(
∂T

∂ti
− δij

)]
⇒ ∂T

∂ti
=

wiκ
′(T − ti)∑

spikes tj
wjκ′(T − tj)

. (7)

Similarly, differentiating both sides of Equation (6) with respect to wi gives

0 =
1

Cm

τmτs
τm − τs

∑
spikes tj

∂

∂wi

[wjκ(T − tj)]

⇒ 0 =
∑

spikes tj

∂

∂wi

[wjκ(T − tj)]

⇒ 0 =
∑

spikes tj

[
δijκ(T − tj) + wjκ

′(T − tj)
∂T

∂wi

]
⇒ ∂T

∂wi

=
−κ(T − ti)∑

spikes tj
wjκ′(T − tj)

. (8)

9



Equations (7) and (8) are formulas for the derivatives of the output spike time T with
respect to the input spike times ti and synaptic weights wi. They are particularly con-
venient because they are independent of the method used to calculate T , and because
they explicitly incorporate T . This has been argued in [1] to make training more robust
in scenarios where the exact neuron parameters are unknown and the real output spike
time may therefore differ from the one calculated under ideal assumptions.

References

[1] J. Göltz, L. Kriener, A. Baumbach, S. Billaudelle, O. Breitwieser, B. Cramer, D.
Dold, A. F. Kungl, W. Senn, J. Schemmel, K. Meier, and M. A. Petrovici. “Fast
and energy-efficient neuromorphic deep learning with first-spike times”. In: Nature
Machine Intelligence 3.9 (Sept. 2021), pp. 823–835. issn: 2522-5839. doi: 10.1038/
s42256-021-00388-x. url: https://doi.org/10.1038/s42256-021-00388-x.

[2] L. Kriener, J. Göltz, and M. A. Petrovici. “The Yin-Yang Dataset”. In: Proceedings
of the 2022 Annual Neuro-Inspired Computational Elements Conference. NICE ’22.
Virtual Event, USA: Association for Computing Machinery, 2022, pp. 107–111. isbn:
9781450395595. doi: 10.1145/3517343.3517380. url: https://doi.org/10.
1145/3517343.3517380.

[3] M. A. Petrovici. “Form vs. function: theory and models for neuronal substrates”.
PhD thesis. University of Heidelberg, Germany, 2015. url: http://www.ub.uni-
heidelberg.de/archiv/21402.

[4] P. Dayan and L. F. Abbott. Theoretical Neuroscience: Computational and Mathe-
matical Modeling of Neural Systems. The MIT Press, 2005. isbn: 0262541858.

10

https://doi.org/10.1038/s42256-021-00388-x
https://doi.org/10.1038/s42256-021-00388-x
https://doi.org/10.1038/s42256-021-00388-x
https://doi.org/10.1145/3517343.3517380
https://doi.org/10.1145/3517343.3517380
https://doi.org/10.1145/3517343.3517380
http://www.ub.uni-heidelberg.de/archiv/21402
http://www.ub.uni-heidelberg.de/archiv/21402

