
Internship Report

Neural Networks

Heidelberg University, Electronic Vision(s) Group

Supervisor: Elias Arnold

Abstract

Subject of this report are the delays in spiking neural networks
(SNNs). I recreated the temporal convolution based learning algo-
rithm introduced by Timothee Masquelier on a multiple neuron SNN
to learn the synaptic delays. Doing so, I got familiar with PyTorch
and BrainScaleS-2 (BSS-2) own machine learning (ML) framework
hxtorch as well as the theory of machine learning especially in SNNs.
The learning algorithm and the neural network is demonstrated with
various plots which will be presented in this report.

1

Delay Learning in Spiking

June 2024

Lennart Tabel

Contents

1 Introduction 2

2 Theory 3
2.1 Spiking Neural Networks . 3
2.2 Delays . 4
2.3 Neuromorphic Hardware and BrainScaleS-2 5

3 Methods 7
3.1 Implementation of the Gaussian Kernel 7
3.2 Delay Learning . 7
3.3 Delays on BSS-2 . 8

4 Results 10

5 Summary & outlook 11

1 Introduction

The basic idea of SNNs is to resemble the architecture and functionality of
biological brains. Since the brain is immensely complex we decompose it to
only the most relevant components with the most important being synapses
and neurons. The hope is to create a computing device with similar func-
tionality but which we can better understand. This attempt leads to a whole
new field of research called neuromorphic computing. Because of the event-
based information processing these computing devices have proven to be
very energy-efficient and their inherent time-dependency makes them very
promising for tasks like speech-recognition. The relevant parameters which
are typically tuned in artificial neural networks (ANNs) are the strengths
of the inter-neuron connections (synaptic weights). SNNs additionally react
differently to signals which are spaced in time. Synaptic delays can there-
fore increase the functional capacity of SNNs and enable the recognition of
complex spatio-temporal patterns. ML algorithms are used to find the best
parameter values in order to optimize the networks behavior, but making
ML work in SNNs proves to be a difficult endeavor mainly because of the
backpropagation step, commonly used to optimize ANNs. The signal-spike is
non-differentiable by nature and therefore it needs new approaches and ideas

2

with the most prominent one being the so called surrogate gradient. This
was successfully implemented for synaptic weights learning but algorithms
for learning the delays are still lacking and subject to current research.

In Hammouamri, Khalfaoui-Hassani, and Masquelier [3] it was shown that
a convolution based learning algorithm for synaptic delays has very promis-
ing influence on the performance of the network. I recreated aspects of this
algorithm, which will be presented and illustrated in the following report. I
demonstrate the successful implementation on a toy-setup where the target
spike time of two output neurons receiving spikes from three input neurons
was learned by adjusting the synaptic delays.

2 Theory

2.1 Spiking Neural Networks

Neurons are the building blocks of SNNs. They were first discovered by Golgy
and Cajal [8] who coined the so-called Neuron-doctrine and revolutionized the
young field of neuroscience in the beginning of the 20th century. In the 1950s
the dynamic inside neurons and the synapses was examined by Hodgkin and
Huxley [4]. They described the electrical values inside of the neuron with a
series of differential equations. By abstracting the specific biological behavior
of the model we can get a simplified more general equation which still has
the same key dynamics and relationship between voltage and current. It’s
called the leaky integrate-and-fire (LIF) model [2] and is the most widely
used model in SNNs for its simplicity and efficiency:

τm
du

dt
= −(u(t)− ureset) +RI(t). (1)

Here τm is the membrane time constant, ureset the potential at rest, R
the input resistance and I(t) & u(t) the input current and the membrane
potential respectively at time t. A spike occurs when the membrane potential
exceeds the threshold ϑ resetting the membrane potential to ureset.

S(t) = Θ(u(t)− ϑ) (2)

I is an arbitrary current, however, in SNNs its either given by weighted
presynaptic spikes or an exponentially decaying current triggered by the

3

presynaptic spikes which we assume here. This behavior is linear over time
and also over many synapses meaning that the neuron integrates over all
incoming signals. In fig. 1 the dynamic of this model is shown.

Figure 1: Dynamic inside a LIF neuron: The voltage changes over time by
integrating the input current. Upon arriving at the threshold voltage an
output spike is being emitted and the voltage resets. The neuron ’leaks’
causing its potential to steadily decay towards ureset.

2.2 Delays

When neurons receive multiple signals a very important factor is the time
difference of the arrival times since it will respond more strongly to coincident
signals. By changing the time it takes for specific synapses to transport the
signal we can bring arriving signals closer together or spread them out in time
effectively changing the strength of reaction caused. Therefore, its possible
for the network to detect complex spatio-temporal patterns. Plastic delays

4

can greatly enhance the network’s performance. It was even shown by Maass
and Schmitt [6] that a SNN with k adjustable delays can compute a much
richer class of functions than with k adjustable weights. Learning of these
delays though proves to be a very hard task. The discrete nature of the spike
makes it hard to apply derivative dependent algorithms like backpropagation.

The training method applied in my internship is the one suggested by Ham-
mouamri, Khalfaoui-Hassani, and Masquelier [3]. Instead of learning the
delays directly we first model them by a 1-dimensional temporal convolu-
tion. Each synaptic connection is represented by a kernel with only one
non-zero element whose position corresponds to the delay time. To make the
position inside the kernel differentiable we model it with a Gaussian distri-
bution centered around the delay value, facilitating smooth adjustment of
delays during training. The following equations conceptualize this behavior.

Spost(t) = w · Spre(t− d) = k ∗ Spre(t) (3)

Here w is the weight, Spre is the emitted spike from the presynaptic neuron
and Spost the received spike from the postsynaptic neuron. The delay d is
modeled by the kernel k. The length of the kernel is equal to the maximum
delay Td and n stands for the position of the element inside the kernel.

k[n] =

{
w if n = Td − d− 1

0 otherwise
(4)

In order to learn the position we now transform them to Gaussian kernels.

k[n] = C exp

(
−1

2

(
n− Td − d− 1

σ

)2
)

(5)

C is chosen so that the sum over all kernel elements equals the weight w.
The standard deviation σ is continuously decreased while learning in order
to learn distant long-term dependencies at the start and refine the delay with
increasing precision in the end.

2.3 Neuromorphic Hardware and BrainScaleS-2

Classical von Neumann architecture is the most widely used architecture for
computers and is standard for general purpose computing. However, the

5

separation between central processing unit (CPU) and memory - also called
von Neumann bottleneck - limits its speed and ability for parallel processing
which is more and more needed in modern AI applications like Deep Learning
and limits its energy efficiency, since moving data is very energy intensive.
Neuromorphic hardware tries to solve these problems with its decentralized
architecture mimicking the human brain. Its processing is highly parallel and
the event based information transfer as well as the unification of memory and
computing make it very energy efficient.

BSS-2 has 512 neurons distributed across two hemispheres with each hav-
ing 256 synapses [7]. Analog circuits emulate neuron and synapse dynamics
while digital circuits handle spike event communication and chip configura-
tion. The system emulates neuron dynamics 1000 times faster than biological
real-time due to the silicon substrate properties.

Figure 2: This figure shows how the Gaussian kernel changes the dynamics
inside of the LIF neuron. The input spike arrives delayed and smeared out
over time at the neuron and causes the membrane potential to increase more
slowly.

6

After delayed snapseInput signal

After LIF neuron

3 Methods

3.1 Implementation of the Gaussian Kernel

We now apply the theory on software by implementing a DelaySynapse class
and using the conv1d function from the torch.nn.Functional PyTorch
module. The software framework hxtorch [9] expands PyTorch to SNNs
and enables its usage on the BSS-2 hardware. By using its LIF class we
can create a single signal propagation and plot the relevant state variables
over time to illustrate the behavior (fig. 2). One clearly sees the difference
compared to fig. 1, the input signal is delayed and the current doesn’t jump
but instead increases continuously.

The next step is to create a vectorized implementation which handles
multiple input and output neurons. Each synapse needs its own kernel. I
demonstrated the implementation by letting three input neuron connect to
two output neuron, the six synapse kernels decide over the weights and delays.
Figure 3 shows the dynamics of this system, as you can see Output Neuron
2 is able to spike because the signals from the input neurons are brought
together in time through the delays. The opposite occurs in Output Neuron
1 where the delays distribute the signals in time and even though the weight
in the last synapse is doubled no spike is being emitted. This illustrates how
only by tweaking the values of the kernel spatio-temporal patterns can be
recognized.

3.2 Delay Learning

In order to learn the delays we create a model which executes the forward pass
and make the delay a learnable torch parameter inside of the DelaySynapse
class. The idea is to first show the learning capabilities by making a loss
function which calculates the difference between the spike time and a target
time. In order to get the value of the spike time, I use the class ToSpikeTimes
[1] which provides backward functionality for translating a binary spike tensor
to spike time in a differential manner. We illustrate the learning in fig. 4,
as can be seen the spike times after learning match more closely with the
target time by decreasing the delay for Output Neuron 1 and increasing it
for Output Neuron 2.

7

Figure 3: Multidimensional signal propagation from 3 inputs to 2 output
neurons. The weight is equal in every synapse besides the one connecting
input 3 to output 1 where it is doubled. The delays from the three input
signals are 10, 100 and 300 to Output Neuron 1 and 120, 50 and 10 to Output
Neuron 2.

3.3 Delays on BSS-2

Implementation of the delays on hardware is only possible on BSS-2 through
digitally delaying the signal by rerouting it through the field-programmable

8

(a) LIF before learning (b) LIF after learning

Figure 4: The delays before learning are 2 everywhere. The target spike time
are 38 for Output Neuron 1 and 55 for Output Neuron 2.

gate array (FPGA) or the host computer. The output of each neuron is
a binary single spike without a temporal expansion. In order to facilitate
learning in-the-loop we need to approximate the effect of the Gaussian we
used in software. There are three main approaches to achieve this:
The first is to distribute the output spike on multiple synapses which all
connect to a single receiving neuron. By tweaking the weights and delays
for each hardware synapse the arriving signal can be made into the same
Gaussian-approximating shape which we saw earlier.
The second option is to use only one synapse to convey multiple spikes where
the spike strength is adjusted for each single spike in order to recreate the
Gaussian. This can be done by using three of the bits, which are normally
used to route the spike, for encoding of the spike strength.
The third and easiest option is to only use the Gaussian for the digital back-
propagation and learning algorithm and simply assuming the difference of
behavior between the Gaussian spike and a standard spike can be neglected
on hardware.

9

Rectangle

Rectangle

4 Results

After finalizing the code, the delay learning worked out very well in the end.
We managed to learn delays over the whole time span by increasing the size
of the kernel. Furthermore it was also possible to learn delays which are near
the end of the kernel (0 and T(max)). Figure 5 shows the learning behavior
over a long time span. As can be seen the learning is proportional to the
steepness of the loss function and continuous.

Figure 5: This figure show the learning process of the network. The input
time is 100 and the target time for the spike arrival is 900. While the spike
time starts at around 180 it continuously increases and asymptotically ap-
proaches the target time in order to minimize the loss function.

10

5 Summary & outlook

In this bachelor internship, I validated the convolution-based learning algo-
rithm. I managed to create the expected dynamics inside the neuron for a
multidimensional system and showed how learning can be done.
The next step will be the implementation of this learning on the BSS-2 sys-
tem, where the previously discussed obstacles need to be considered. The
idea is to first recreate it on only a single neuron as a proof of concept and
later on a larger network to solve an actual task, e.g., the Yin-Yang task [5],
and benchmark it against other learning methods on BSS-2.

11

References

[1] Luca Blessing. “Gradient Estimation With Sparse Observations for Ana-
log Neuromorphic Hardware”. Masterarbeit. Heidelberg University, 2023.

[2] Wulfram Gerstner et al. Neuronal Dynamics: From Single Neurons to
Networks and Models of Cognition. Cambridge University Press, 2014.

[3] Ilyass Hammouamri, Ismail Khalfaoui-Hassani, and Timothée Masque-
lier. “Learning Delays in Spiking Neural Networks using Dilated Con-
volutions with Learnable Spacings”. In: The Twelfth International Con-
ference on Learning Representations. 2024. url: https://openreview.
net/forum?id=4r2ybzJnmN.

[4] A. L. Hodgkin and A. F. Huxley. “A quantitative description of mem-
brane current and its application to conduction and excitation in nerve”.
In: The Journal of Physiology 116.3 (1951), pp. 499–544. doi: https:
//doi.org/9.1113/jphysiol.1952.sp004764. eprint: https://
physoc.onlinelibrary.wiley.com/doi/pdf/9.1113/jphysiol.

1952.sp004764. url: https://physoc.onlinelibrary.wiley.com/
doi/abs/9.1113/jphysiol.1952.sp004764.

[5] Laura Kriener, Julian Göltz, and Mihai A. Petrovici. “The Yin-Yang
dataset”. In: arXiv (2021). url: https://arxiv.org/abs/2102.08211.

[6] Wolfgang Maass and Michael Schmitt. “On the Complexity of Learning
for Spiking Neurons with Temporal Coding”. In: Information and Com-
putation 153.1 (1999), pp. 26–46. issn: 0890-5401. doi: https://doi.
org/10.1006/inco.1999.2806. url: https://www.sciencedirect.
com/science/article/pii/S0890540199928067.

[7] Christian Pehle et al. “The BrainScaleS-2 Accelerated Neuromorphic
SystemWith Hybrid Plasticity”. In: Frontiers in Neuroscience 16 (2022).
issn: 1662-453X. doi: 10.3389/fnins.2022.795876. url: https:
//www.frontiersin.org/journals/neuroscience/articles/10.

3389/fnins.2022.795876.

[8] Santiago Ramón y Cajal. “Estructura de los centros nerviosos de las
aves”. In: Revista Trimestral de Histoloǵıa Normal y Patológica 1 (1888).
Early work using the Golgi method, pp. 1–10.

[9] Philipp Spilger et al. hxtorch.snn: Machine-learning-inspired Spiking Neu-
ral Network Modeling on BrainScaleS-2. 2022. arXiv: 2212.12210 [cs.NE].

12

https://openreview.net/forum?id=4r2ybzJnmN
https://openreview.net/forum?id=4r2ybzJnmN
https://doi.org/https://doi.org/9.1113/jphysiol.1952.sp004764
https://doi.org/https://doi.org/9.1113/jphysiol.1952.sp004764
https://physoc.onlinelibrary.wiley.com/doi/pdf/9.1113/jphysiol.1952.sp004764
https://physoc.onlinelibrary.wiley.com/doi/pdf/9.1113/jphysiol.1952.sp004764
https://physoc.onlinelibrary.wiley.com/doi/pdf/9.1113/jphysiol.1952.sp004764
https://physoc.onlinelibrary.wiley.com/doi/abs/9.1113/jphysiol.1952.sp004764
https://physoc.onlinelibrary.wiley.com/doi/abs/9.1113/jphysiol.1952.sp004764
https://arxiv.org/abs/2102.08211
https://doi.org/https://doi.org/10.1006/inco.1999.2806
https://doi.org/https://doi.org/10.1006/inco.1999.2806
https://www.sciencedirect.com/science/article/pii/S0890540199928067
https://www.sciencedirect.com/science/article/pii/S0890540199928067
https://doi.org/10.3389/fnins.2022.795876
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.795876
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.795876
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.795876
https://arxiv.org/abs/2212.12210

	Introduction
	Theory
	Spiking Neural Networks
	Delays
	Neuromorphic Hardware and BrainScaleS-2

	Methods
	Implementation of the Gaussian Kernel
	Delay Learning
	Delays on bss2

	Results
	Summary & outlook

