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Abstract
As a first step towards in-the-loop gradient-based training of multi-compartmental neuron models on the
BrainScales-2 (BSS-2) architecture, this internship establishes a workflow for the simulation of specified
morphologies with gradient support. Different schemes for numerical integration are tested on a 3-compartment
neuron consisting of an AdEx (Adaptive Exponential Leaky Integrate-and-Fire) soma as well as passive basal
and apical dendrites. For this, a custom solver built in PyTorch is compared to a reference routine set up
with Brian2 in simulation. Alongside other testing, the custom solver is trained on an optimization task to
verify the proper computation and passing of gradients.

In simulations using spike-based input, the custom solver produces spike times within 0.1ms to the ref-
erence. Both solvers produce the same characteristics in the membrane traces regarding the deployed AdEx
dynamics and the specified refractory period. The training procedures in the optimization task show the full
differentiability of the custom solver and its support for faithful backpropagation of gradients.
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Motivation
Spiking Neural Networks (SNNs) provide a biologically grounded alternative to conventional artificial neu-
ral networks by encoding and processing information through discrete, spike-based events. Using multi-
compartmental neuron models in SNNs instead of point-like neurons further enhances biological realism by
introducing spatial complexity. Furthermore, specific dynamics for compartments and their interaction can
be investigated [8].

The neuromorphic platform of BSS-2 enables fast and energy-efficient emulation of SNNs on analog hard-
ware [7]. On its circuits, Adaptive Exponential Leaky Integrate-and-Fire (AdEx) dynamics are implemented.
Simulating non-linear dynamics such as AdEx poses a challenge for the numerical integration of the voltage
updates and is not supported by every solver. For example, the JAX based tool JAXLEY [1] is a fully differ-
entiable simulator for multi-compartmental neuron models. It has pre-defined ionic channels for specific,
non-linear models, however not for AdEx (also, the internal Fire channel does not support gradients). On
the other hand, there are non-differentiable platforms like Brian2, where user-specified, non-linear dynamics
come without the support for the backpropagation of gradients.

Issues of differentiability are inherent to spike-based computation due to the use of non-differentiable step
functions used for modeling spike events. Soft spiking mechanisms using surrogate gradients can overcome
this barrier by the means of differentiable approximation. An interface for the gradient-based training of
point-like neurons on the BSS-2 hardware was already implemented in the scope of a master thesis by Si-
mon Jonscher [4]. The aim now is to extend this to the training of multi-compartmental neuron models.

For this, the basis of the single neuron case is essential. To replicate the behaviour of complex, biological
neurons, multi-compartmental neuron models are deployed [5]. In this report, the differntiable simulation
of a 3-compartment neuron with an AdEx soma and passive dendrite compartments is established. Before
looking at networks consisting of multiple neurons, the first step of the bachelor thesis ensuing this report
will be to move this differentiable single neuron model to BBS-2 hardware.

Employing and testing gradient-based learning on neuromorphic hardware helps to bridge the gap between
biologically inspired spiking models and modern optimization techniques. By introducing gradient support
to the simulation of multi-compartmental neuron models, this report helps to lay the ground work for this
undertaking.
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Theoretical Background
Before going into results of simulation, the necessary theoretical background for the experiment setup is
presented. This covers establishing a system of coupled Ordinary Differential Equations (ODEs) passed to
the solvers, as well as the methods of numerical integration used by the solvers to approximate solutions (in
this case, the voltage traces of the individual compartments).

Setting up the ODEs
Each neuron compartment follows an individual equation governing the evolution of the compartmental
membrane voltage in time [3]. These are usually modeled using a discretized version of the cable equation,
effectively treating the different compartments as RC circuits. In general, each compartment i contributes

Ci
dVi

dt
“ gℓpVℓ ´ Viq

looooomooooon

Leak current

`
ÿ

j

gijpVj ´ Viq

loooooooomoooooooon

Axial currents

` Iext,i
loomoon

External stimulus

` Idyn,i
loomoon

Extra model dynamics

(1)

Ci : Membrane capacitance
Vi : Membrane voltage
gℓ : Leak conductance
Vℓ : Leak current
gij : Axial conductance

to form a system of coupled ODEs. The gij define the coupling strength between compartments i and j. For
disconnected compartments, gij is zero. Thus, the gij describe the topology of the neuron. Iext,i can take
many forms. The performed simulations exclusively use synaptic input, Isyn,i. Through Idyn,i, characteris-
tic dynamics of different compartments are specified. In the case of AdEx dynamics for the soma discussed
in this report, we regard

Idyn,s “ gℓ∆exp exp

ˆ

Vs ´ Vexp

∆exp

˙

loooooooooooooomoooooooooooooon

Exponential depolarization current

´ w
loomoon

Adaptation Current

. (2)

∆exp : Slope factor
Vexp : Exponential threshold

Here, the adaptation current evolves as

τw
dw

dt
“ apVs ´ Vℓq ´ w . (3)

τw : Adaption time constant
a : Subthreshold adaption conductance

The compartment follows a spike mechanism, where Vs ě Vth triggers

Vs Ñ Vreset ,

w Ñ w ` b .
(4)

Vth : Spike threshold
Vreset : Reset voltage

b : Spike increment

If a spike occurs, a refractory period is activated during which voltage updates are frozen. This prevents
subsequent spikes after the compartment has fired.
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Numerical Integration Schemes
For the numerical integration of the introduced system, a variety of different schemes can be used. A first,
simple approach is the Forward Euler scheme which computes updates for equations of the form

dV

dt
“ fpV, tq (5)

as

Vt`∆t “ Vt ` ∆t ¨ fpVt, tq. (6)

However, this method can become unstable for large ∆t or complex morphologies [9]. For this reason,
implicit schemes like Backward Euler are introduced where updates solve for the unknown Vt`∆t instead:

Vt`∆t “ Vt ` ∆t ¨ fpVt`∆t, t ` ∆tq. (7)

These are better at handling stiff systems (where different variables evolve on different time scales). To
leverage the sparsity of the neurons tree-like structure and make the solver more efficient, we can further
bring the system into the form

GV rt`1s “ RHSrt`1s (8)

where V rt`1s and RHSrt`1s are vectors and G is a N ˆ N matrix (N “ Number of compartments). In
RHSrt`1s, all of the terms not explicitly relying on V rt`1s are collected. To efficient solve such a system, the
Hines algorithm [2] together with Hines numbering can be deployed. Hines numbering renders each com-
partment only dependent on itself and its parent compartment. This is achieved by reordering the branches of
the neuron tree in a way that all child branches are named before their parents. Figure 1 shows the numbering
procedure for a 5-compartment neuron in branch representation1, which will become powerful when dealing
with more complex morphologies or networks consisting of multiple neurons. Figure 2 shows a possible
configuration for a Hines-numbered 3-compartment neuron with the soma as the parent compartment.

Figure 1: Hines Numbering procedure: The compartments of the neuron tree are renumbered such that all
children are named before their parents. Any configuration satisfying this is valid.

Figure 2: Linear representation of a Hines-numbered 3-compartment neuron with the soma as the parent
compartment.

Hines renumbering renders theGmatrix sparse and maximal tridiagonal. For the example of the 3-compartment
neuron with an AdEx soma and passive dendrites, this yields

G “

»

–

Ca

∆t ` gℓ,a ` gas 0 ´gas
0 Cb

∆t ` gℓ,b ` gbs ´gbs
´gas ´gbs

Cs

∆t ` gℓ,s ` gas ` gbs ´ BVs
Iexp

fi

fl (9)

1Branches are connected using nodes to form the neuron tree. Structures on branches, like compartments, are referred to as segments.
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with Iexp denoting the exponential depolarization current from equation (2). This form enables efficient
forward elimination and back substitution. This is leveraged by the Hines scheme, rendering itOpNq instead
of OpN3q as with regular lower-upper (LU) decomposition. To solve equation (8), the Hines algorithm uses
two procedures: Triangulization (TRIAG) and Backsubstitution (BKSUB), both shown in Figure 3. First,
TRIANG is applied to the branches in the original order. Then, BKSUB is applied following the Hines-
reordering.

TRIANG

Do for i = second segment of the branch to the last
segment of the branch:

Ai,i “ Ai,i ´ Ai,i´1pAi,i´1{Ai´1,i´1q

RHSi “ RHSi ´ RHSi´1pAi,i´1{Ai´1,i´1q

If the last segment, j, of the branch is connected to
a node, k, then:

Ak,k “ Ak,k ´ Aj,kpAk,j{Aj,jq

RHSk “ RHSk ´ RHSjpAk,j{Aj,jq

BKSUB

If the last segment, j, of the branch is connected to
a node, k:

Vj “ pRHSj ´ VkAj,kq{Aj,j

else:
Vj “ RHSj{Aj,j

Do for i = next-to-last segment of the branch to the
first segment:

Vi “ pRHSi ´ Vi`1Ai,i`1q{Ai,i

Figure 3: Procedures of the Hines algorithm as presented in [2]. Here, A “ G.

In general, there are two options for dealing with non-linearities. The first one is to use the Hines procedure
with a designated scheme for linear terms only and have a different scheme deal with non-linear contributions
[10]. The second option is to use a scheme that can handle non-linear entries in the G matrix like displayed
in equation (9). For the latter, a robust candidate is the Newton-Raphson scheme. Given a non-linear system
of equations is in the form

F pV q “ 0, (10)

it computes update using a Jacobian J “ BF
BV as

V
rt`1s

k`1 “ V
rt`1s

k ´ J´1pV
rt`1s

k qF pV
rt`1s

k q. (11)

This (with full support for the Hines algorithm using Hines numbering) is whats being implemented by the
custom solver presented in this report. For this, equation (8) is brought into the form of equation (10) by
subtraction. A Taylor expansion of F pV q then implies

F pV
rt`1s

k q ` Jk ¨ δVk « 0. (12)

The index k in both of these equations denotes the inner iterations eventually converging to V rt`1s, for which
the solver performs

p1q : δVk “ solve pJk,´F pV
rt`1s

k qq,

p2q : Vk`1 “ Vk ` δVk.
(13)
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Results of Simulations
Two solvers are set up to simulate voltage traces under identical experiment conditions (Table 1): a custom
Hines/Newton-Raphson solver and Brian2 for reference. Alongside the investigation of the behaviour of
membrane trace characteristics, the spike times of the soma compartment are compared. The results are
shown in Figure 4 for a runtime of 200ms (left plot) and 800ms (right plot) with an integration time step
of 0.01ms.

Forward Euler (Brian2)
First, the Brian2 simulator employing an explicit Forward Euler scheme is regarded. To investigate soma
spikes, Isyn,s “ 280 pA “ const. is set. The spike threshold is set at Vcut “ Vexp ` 5∆exp “ ´40mV.
If a spike occurs, a refractory period of tref “ 5ms is introduced and a spike increment of b “ 100 pA is
applied tow. A full list of initialization values of all parameters is shown in Table 1 (see additional material).
The 200ms simulation produces soma spikes at 26.3ms and 129.4ms. Characteristics like the exponential
depolarization before spiking or tref can be observed distinctively.

Implicit Euler (Hines/ Newton-Raphson)
The second simulation uses the custom solver which implements a Newton-Raphson scheme. For the dis-
cretization, Backward (Implicit) Euler is used. The solver is built in PyTorch with full support for gradient
backpropagation using soft spiking and surrogate gradients. Experiment setup and parameters configuration
are copied from the previous simulation with Brian2. Soft spiking disabled for a direct comparison with the
Brian2 reference. For a runtime of 200ms, soma spikes are observed at 26.3ms and 129.3ms. Notice-
ably, the second spike event happens 0.1ms earlier than in the reference. There is no visible difference to
the reference for the aforementioned characteristics in the membrane traces, which closely follow the ones
simulated with Brian2 at all times.

Long-run comparison
To further examine differences in spike timing, the experiment setup is copied for both solvers and re-run
over an extended simulation runtime of 800ms. The results are shown in the right plot of Figure 4. A subtle
increase of the difference in spike times can be observed, exceeding 0.1ms (maximum difference in the
simulation over 200ms). The largest difference to be observed is 0.3ms for the last occurring spike.

Spike-based Input
Spike-based inputs have higher biological plausibility and mimic more closely how neurons are stimulated
on the BrainScales-2 hardware [7]. For the simulations, spike input of 1000 pA is injected to the apical
dendrite compartment. Selected events are also injected into the soma at 300 pA, with feedforward shift of
10ms. The parameters are now initialized with the values listed in Table 2. This simulation is also conducted
over 200ms using a simulation step of dt “ 0.01ms. Figure 5 shows the results. The first soma spike differs
by 0.1ms, the second spike time matches perfectly. As in the previous experiment, both simulations seem
to produce the same voltage traces for the individual compartments.

Soft Spiking/ Gradient Computation
For testing gradient support, the custom solver is again subjected to the same spike-based input as in previous
simulation and regarded over 50ms to closer examine the first soma spike. The time constant of the adaption
current τw is slightly perturbed as shown in Figure 6, resulting in a slightly delayed spike timing. A gradient-
based parameter optimization task is set up around the training of τw to produce the initial spike time. For
this, τw is wrapped as a torch.nn.Parameter to make it trainable. Furthermore, requires_grad=True needs
to be set inside the training loop. The loss function is chosen as the Mean Squared Error (MSE) of the
difference in spike timing:

L “ ptout ´ trefq
2
. (14)
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Figure 4: Left: Simulation of voltage traces with custom solver and Brian2 as a reference. Both simulations use the
same neuron parameters, listed in Table 1. Also, both simulations are conducted over 200ms runtime with a
time step of 0.01ms and deploy explicitly synaptic input current into the soma (Isyn,s “ 280 pA “ const.).
Right: Same simulation over 800ms runtime.

For this, tout and tref are pulled from the training model with τw “ 50ms and the reference model with
τw “ 100ms, respectively. To enable backpropagation, a Straight-Through-Estimator (STE) is defined that
approximates the spike via a sigmoid function in the backward pass. The sigmoid gradient is of the form

dσβpxq

dx
“ β ¨ σβpxq ¨ p1 ´ σβpxqq,

σβpxq “
1

1 ` e´βx

(15)

with β “ 50.0. For the discrete event of the soma spike, a soft spike function is defined by computing a
weighted average of the spike train entries over time. In the training loop, a standard ADAM optimizer [6]
is used. After 100 epochs, a training value of τw “ 90.90ms is determined and the learned spike timing is
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27.07ms. This already closely approximates the ground truth of τw “ 100ms with a corresponding spike
time of 27.01ms. Figure 7 shows visualizations of the training procedure.

Figure 5: Simulation of the 3-compartment neuron when stimulated using spike-based input. The simu-
lation is conducted over 200ms with a time step of 0.01ms. Spikes are injected into the apical
dendrite compartment at t P t10, 30, 70, 100, 110, 150, 190u ms. Selected input events are also
injected into the soma compartment with a feedforward shift of 10ms at t P t20, 80, 140u ms.
Again, the custom solver is compared to Brian2 as reference.
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Figure 6: Times of the first soma spike from Figure 5 before and after perturbation of τw.

Figure 7: Top: Times of the first soma spike for selected epochs. Bottom: Training values of τw colored by
the loss value determined using equation (16).

The results show that gradient descent is implemented faithfully. After an initial overshooting, the loss forces
the training parameter to approach the ground truth. This results in a controlled learning of the correct spike
timing.
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Specification of Methods
For the custom Hines/Newton-Raphson solver, it is to note that the update of the adaptation current is realized
semi-explicitly as

wt`1 “ wt ` ∆t ¨

ˆ

apV t`1
s ´ Vℓq ´ wt

τw

˙

. (16)

In simulations using spike-based stimulation, input currents are subjected to a decay time constant of 5ms
in the form of

dIsyn

dt
“ ´

Isyn

5ms
. (17)

Discussion
The custom solver developed in this internship seems to faithfully reproduce the voltage traces generated
with Brian2, an established tool for simulating multi-compartmental neuron models. In simulations over
200ms runtime, differences in spike timing do not exceed 0.1ms for all types of synaptic input tested.
These differences are considered as negligible. Larger differences in spike timing were able to be observed
for Isyn,s “ 280 pA “ const. over a runtime of 800ms. Here, a gradual increase of the 0.1ms reached
0.3ms for the last occurring spike. This is likely due to the constant synaptic input, not indicative of any
serious flaws in the custom solver.

The surrogate gradient in the backpass of the STE defined for the training of τw is rather complex. With
setting β “ 50, the sigmoid is modeled to closely follow the step function of the spikes. This is nice for the
approximation, but expensive in computation. To render the simulation more efficient, replacing the sigmoid
by a linear function should be considered.

Outlook
In order to use it for other than the specified dynamics, further generalization of the custom solver is in order.
Further, computational efficiency and thus overall simulation duration is aimed to be improved. It is also
planned to explore JAX-based implementations. One possible pathway for this would be to define a custom
AdEx channel and a differentiable spike mechanism for JAXLEY, an established JAX-based simulation tool
for simulating multi-compartmental neuron models. Another option would be to rewrite the custom solver in
JAX and implement desired functionality manually. After this, the first step of the bachelor thesis following
this internship will be the gradient-based training of multi-compartmental neuron to the neuromorphic hard-
ware on BSS-2. For this, relating simulation parameters to hardware parameters will need to be examined.
The overarching aim is to add gradient based, in-the-loop training of multi-compartmental neuron models to
the BSS-2 software stack (depending on the final version of the solver either in hxtorch or jax-snn). This will
allow to replicate the behaviour of complex biological neurons in a new setting of gradient-based learning. If
this is still possible in the scope of the bachelor thesis, this would then be moved to the training of networks
consisting of multiple multi-compartmental neurons.
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Additional Material

Symbol Description Value
Cs Soma capacitance 125 pF
Ca Apical dendrite capacitance 100 pF
Cb Basal dendrite capacitance 50 pF
gℓ,s Soma leak conductance 10 nS
gℓ,a Apical leak conductance 2 nS
gℓ,b Basal leak conductance 5 nS
Vleak Leak reversal potential ´65mV
Vexp Exponential spike threshold ´50mV
∆T Exponential slope factor 2mV
a Subthreshold adaptation 4 nS
τw Adaptation time constant 100ms
Vreset Reset potential ´70mV
Vcut Spike cutoff threshold Vexp ` 5 ¨ ∆T

gas Soma–apical coupling 5 nS
gbs Soma–basal coupling 5 nS
Isyn,s Somatic input current 280 pA
Isyn,a Apical input current 0 pA
Isyn,b Basal input current 0 pA

Table 1: Neuron parameters used in simulations with Isyn,s “ const.
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Symbol Description Value
Cs Soma capacitance 120 pF
Ca Apical dendrite capacitance 60 pF
Cb Basal dendrite capacitance 40 pF
gℓ,s Soma leak conductance 10 nS
gℓ,a Apical leak conductance 8 nS
gℓ,b Basal leak conductance 5 nS
Vleak Leak reversal potential ´65mV
Vexp Exponential spike threshold ´55mV
∆T Exponential slope factor 3mV
a Subthreshold adaptation 4 nS
τw Adaptation time constant 100ms
Vreset Reset potential ´70mV
Vcut Spike cutoff threshold Vexp ` 5 ¨ ∆T

gas Soma–apical coupling 30 nS
gbs Soma–basal coupling 5 nS
τsyn Synaptic time constant 5ms
Isyn,a Apical spike input 1000 pA
Isyn,s Somatic spike input 300 pA
Isyn,b Basal spike input 0 pA

Table 2: Neuron parameters used in simulations using spike-based input
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