CHRISTIAN PEHLE

Address

Kirchhoff-Institute for Physics Im Neuenheimer Feld 227 D-69120 Heidelberg, Germany ☎ +4917643478233 ⋈ christian.pehle@kip.uni-heidelberg.de https://github.com/cpehle

Biographic Data

Born in Darmstadt, Germany. German citizen.

Education

Heidelberg University

Heidelberg, Germany

August 2015 – February 2021 PhD in Physics

Thesis: Adjoint Equations of Spiking Neural Networks

Advisor: Karlheinz Meier[†], Johannes Schemmel

November 2011 – August 2015 Diplom Mathematics (incomplete, decided to proceed with PhD instead)

finished majority of required and elective courses (among them: PDE, Optimization on Manifolds, Numerical Methods, Hodge Theory, Algebraic Topology, TQFT)

October 2010 – March 2014 MSc in Theoretical Physics (focus on Quantum Field Theory and String Theory)

October 2007 – November 2011 Vordiplom in Mathematics

October 2007 – August 2010 BSc in Physics

Edith-Stein-Schule Darmstadt, Germany

July 2007 Abitur

Recommended for German National Merit Foundation, received state-wide award for written physics exam.

Academic Positions & Experience

Kirchhoff Institute for Physics, Heidelberg University

PostDoc, STRUCTURES Excellence Cluster.

Heidelberg, Germany May 2021 - present

- · Developing theory, algorithms and software for differentiable simulation and learning in physical systems, in particular detailed neuron models and networks, integrated with the machine-learning framework JAX (in progress).
- · Developing theory and algorithms for closed-loop control of Quantum Experiments with Spiking Neural Networks (in progress).
- · Architect and developer of "Norse", a software library for machine learning with Spiking Neurons (in PyTorch).
- · Supervise students implementing event-based learning algorithms for analog Neuromorphic Hardware.

PhD student in Physics.

August 2015 - February 2021

- · Focussed on learning algorithms and plasticity in Spiking Neural Networks and analog Neuromorphic Hardware: Found a way to compute parameter gradients in networks of spiking neurons without approximations or assumptions on network topology, a long-standing open question.
- · Worked on variational approximation of quantum density matrices and certain quantum operations by artificial and Spiking Neural Networks.
- · Part of design team of a Neuromorphic Processor (BrainScaleS-2). Responsible for scale-up and verification of "plasticity processing unit" (an embedded processor with SIMD unit), evaluation and design of plasticity experiments.

Institute for Theoretical Physics, Heidelberg UniversityMaster Student.

Heidelberg, Germany October 2012 - February 2014

· Developed a novel method to count massless matter in String Theory (F-Theory).

Selected Publications & Preprints

Christian Pehle, Luca Blessing, Elias Arnold, Eric Müller, and Johannes Schemmel. Event-based backpropagation for analog neuromorphic hardware. *In preparation*, 2022

Christian Pehle and Christof Wetterich. Neuromorphic quantum computing. Phys. Rev. E, 106:045311, 2022

Benjamin Cramer, Sebastian Billaudelle, Simeon Kanya, Aron Leibfried, Andreas Grübl, Vitali Karasenko, **Christian Pehle**, Korbinian Schreiber, Yannik Stradmann, Johannes Weis, et al. Surrogate gradients for analog neuromorphic computing. *Proceedings of the National Academy of Sciences*, 119(4):e2109194119, 2022

Christian Pehle, Sebastian Billaudelle, Benjamin Cramer, Jakob Kaiser, Korbinian Schreiber, Yannik Stradmann, Johannes Weis, Aron Leibfried, Eric Müller, and Johannes Schemmel. The BrainScaleS-2 accelerated neuromorphic system with hybrid plasticity. *Frontiers in Neuroscience*, 16, 2022

Timo C Wunderlich and **Christian Pehle**. Event-based backpropagation can compute exact gradients for spiking neural networks. *Scientific Reports*, 11(1):1–17, 2021

Christian Pehle and Jens Egholm Pedersen. Norse - A deep learning library for spiking neural networks, 2021

K. Schreiber, T. C. Wunderlich, C. Pehle, M. A. Petrovici, J. Schemmel, and K. Meier. Closed-loop experiments on the brainscales-2 architecture. In *Proceedings of the Neuro-Inspired Computational Elements Workshop*, NICE '20. Association for Computing Machinery, 2020

Thomas Bohnstingl, Franz Scherr, **Christian Pehle**, Karlheinz Meier, and Wolfgang Maass. Neuromorphic hardware learns to learn. *Frontiers in neuroscience*, 13:483, 2019

Syed Ahmed Aamir, Yannik Stradmann, Paul Müller, **Christian Pehle**, Andreas Hartel, Andreas Grübl, Johannes Schemmel, and Karlheinz Meier. An accelerated lif neuronal network array for a large-scale mixed-signal neuromorphic architecture. *IEEE Transactions on Circuits and Systems I: Regular Papers*, 65(12):4299–4312, 2018

Christian Pehle, Karlheinz Meier, Markus Oberthaler, and Christof Wetterich. Emulating quantum computation with artificial neural networks. *arXiv*:1810.10335, 2018

Martin Bies, Christoph Mayrhofer, **Christian Pehle**, and Timo Weigand. Chow groups, Deligne cohomology and massless matter in F-theory. *arXiv preprint arXiv:1402.5144*, 2014

Honors & Activities

2012	Sommerakademie Görlitz, Seminar "Quantum Hall Effect"
2011	Sommerakademie Rot an der Rot, Seminar "Knots in Mathematics and Physics"
2008	Sommerakademie Schloss Salem, Seminar "Variational Methods in Physics"
2007-2014	Studienstiftung des Deutschen Volkes (German National Merit Foundation)
2007-2014	Evangelisches Studienwerk Villigst (based on academic excellence and social involvement)
2007	Schülerpreis der Deutschen Physikalischen Gesellschaft (German Physics Society)

Invited Talks & Workshops

2022	Discussion	Landan	"I accomo	fuom	Machine	I comino"	CanaCa		ah an in	Alabana 1	4.1
2023	Discussion	Leader.	Lessons	irom	wiacnine	Learning .	CaboCa	ccia work	snod in	Aignero, i	taiv.

²⁰²² Fürberg Workshop, in Fürberg, Austria.

- 2017 SP9 Fürberg Workshop, in Fürberg, Austria.
- 2016 SP9 Fürberg Workshop on Stochastic Computing, in Fürberg, Austria.
- 2016 EITN in Paris, France.

²⁰²¹ SNUFA Workshop (online).

²⁰²¹ Segev Lab Journal Club (online).

²⁰²⁰ CNRS-Thales, NIST (online). Talk: Adjoint Equations and Spiking Neural Networks.

²⁰¹⁹ OCNS workshop on generative connectomics and plasticity in Barcelona, Spain.

²⁰¹⁹ HBP L2L (learning to learn) workshop in Fürberg, Austria.

²⁰¹⁸ HBP L2L (learning to learn) workshop in Fürberg, Austria.

Supervision & Teaching

2021 – present	Co-Supervisor of two Master students.
2021 – present	Lead preparation of new teaching material for Neuromorphic Computing lab exercises.
2021	Graduate Teaching Assistant, Experimental Physics I (6-12 Students).
2017 – present	Supervised graduate students in lab exercises on Neuromorphic Computing (40+ Students).
2016	Taught Graduate Seminar: Brain Inspired Computing (6 Students).
2011 - 2012	Graduate Teaching Assistant, Linear Algebra, Heidelberg University (20-25 Students).
2009 - 2010	Teaching Assistant, Analysis, Heidelberg University (20-25 Students).

Research Funding

2019 - 2020	Participated in a second compute time proposal (3.4 million core-h) at JUWELS on LTL (learning to learn):
	successfully ran multi-node and multi-gpu deep-learning experiments with Spiking Neural Networks, con-
	tributed to the final report.

- 2018 2019 Participated in a successful collaborative compute time proposal on LTL (learning to learn), which resulted in 3.4 million core-h of compute time at JUWELS (FZ Jülich), the 8th fastest supercomputer in the world (as of November 2021), with participants from 5 international research labs: participated in and presented at planning workshop, wrote proposal for sub-project, ran feasibility study and contributed to the final report.
- 2017 2018 Assisted PhD supervisor with a successful collaborative bid (EXC 2181/1-390900948, the Heidelberg STRUCTURES Excellence Cluster) for 7-10 Million Euro per year in funding: did literature review, wrote draft for section in proposal, gave presentations at planning meetings, performed initial preparatory research.

Research Software Tools

2019 – present Norse (github.com/norse/norse, > 400 stars on Github)

- · Library for gradient-based machine learning with Spiking Neural Networks in PyTorch.
- · Created initial architecture and implementation. Co-lead design and development.
- · In use by several external groups (European Space Agency, FZI & KIT Karlsruhe, KTH Stockholm).
- · Backends for neuromorphic chips (BrainScaleS-2, SpiNNaker-2) in development.

2020 – present **aestream** (*github.com/norse/aestream*)

- · Library for streaming data from event-based cameras to deep-learning models in particular spiking neural network models.
- · Provided the initial C++ implementation and interface to PyTorch.
- · In use for closed-loop robotics experiments at KTH Stockholm.

Impact Activities

- 2023 Workshop on Norse at HBP Student Conference in Madrid, Spain.
- Held virtual workshop on Deep Learning with Spiking Neurons at the 5th HBP student conference (50+ participants).
- 2020 HBP Tea and Slides VII, online seminar for general scientific audience (30+ participants).
- 2017 2nd HBP Young Researchers Event in Geneva, Switzerland.

Training & Development

2018	CapoCaccia workshop in Alghero, Italy.
2017	HBP CodeJam in Lausanne, Switzerland

2017 HBP CodeJam in Lausanne, Switzerland.2016 HBP CodeJam in Manchester, UK.

2016 CapoCaccia workshop in Alghero, Italy.

Languages

German (native), English (fluent), French (basic)

Technical Skills

I have seven years of experience working in a team of 5-8 hardware and 10-20 software developers and users. We practice sustainable software and hardware development principles. We have implemented an integrated software-hardware development flow, including Code Review, Continuous Integration, fully reproducible software-hardware deployment and dependency management.

- · Machine Learning: PyTorch, JAX, algorithm design, optimal control, Neural ODE, Graph Neural Networks, HPC training
- · Software Development: C/C++, Python, git, basic unix tools and environment, LATEX, Functional Programming
- Hardware Development: Digital Design, FPGA (XilinX) and ASIC development: Contributed to three successful tapeouts of two prototype and one full-scale neuromorphic processor in TSMC 65 nm. Verilog/SystemVerilog, UVM, Verilator
- · DevOps: Continuous Integration (Jenkins, Github workflows), Code Review (Gerrit), SLURM, Singularity, Spack

Other Interests

Programming Language Design and Type Theory, Long Distance Hiking (300 km+), Bouldering, Downhill Skiing

References

Dr. Johannes Schemmel
Kirchhoff-Institute for Physics
Universität Heidelberg
Im Neuenheimer Feld 227
D-69120 Heidelberg, Germany

a +49-6221-54-9849

⊠ schemmel@kip.uni-heidelberg.de

Dr. Eric Müller European Institute for Neuromorphic Computing Universität Heidelberg Im Neuenheimer Feld 225 D-69120 Heidelberg, Germany

a +49-6221-54-9897

⊠ mueller@kip.uni-heidelberg.de

Prof. Christof Wetterich Institut für Theoretische Physik Universität Heidelberg Philosophenweg 16 D-69120 Heidelberg, Germany

a +49-6221-549-340

 \boxtimes c.wetterich@thphys.uni-heidelberg.de