Advanced Analog Building Blocks Transistor Level Logic

(comerma@physi.uni-heidelberg.de)

Course web

SoSe 2017

Introduction Other characteristics Combinational logic Sequential logic

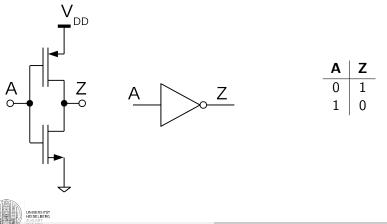
Standard cells

Digital logic are in fact analog circuits

Yes that's true!!

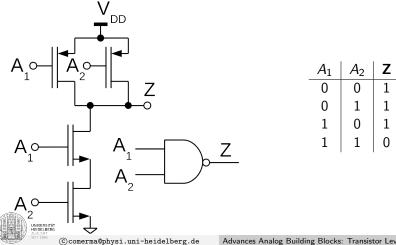
- Set of "basic blocks" grouped in Standard Cells.
- CMOS: Complementary metal-oxide-semiconductor, from complementary structures in logic.
- Standard Cells have several constrains/characteristics;
 - Fixed height and variable width.
 - Fixed position of VDD and GND.
- Set of important characteristics;
 - Delay/speed.
 - Power consumption.
 - Driving power.

Introduction Other characteristics Combinational logic Sequential logic


- Rising/falling edge:
 - Designed to have same rising and falling time at output!!
- Driving power:
 - Is measured as integer values of how much simple inverters the cell can drive.
 - Naming convention: INV1, INV2,... AND1,AND2,...

Introduction Other characteristics **Combinational logic** Sequential logic

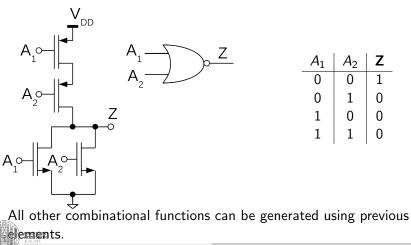
Combinational logic: Inverter


Simpler cell is an inverter (remember amplifiers?).

Standard cells Place and route Other characteristics Combinational logic Sequential logic

Combinational logic: NAND gate

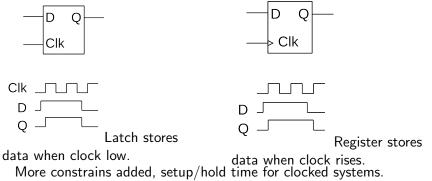
NAND Gate:



Advances Analog Building Blocks: Transistor Level Logic 4 / 13

Introduction Other characteristics **Combinational logic** Sequential logic

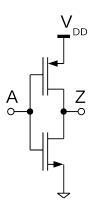
Combinational logic: NOR gate

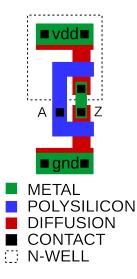

NOR Gate:

©comerma@physi.uni-heidelberg.de Advances Analog Building Blocks: Transistor Level Logic 5 / 13

Standard cells Standard cells examples Place and route Standard cells examples Place and route Sequential logic

Of course sequential cells can also be used/implemented;

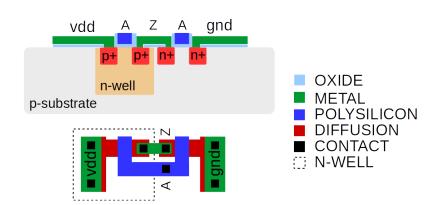




Inverter

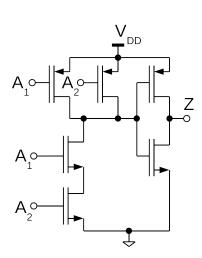
AND Gate Layout of Standard cells Layout of Standard cells II

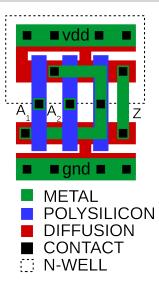
Standard cell example: Inverter



Inverter

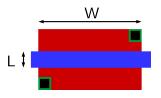
AND Gate Layout of Standard cells Layout of Standard cells II

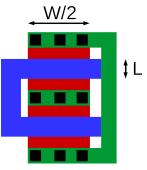

Inverter Cross section



Inverter AND Gate Layout of Standard cells Layout of Standard cells II

Standard cell example: AND gate




Inverter AND Gate Layout of Standard cells Layout of Standard cells II

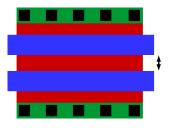
Layout of Standard cells

- Transistors use minimum Length usually.
- Effective R scales linearly with 1/W.
- Gate capacitance scales linearly with W.
- Diffusion capacitance scales linearly with W.

Some recommendation for long transistors:

• Long transistors have large

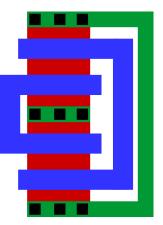
©comerma@physi.uni-heidelberg.de


• Folded reduces diffusion C,

Advances Analog Building Blocks: Transistor Level Logic 10 / 13

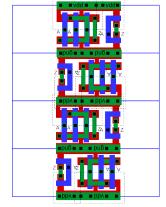
Inverter AND Gate Layout of Standard cells Layout of Standard cells II

Layout of Standard cells


Some recommendation for long transistors:

 Series transisors as close as possible reduce R and C parasitics.

©comerma@physi.uni-heidelberg.de


• Folded stack not individual transistors.

Place and route

• Digital tools start with defining a grid for placement;

- Cells are placed at each row with interleaved rotation.
- Metals are routed in horizontal and vertical directions.

Modern standard cells

- Modern technologies provide different "flavours" of standard cells.
- They can be combined by synthesis tools depending on constrains.
- Use of different types of transistors;
 - Regular-Voltage-Threshold (STD)
 - Used as default/reference.
 - High-Voltage-Threshold (HVT)
 - Slower.
 - Less power consumption.
 - Low-Voltage-Threshold (LVT)
 - Faster.
 - More power consumption.

Design an AND gate with following requirements;

- Same rising/falling time.
- Driving power = 1 (an inverter must be designed also).
- Minimum size as possible.

Are the rising/falling times equal in MonteCarlo? Can you fit it in $3\mu m$ height?