Robert Weis

Kirchhoff Institute for Physics

The Kirchhoff Institute for Physics (KIP) is named after a prominent physicist of the 19th Century: Gustav Robert Kirchhoff, who worked in Heidelberg for 21 years. His well-known lectures on experimental and theoretical physics attracted many students. Kirchhoff's ground-breaking research was extraordinarily diverse, spanning electrical, magnetic, optical, elastic, hydrodynamic and thermal processes. His laws for electrical circuits are well-known. At the time he was in Heidelberg, in conjunction with Robert Wilhelm Bunsen, he discovered spectral analysis and its application to solar radiation. In this way, Kirchhoff laid the foundation for modern astrophysics, as well as formulating the laws of thermal radiation, which played a key role in the discovery of quantum physics. The KIP aims to continue in this tradition of diverse scientific research and education.

Ruperto Carola Lecture Series 200 Years Gustav Kirchhoff

Free spirit. Pioneer. Visionary: Gustav Kirchhoff's scientific findings are still of great importance today for many current research topics. As the founder of spectral analysis in the 19th century, the outstanding physicist (1824 to 1887) not only paved the way for modern astrophysics, but also environmental physics, modern atomic and molecular physics, chemistry and quantum physics still use spectroscopy today. And without Kirchhoff's rules for electrical networks, chip development and the analysis of electrical circuits would be inconceivable.

The Ruperto Carola lecture series in the summer semester 2024 on the occasion of the 200th birthday of Gustav Kirchhoff, who researched and taught as a professor at Heidelberg University for more than 20 years, provides - in addition to a historical introduction to Kirchhoff's life and work - insights into areas of modern research on which Kirchhoff's work has had an influence to this day.

Physikalisches Kolloquium

24. January 2025 5:00 pm  Ultrafast Dynamics in Hybrid Semiconductors for Energy Applications

Prof. Dr. Felix Deschler, Institute of Physical Chemistry, University of Heidelberg , Addressing the climate challenge requires functional materials that enable energy generation, storage, and conversion from renewable sources, forming the foundation for a sustainable energy infrastructure. My group focuses on advancing functional materials to enable novel energy technologies, including next-generation lighting, energy storage, and information systems. We leverage high-resolution ultrafast spectroscopy to investigate the dynamics of local optoelectronic and structural processes at femtosecond timescales. This approach not only advances material functionality but also provides new insights into fundamental phenomena critical for energy applications. more...

News

Leibniz Prize for Wolfram Pernice

Most important research advancement prize honors his experimental work on integrated photonics

With Prof. Dr Wolfram Pernice, an outstanding scientist at Heidelberg University has received the Gottfried Wilhelm Leibniz Prize of the German Research Foundation (DFG). The goal of Prof. Pernice’s research in the field of integrated photonics is to develop new methods for information processing and rapid computation using light. In this context, he works on chip systems with nanoscale production methods aiming to come up with applications in artificial intelligence and quantum technologies. The experimental physicist’s research on what is known as neuromorphic photonic computing is pioneering, the DFG emphasizes.

  more ...