Jahr | 2007 |
Autor(en) | Stefan Philipp, Andreas Grübl, Karlheinz Meier, Johannes Schemmel |
Titel | Interconnecting VLSI Spiking Neural Networks Using Isochronous Connections |
KIP-Nummer | HD-KIP 07-14 |
KIP-Gruppe(n) | F9 |
Dokumentart | Paper |
Keywords (angezeigt) | VLSI Neural Networks, Spiking Neural Networks, Isochronous Network Connections |
Quelle | In Proc. of the 9th International Work-Conference on Artificial Neural Networks (IWANN"2007), San Sebastián, Spain, June 2007, Springer LNCS 4507, pp. 471-478 |
Abstract (en) | This paper presents a network architecture to interconnect mixed-signal VLSI integrate-and-fire neural networks in a way that the timing of the neural network data is preserved. The architecture uses isochronous connections to reserve network bandwidth and is optimized for the small data event packets that have to be exchanged in spiking hardware neural networks. End-to-end delay is reduced to the minimum by retaining 100% throughput. As buffering is avoided wherever possible, the resulting jitter is independent of the number of neural network chips used. This allows to experiment with neural networks of thousands of artificial neurons with a speedup of up to 10^5 compared to biology. Simulation results are presented. The work focuses on the interconnection of hardware neural networks. In addition to this, the proposed architecture is suitable for any application where bandwidth requirements are known and constant low delay is needed. |
Datei | paper |